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Abstract. The present study aimed to investigate the expres-
sion of long non‑coding RNA (lncRNA) cyclin dependent 
kinase inhibitor‑2B‑antisense RNA 1 CDKN2B‑AS1 in 
patients with peripheral blood of idiopathic pulmonary fibrosis 
(IPF). A total of 24 patients with IPF and 24 healthy controls 
were included in the study, four patients with IPF and four 
healthy controls were selected randomly to extract RNA. There 
were no other diseases such as hypertension and diabetes in 
the two groups. RNA from peripheral blood was extracted 
by high‑throughput sequencing and bioinformatics analysis 
was performed. Based on selected differentially expressed 
lncRNA and mRNA, gene ontology analysis was performed to 
screen out the tumor‑associated mRNA. A total of 20 samples 
were chosen to avoid variance due to individual differences. 
A total of 20 patients with IPF, and 20 controls were further 
studied, RNA extracted from peripheral blood was used to 
verify the lncRNA and mRNA levels. A total of 440 lncRNAs 
were identified to be upregulated and 1,376 downregulated 
according to the screening results of differential expression. 
High‑throughput sequencing and bioinformatics analysis 
demonstrated that the expression of CDKN2B‑AS1 decreased 
significantly in patients with IPF compared with healthy 
controls. The adjacent gene mRNA of CDKN2B‑AS1 was 
identified as CDKN2A, an important anti‑oncogene, which 
is concentrated on the p53 signaling‑pathway according to 
the Kyoto Encyclopedia of Genes and Genomes database. 
CDKN2A mRNA expression levels were lower in patients 
with IPF and higher in the control group. The expression of 
CDKN2B‑AS1 and CDKN2A mRNA was significantly lower 
in IPF group compared with in the control group (P<0.05). 

The results suggest the expression of the CDKN2B‑AS1 and 
adjacent gene, CDKN2A, are downregulated in the peripheral 
blood of patients with IPF, which activates the p53‑signaling 
pathway to promote lung cancer formation.

Introduction

Idiopathic pulmonary fibrosis (IPF) is a progressive and 
usually fatal lung disease characterized by fibroblast prolifera-
tion, and extracellular matrix remodeling (1,2). It is a common 
disease in the elderly population, particularly those who are 
between 50‑70 years old. IPF may be associated with addi-
tional comorbidities, which have an impact on the quality of 
life and survival of patients in addition to the progressive exer-
tional dyspnea. IPF has a small number of treatment options. 
Therefore, it is hypothesized that since there are no effective 
therapies, timely detection and reduction of the complica-
tions are important in order to improve the quality of life of 
patients. It has been reported that IPF is an independent risk 
factor of lung cancer (1,2), with non‑small cell lung carcinoma 
(NSCLC) being the main pathological type. However, the 
underlying mechanism remains poorly understood.

Epigenetic alterations are involved in the pathogenesis of 
IPF and lung cancer. Long non‑coding RNA (lncRNA) is a class 
of RNA with the length of >200 bases. With the development 
of gene sequencing technology and bioinformatics technology, 
increasing evidence has demonstrated that changes in lncRNA 
expression levels are associated with numerous diseases 
including lung disease and neurological disease (3,4). The p53 
gene has been revealed to have the highest number of genetic 
correlations with human tumor types and is an important 
tumor suppressor gene (5). The p53‑mediated cell‑signaling 
pathway serves an important role in the regulation of normal 
cellular activities.

Studies have demonstrated that lncRNA alterations and 
the p53‑signaling pathway are involved in the process of IPF, 
and lung cancer formation. Therefore, it was hypothesized 
that there are certain changes in lncRNA related to the p53 
gene, further associating IPF with lung cancer. Thus, the 
present study aimed to investigate the differential expres-
sion of lncRNAs through high‑throughput sequencing and 
bioinformatics analysis.
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Materials and methods

Study population. A total of 24 patients with IPF, according 
to diagnostic criteria established by the American Thoracic 
Society  (6), and 24 healthy controls were involved in the 
study (all males; aged 67±3.2 vs. 64±2.8 years, respectively; 
P>0.05). Based on the uniformity of background including age 
and gender, four patients with IPF and four healthy controls 
were selected for RNA extraction. RNA from peripheral 
blood was extracted using high‑throughput sequencing and 
bioinformatics analysis was performed for the expression of 
lncRNA. The remaining 20 patients with IPF and 20 healthy 
controls were further studied; RNA extracted from peripheral 
blood was used to verify the lncRNA and mRNA. The 3 ml of 
blood sample was stored in ‑70˚C for further study. The present 
study was approved by the Shanxi Medical University Ethics 
Committee (Taiyuan, China). Written informed consent was 
obtained from each patient and healthy individuals.

RNA extraction. Total RNA was isolated using TRIzol 
(Invitrogen; Thermo Fisher Scientific, Inc.) according to the 
manufacturer's protocol. RNA concentration and quality were 
assessed using a NanoDrop ND‑1000 Spectrophotometer 
(NanoDrop Technologies; Thermo Fisher Scientific, Inc., 
Waltham, MA, USA). The ratio A260/A280 was between 
1.8‑2.1.

RNA sequencing. Ribosomal (r)RNA was removed the total 
RNA (1 µg) samples using the Ribo‑Zero Gold kit (Illumina, 
Inc., San Diego, CA, USA) according to the manufacturer's 
protocol. The rRNA‑depleted samples were used for library 
construction using the NEBNext® Ultra™ RNA Library Prep 
kit according to the manufacturer's protocol (New England 
Biolabs, Inc., Ipswich, MA, USA). Libraries were sequenced 
with the Illumina HiSeq Sequencer according to the manu-
facturer's protocol (Illumina, San Diego, CA, USA). Reads 
were trimmed and cleaned of Illumina adaptors, and low 
quality sequences using Cutadapt software (version 1.9.2; 
https://github.com/marcelm/cutadapt). Clean reads were 
mapped to the Human genome [University of California Santa 
Cruz (UCSC) hg19; http://genome.ucsc.edu/cgi‑bin/hgGateway] 
using TopHat2 software (version 2.1.2; http://ccb.jhu​
.edu/software/tophat/index.shtml) and unmapped reads were 
discarded. Cuffdiff software (version 2.1.2; part of cufflinks; 
https://github.com/cole‑trapnell‑lab/cufflinks) was used to 
perform expression analysis and differential expression anal-
ysis. LncRNAs were considered to be differentially expressed 
based on Fragments/kb of transcript/million mapped reads 
(FPKM) >0.5 and fold change >2.0.

Gene ontology (GO) analysis and pathway analysis. The 
GO enrichment analysis was performed for functional 
analysis of LncRNA‑associated genes using R package 
‘topGO’ from Bioconductor (http://www.bioconductor​
.org/packages/release/bioc/html/topGO.html). The significant 
pathways for predicting target genes were identified according 
to the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
database (http://www.genome.jp/kegg/). The Fisher's exact test 
was used to select the significant Gene ontology and pathways, 
and the threshold of significance was defined by P<0.05. RNA 

Sequencing reads may be mapped into the reference genome. 
Any gene of interest may be directly visualized in the Integrative 
Genomics Viewer (http://www.broadinstitute.org/igv/).

cDNA synthesis and reverse transcription‑quantitative 
polymerase chain reaction (RT‑qPCR). Total RNA was 
used to make cDNA using PowerScript RT‑PCR kit 
(Cloud‑Seq Inc., Shanghai, China) according to the manu-
facturer's protocol with random primers supplied with the 
kit. The expression levels of lncRNAs and mRNAs were 
determined using SYBR Green I‑based qPCR. The qPCR 
thermocycling conditions were maintained as follows: 95˚C 
for 10 min; followed by 40 cycles of 95˚C for 10 sec and 
60˚C for 60 sec. Data were analyzed using the comparative 
∆Cq method  (7) with β‑actin as an endogenous reference 
gene. Primers were designed using Primer (version 5.0; 
https://wheat.pw.usda.gov/demos/BatchPrimer3/). The 
primers used were as follows: Cyclin dependent kinase inhib-
itor (CDKN)2B‑antisense RNA 1 (AS1) forward, AAC​CGG​
GGA​GAT​CTA​TTT​GG and reverse, GGT​GTG​GTG​TCT​CAC​
ACC​TG; CDKN2A forward, GGC​TGT​TCC​TGG​TCA​TGA​T 
and reverse, TGT​CCA​GGA​AGC​CCT​CC.

Statistical analysis. Results are expressed as the 
mean  ±  standard deviation. Differences between groups 
were analyzed by one‑way analysis of variance (ANOVA). 
Bonferroni post hoc test was used to identify which compar-
ison is significantly different after ANOVA analysis. Statistical 
significance was determined using SPSS software (version 
17.0; SPSS, Inc., Chicago, IL, USA). P<0.05 was considered to 
indicate a statistically significant difference.

Results

lncRNA expression. A total of 1,816 differentially expressed 
lncRNAs were identified via screening, including 440 upregu-
lated and 1,376 downregulated lncRNAs (Fig. 1). In addition, 
1,124 differentially expressed mRNAs were identified (Fig. 2). 
Notably, downregulated lncRNAs were more common 
compared with upregulated lncRNAs. Among the lncRNAs, 
CDKN2B‑AS1 (chr9:21802541‑22121096) was identified to be 
the most significantly downregulated lncRNA.

Pathway analysis. The significant pathways for predicting the 
target gene were identified according to the KEGG database 
using Fisher's exact test. The p53‑signaling pathway was 
significantly associated with lung cancer (Fisher's exact test; 
P<0.013) and target gene‑related pathways (Fisher's exact test; 
P<0.0039; Fig. 3; Table I).

Target lncRNA. CDKN2A is an important component of 
the p53‑signaling pathway. Using bioinformatics analysis, 
it was revealed that the adjacent mRNA gene of CDKN2A 
was CDKN2B‑AS1. Through the aforementioned selected 
differentially expressed lncRNA and mRNA, the key lncRNA 
is CDKN2B‑AS1 (chr9:21802541‑22121096) with change 
of 3.78‑folds. Differentially expressed lncRNA and mRNA 
were screened out and it was found that CDKN2B‑AS1 
(chr9:21802541‑22121096) decreased significantly in IPF 
patients. The gene ID of CDKN2B‑AS1 is ENSG00000240498. 
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According to the UCSC database, the CDKN2B‑AS1 
gene length is 631 bp. CDKN2B‑AS1 was identified in the 
‘Homo_sapiens_HG19.sorted.gtf’ database.

From the Ensembl database (http://www.ensembl​
.org/Homo_sapiens/Info/Index) and CNKI gene database, 
the transcript of CDKN2A was demonstrated to contain an 
alternate open reading frame (ARF) that encodes a protein, 
which is structurally unassociated with the products of the 
other variants. This ARF product functions as a stabilizer of 
the tumor suppressor protein p53 as they can interact with 
each other (8). This gene is known as an important  tumor 
suppressor gene and is associated with IPF. The positional 
association between the two genes is antisense (Fig.  4), 
and the adjacent gene of the CDKN2B‑AS1 is CDKN2A. 
It further suggests that these two genes CDKN2B‑AS1 and 
CDKN2A are simultaneously transcribed. This lncRNA 
is located on chromosome 9 at the approximate location 
chr9:21802541‑22121096 and the adjacent gene is CDKN2A 
in Fig. 4.

From the aforementioned results, the CDKN2B‑AS1 and 
CDKN2A expression levels were determined in the remaining 
IPF and control group cases (n=20 each) using RT‑qPCR tech-
nology. The results revealed that CDKN2B‑AS1 and CDKN2A 
expression levels were significantly decreased in the IPF group 
compared with the control group (*P<0.05; Fig. 5).

Discussion

IPF is a chronic, progressive and fatal diffuse interstitial 
lung disease. It has re‑emerged as a focus of scientific study, 
due to its increasing incidence, the progressive dyspnea and 
lack of effective treatments (9). The diagnosis of IPF often 

Figure 1. Differentially expressed lncRNA. An lncRNA expression signature 
of IPF. 1816 differentially expressed lncRNAs (rows) from hierarchical clus-
tering were identified between IPF samples and normal samples (columns). 
Patient ID numbers are shown below the columns. The expression level of each 
lncRNA is represented by the number of standard deviations above (blue) or 
below (green) the average value for that gene across all samples. lncRNA, long 
noncoding RNA.

Figure 2. Differentially expressed mRNA. An mRNA expression signature 
of IPF. 1485 differentially expressed mRNAs (rows) from hierarchical clus-
tering were identified between IPF samples and normal samples (columns). 
Patient ID numbers are shown below the columns. The expression level of 
each lncRNA is represented by the number of standard deviations above 
(blue) or below (green) the average value for that gene across all samples.

Figure 3. Target gene‑related enriched pathways. p53‑signaling pathway 
in the top significant pathway of different genes according to the pathway 
analysis, which is the one of the bioinformatics analysis. DE, differentially 
expressed; TNF, tumor necrosis factor; NF‑κB, nuclear factor‑κB; HIF‑1, 
hypoxia inducible factor‑1; ErbB, epidermal growth factor family of receptor 
tyrosine kinases.

https://www.spandidos-publications.com/10.3892/ol.2018.7910
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requires a multidisciplinary approach, involving pulmonolo-
gists, radiologists, and pathologists experienced in the field 
of interstitial lung diseases  (6,10). As early as 1957, the 
incidence of lung cancer in patients with IPF was identified 
to be higher, compared with healthy control patients. (11), 

is has been confirmed that the incidence of lung cancer 
is increased in patients with IPF compared to the general 
population (12‑16). A previous study identified that IPF is 
an independent risk factor of lung cancer (14). Recently, the 
view that lung cancer occurs as a late complication of IPF 

Table I. Target gene‑associated pathways.

		  Fisher	 Selection		  Enrichment‑
Pathway ID	 Definition	 P‑value	 counts	 Size	 score	 Genes

hsa04115	 p53‑signaling pathway	 0.013	 24	 6890	 1.86	 APAF1//BAI1//BAX//BBC3//
						      CASP8//CASP9//CCND3//CCNG2//
						      CD82//CDK2//CDKN1A//CDKN2A//
						      CHEK1//CYCS//DDB2//IGFBP3//
						      RCHY1//RFWD2//RRM2B//SHISA5//
						      TNFRSF10B//TP53//TSC2//ZMAT3
hsa04330	 Notch‑signaling pathway	 0.001	 21	 6890	 2.96	 APH1A//CREBBP//CTBP2//DTX1//
						      DTX3//DVL1//DVL2//DVL3//HDAC1//
						      HDAC2//JAG2//KAT2A//LFNG//
						      MFNG//NCOR2//NCSTN//NOTCH1//
						      NOTCH2//NUMB//PSENEN//RFNG
hsa04621	 NOD‑like receptor‑signaling	 0.005	 22	 6890	 2.52	 CARD6//CARD8//CARD9//CASP5//
	 pathway					     CASP8//CHUK//CXCL1//IKBKB//
						      MAPK13//MAPK14//MAPK3//MEFV//
						      NFKB1//NLRP1//NLRP3//NOD1//
						      NOD2//PSTPIP1//PYCARD//RELA//
						      SUGT1//TNF
hsa04668	 TNF signaling pathway	 <0.001	 41	 6890	 3.34	 AKT1//AKT2//BCL3//CASP10//
						      CASP8//CEBPB//CHUK//CREB1//
						      CREB3L2//CSF1//CXCL1//CXCL5//
						      FADD//FOS//ICAM1//IKBKB//IL15//
						      JUNB//MAP2K6//MAP2K7//MAP3K5//
						      MAPK13//MAPK14// MAPK3//
						      MMP14//MMP9//NFKB1// NOD2//
						      PGAM5//PIK3CD//PIK3R5//PTGS2//
						      RELA//RIPK1//RIPK3//RPS6KA5//
						      TNF//TNFRSF1B//TRADD//
						      TRAF1//TRAF3
hsa05222	 Small cell lung cancer	 0.008	 30	 6890	 2.11	 AKT1//AKT2//APAF1//BCL2//CASP9//
						      CDK2//CDKN1B//CDKN2B//CHUK//
						      COL4A3//CYCS//E2F2//FHIT//
						      IKBKB//ITGA3//ITGA6//ITGAV//
						      LAMA5//LAMB2//LAMC3//MYC//
						      NFKB1//PIK3CD//PIK3R5//PTGS2//
						      RELA//TP53//TRAF1//TRAF3//TRAF4
hsa05223	 Non‑small cell lung cancer	 0.004	 19	 6890	 1.399	 AKT1//AKT2//ARAF//CASP9//
						      CDKN2A//E2F2//FHIT//
						      GRB2//HRAS//MAPK3//PDPK1//
						      PIK3CD//PIK3R5//PLCG1//PRKCA//
						      PRKCB//RASSF1//TGFA//TP53

CDKN2A is in the p53‑signaling pathway. The Fisher P‑values were 0.013 and 0.0039. CDKN2A was identified to be concentrated on the 
p53‑signaling pathway according to the high‑throughput sequencing results. TNF, tumor necrosis factor; CDKN2A, cyclin dependent kinase 
inhibitor 2A; NOD, nucleotide‑binding oligomerization domain.
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rather than being incidental has been supported (17). Studies 
consistently demonstrated that elderly male patients with IPF 
with a history of smoking are more likely to develop lung 
cancer (18‑20).

Typical HRCT findings from lung cancer with IPF are 
well‑defined nodules with lobulation in the peripheral subpleural 
areas inside or adjacent to the fibrosis  (21). Kim et al  (22) 
reported that the highest proportion of IPF with lung cancer 
cases is adenocarcinoma, but Lee et al (23) reported that the 
highest proportion was squamous cell carcinoma. These two 
differences may be associated with the different sample popu-
lations that were chosen; however, patients with IPF are prone 
to having non‑small cell lung cancer (24). It has been reported 
that the incidence of IPF associated with lung cancer is incon-
sistent, which may be due to the different diagnostic criteria 
used. Certain reports have noted the incidence of lung cancer 
as 4.8‑48% and without pulmonary fibrosis as 2.0‑6.4% (1), thus 
it has been considered that IPF is a precancerous condition. IPF 
has been associated with lung cancer; however, the underlying 
mechanism remains to be elucidated. There are a number of 
genes and signaling pathways involved in this process, including 
the p53‑signaling pathway.

Of all humans cancers, ~50% lack a wild‑type p53 allele 
and thus fail to produce a normal version of the p53 protein (5). 
The presence of multiple mutations in the p53 gene may explain 
the high incidence of IPF complicated by lung carcinoma (25). 
Kawasaki et al (26) have reported that tumor suppressor p53 is 
altered in squamous metaplasia, and dysplastic bronchial and 
alveolar epithelia in patients with IPF. Exposure to carcino-
gens, tobacco and aging may cause the inactivation of tumor 

suppressor genes, and lead to lung cancer in patients with 
IPF (1). Reduced levels of p53 have been identified in cancer of 
the colon, lung, esophagus, breast, liver, brain, reticuloendothe-
lial tissues and hemopoietic tissues. The incidence of positive 
anti‑p53 antibody in IPF, irrespective of the existence of lung 
cancer, was as high as that in lung cancer (27). These findings 
suggest that the p53‑signaling pathway is associated with lung 
cancer (28‑30) and with IPF (31). Thus, we hypothesized that 
p53 mutation downregulation may be associated with a high 
incidence of lung cancer in patients with IPF.

Previously, lncRNA molecules were generally considered 
as byproducts formed during the transcription of the genome, 
and were defined as transcriptome ‘background noise’ without 
biological functions. It has now been reported that lncRNAs 
are involved in numerous important biological processes, 
including gene imprinting, cell proliferation and differentia-
tion, immune responses, and chromosome structure. LncRNA 
may serve a role in a variety of mechanisms, including the 
following: Rupturing of small RNA (shortRNAs); specific 
binding to chromosomes in Hox gene loci; regulating 
epigenetic activity by transacting; RNA may also form 
DNA‑DNA‑RNA triple helix structures to inhibit promoter 
activity; coding mRNA antisense transcripts to regulate gene 
activity (32). Previously, research confirmed that lncRNA is 
associated with numerous chronic pulmonary disease types, 
which serves important roles in the biological processes of 
lung cancer and IPF (33).

Through microarray analysis of bleomycin‑induced 
pulmonary fibrosis in a mouse model, the differential expres-
sion of lncRNA was confirmed (34). Furthermore, lncRNA 
imbalance is a characteristic of numerous types of cancer, 
which may be involved in promoting tumor progression, inva-
sion and metastasis (35‑37). lncRNA has been demonstrated to 
be involved in cell proliferation, apoptosis, epithelial‑mesen-
chymal transition and other biological processes, which 
regulate tumorigenesis, and metastasis (38‑40). lncRNAs may 
either facilitate or inhibit the progression of lung cancer and 
the various pathways involved (41‑43).

In the present study, differentially expressed lncRNAs 
were screened in IPF, lncRNA CDKN2B‑AS1 was screened 
and a fold‑change of 3.78 FPKM was observed (P<0.05). 
The gene ID for CDKN2B‑AS1 was ENSG00000240498. 
According to the UCSC database, the CDKN2B‑AS1 gene 
length was 631 bp. However, there is currently little research on 
CDKN2B‑AS1. Certain reports have noted that CDKN2B‑AS1 
is associated with hypertension and myocardial injury (44). In 
genome wide association studies of individual cancer types, 
genetic polymorphisms in the CDKN2A/2B‑AS1/2B/methyl-
thioadenosine phosphorylase gene cluster were associated 
with melanoma (45).

There are several mechanisms of lncRNA, it is able to 
inhibit the expression of certain genes and may enhance the 
expression of its neighboring gene (46,47). A previous study 
demonstrated that lncRNAs serve an important role in the 
process of transcription, particularly that of neighboring 
genes (33). It has been reported that adjacent pairs of genes 
often exhibit correlated expression patterns throughout the 
cell cycle (48‑50). lncRNAs may regulate the transcription of 
adjacent genes, thus affecting their biological roles. According 
to the bioinformatics analysis in the present study, it was 

Figure 4. Association between CDKN2A and CDKN2B‑AS1. This 
long noncoding RNA is located on chromosome 9 at approximate loca-
tions (chr9:21802541‑22121096), and the adjacent gene is CDKN2A. 
CDKN2B‑AS1, cyclin dependent kinase inhibitor 2B‑antisense RNA 1; Chr, 
chromosome.

Figure 5. Validation of long noncoding RNA and mRNA microarray data 
by reverse transcription‑quantitative PCR. The relative expression level 
of each lncRNA and mRNA were normalized. Data are presented as the 
mean ± standard deviation, *P<0.05. PCR, polymerase chain reaction; IPF, 
idiopathic pulmonary fibrosis.

https://www.spandidos-publications.com/10.3892/ol.2018.7910
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revealed that the adjacent gene mRNA of CDKN2B‑AS1 
was CDKN2A. CDKN2A is the cyclin‑dependent kinase 
inhibitor, which is an important tumor suppressor gene. It is 
involved in the regulation of cell proliferation and apoptosis, 
encoding proteins p16INK4a and p14ARF serve a function 
via retinoblastoma protein and p53 protein respectively (51). 
Altered expression levels of the CDKN2A gene have been 
reported in numerous tumor types such as tumors of lung, 
breast, brain, bone, skin, bladder, kidney, ovary, and lympho-
cyte  (52), thus, there it is a focus of oncogenetic studies. 
CDKN2A is considered as an exogenous marker, which is 
able to be detected at an early stage of sputum and bron-
choalveolar lavage fluid in patients with lung cancer (53). 
Busch et al (8) identified that induction of ARF is an early 
response in lung tumorigenesis that mounts a barrier against 
tumor growth and malignant progression. According to the 
GeneWays7.0 database, Li et al (54) reported that CDKN2A 
is associated with non‑small lung cancer. In addition, 
Cisneros et al (55) demonstrated that many IPF fibroblasts 
exhibit decreased expression of the proapoptotic p14ARF 
attributable to promoter hypermethylation (55). The present 
study revealed that CDKN2A expression was decreased 
significantly in patients with IPF, which was consistent with 
previous report  (55). Furthermore, CDKN2A expression 
was concentrated on the p53‑signaling pathway according 
to the high‑throughput sequencing results. It is involved in 
the regulation of gene p53, there may be a key factor in IPF 
patients with lung cancer.

In conclusion, the current study demonstrated that 
CDKN2B‑AS1 expression is decreased significantly in patients 
with IPF, while its adjacent gene CDKN2A expression is 
reduced simultaneously. Thus, it may promote the occurrence 
of lung cancer by regulating p53‑signaling pathways.
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