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Abstract. According to global cancer data, lung cancer was 
the leading cause of cancer‑related death in 2020. With the 
diversification of treatment strategies, the survival outcomes of 
patients with advanced lung cancer have improved significantly, 
but the 5‑year overall survival rate remains <20%. Epidermal 
growth factor receptor tyrosine kinase inhibitors (EGFR‑TKIs) 
are the preferred treatment for lung adenocarcinoma patients 
with EGFR‑sensitive mutations; however, acquired drug 
resistance is inevitable. Osimertinib (a third‑generation EGFR 
inhibitor) is the most commonly used drug for cancers with 
a secondary T790M mutation. Unfortunately, acquired drug 
resistance against third‑generation drugs still emerges. The 
C797s mutation is the primary acquired resistance mecha‑
nism against Osimertinib. Research on fourth‑generation 
EGFR‑TKI drugs with a C797s mutation is currently at various 
experimental stages, and no drug has been approved for clinical 
use. In addition to the resistance mechanisms described above, 
HER2 amplification, MET amplification, PIK3A mutation, 
KRAS mutation, BRAF mutation, transformation to small cell 
lung cancer, transformation to lung squamous cell carcinoma, 
and EMT have been reported as mechanisms of acquired drug 
resistance to first‑, second‑ and third‑generation EGFR‑TKIs. 
These mechanisms are noted in a relatively high proportion 
of tumors, but treatment options are limited. In recent years, 
immunotherapy has made progress in the treatment of several 
cancers, including advanced EGFR‑mutated non‑small cell 
lung cancer (NSCLC). Due to the relatively high frequency 
of EGFR mutation in patients with lung adenocarcinoma in 
China, an increased number of patients develop EGFR‑TKI 
resistance, and subsequent treatment options are critical. This 

article reviews the mechanisms of drug resistance to different 
EGFR‑TKIs and treatment progression, providing ideas for the 
follow‑up treatment for EGFR‑resistant patients.
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1. Introduction

According to global cancer data statistics, lung cancer 
was the leading cause of cancer‑related death in 2020 (1). 
Approximately 30% of cancer‑related deaths in China are 
related to lung cancer, which remains the most common cancer 
type (2). Clinical statistics show that non‑small cell lung 
cancer (NSCLC) accounts for ~85% of lung cancer cases, and 
lung adenocarcinoma is the most common type of NSCLC (1). 
Recently, with the introduction of molecular‑targeted drugs 
and immune checkpoint inhibitors, the survival outcomes of 
patients with advanced lung cancer have improved greatly, but 
the 5‑year overall survival rate of patients with lung adenocar‑
cinoma remains less than 20% (3‑5).

According to statistics, the incidence of epidermal growth 
factor receptor (EGFR) mutations in Caucasians is ~20% (6), 
whereas the rate is 44‑50% among Asian nonsmoking NSCLC 
patients (7,8). The higher frequency of EGFR mutations 
appears to be beneficial for Asian lung adenocarcinoma 
patients. EGFR tyrosine kinase inhibitors (TKIs) are currently 
the first‑line treatment for lung adenocarcinoma patients 
with EGFR‑sensitive mutations (4,9‑14); unfortunately, most 
patients develop acquired drug resistance after 10‑14 months of 
EGFR‑TKI treatment (14,15). The mechanisms of acquisition 
of drug resistance to first‑ and second‑generation EGFR‑TKIs 
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are complex, and the most important mechanism of acquired 
drug resistance is the secondary T790M mutation, accounting 
for 50‑60% of all cases (16). The third‑generation EGFR 
inhibitor Osimertinib is the most common drug used for the 
treatment of patients with this mutation (17). However, acquired 
drug resistance still emerges against third‑generation drugs 
typically 8‑10 months after receiving Osimertinib (17,18). The 
C797s mutation is the primary mechanism of acquired drug 
resistance (19). Research on fourth‑generation EGFR‑TKI 
drugs for the treatment of tumors with a C797s mutation is 
currently at various experimental stages, although no drug has 
been approved for clinical use.

Due to the relatively high frequency of EGFR mutations 
in patients with lung adenocarcinoma in China, an increasing 
number of patients develop EGFR‑TKI resistance, and subse‑
quent treatment options are critical. This article reviews the 
mechanisms of drug resistance and treatment progress after 
EGFR‑TKI resistance.

2. Drug resistance mechanisms and progress in the use of 
first‑ and second‑generation EGFR‑TKIs

The mechanisms of acquired drug resistance against first‑ 
and second‑generation EGFR‑TKIs are complex and can be 
divided into three categories: Changes in EGFR, activation of 
alternative bypass or downstream pathways, and changes in 
the phenotype (Fig. 1).

Changes in EGFR
T790M mutation. A secondary T790M mutation is the most 
important mechanism of acquired drug resistance against 
first‑generation EGFR‑TKIs. The crystal structure of the ATP 
binding pocket is altered due to this mutation, inhibiting the 
binding of TKIs and ATP. Thus, downstream signal trans‑
duction cannot be inhibited by TKIs, and these drugs do not 
subsequently restrict tumor growth (20,21). The mechanism 
of action of the first‑generation EGFR‑TKI differs from that 
of the second‑generation EGFR‑TKI; the second‑generation 
EGFR‑TKI irreversibly binds to the ErbB receptor, resulting 
in a more potent effect than the first‑generation drugs (22), 
but the mechanism of drug resistance is similar (23‑25). In 
the ARCHER1050 study, dacomitinib had overall survival 
(OS) benefits relative to gefitinib in the Chinese population 
(median overall survival (mOS) duration was 32.5 months 
vs. 24.9 months, P=0.0097) (26). The LUX‑Lung7 trial 
compared the efficacy of afatinib and gefitinib for the treat‑
ment of NSCLC patients with EGFR mutations. The results 
showed that the progression‑free survival (PFS) duration of 
the afatinib group was longer than that of the gefitinib group 
(11.0 vs. 10.9 months; P=0.017) (11). These results suggest 
that compared with first‑generation EGFR‑TKIs, the effects 
of second‑generation EGFR‑TKIs are longer in the context of 
T790M.

Osimertinib is the most widely used third‑generation 
EGFR‑TKI and it can effectively and selectively inhibit 
tumors with EGFR‑sensitive and T790M drug‑resistant muta‑
tions (27), exhibiting a significant effect in NSCLC patients 
with brain metastases (28,29). Almonertinib (30,31) and 
furmonertinib (32,33) have also been approved in China, 
and several other third‑generation EGFR‑TKI inhibitors are 

in different stages of research and development (Table I). 
Lazertinib achieved a 57% overall response rate (ORR) in 
the T790M (+) population in a phase 2 clinical trial (34). The 
drug exhibited a potent beneficial effect on brain lesions, and 
the intracranial disease control rate in the entire population 
was 90.6% (35). In January 2021, the Korean Food and Drug 
Administration (MFDS) approved the listing of lazertinib for 
the treatment of patients with locally advanced or metastatic 
NSCLC positive for EGFR T790M mutations who previously 
received EGFR‑TKI treatment (36). The third‑generation 
EGFR‑TKIs olmutinib (37‑39) and nazartinib (40) are also 
approved in South Korea.

Secondary mutations. Other rare secondary mutations, 
such as L747S (41), D761Y (42), and T854A (43), have also been 
reported to be associated with gefitinib or erlotinib resistance. 
Due to the low incidence of these mutations, there are few 
in vitro studies and case reports showing whether Osimertinib 
is effective against these rare mutations (44‑47).

Activation of alternative bypass or downstream pathways
Human EGFR2 gene (Her2) amplification. Activation of 
HER2, also known as ERBB2, triggers functional abnor‑
malities in several downstream signaling pathways, such as the 
mitogen‑activated protein kinase (MAPK), inosine phosphate 
3‑kinase (PI3K)/protein kinase B (AKT), protein kinase C 
(PKC), and signal transducer and transcriptional activator 
(STAT) pathways, resulting in uncontrolled cell prolifera‑
tion (48,49). HER2 overexpression occurs in ~12% of NSCLC 
patients who are resistant to first‑ and second‑generation 
EGFR‑TKIs and usually do not co‑exist with the T790M 
secondary mutation (50). Standard treatment for managing 
this drug resistance mechanism is currently not available, 
and there is insufficient evidence to show that existing 
anti‑HER2 therapies are effective. The selective HER2 tyro‑
sine kinase inhibitors poziotinib (51) and pyrotinib (52,53), 
and the antibody conjugate drugs T‑DM1 (54) and trastu‑
zumabe‑deruxtecan (55) are potential treatment options.

MET amplification. MET is a proto‑oncogene and one 
of the key driver genes in several types of cancer (56). The 
MET gene encodes c‑Met [a hepatocyte growth factor (HGF) 
receptor], which is responsible for regulating important 
processes, such as cell differentiation, proliferation, migration, 
and apoptosis (57). Hepatocyte growth factor (HGF) binds to 
c‑Met to phosphorylate tyrosine kinase residues in the cata‑
lytic domain; activates the downstream pathways modulated 
by PI3K, MAPK, and STAT3 signaling, and promotes cell 
transformation, cell invasion, cell proliferation, and cell cycle 
progression (57,58). MET amplification accounts for 2‑4% of 
untreated NSCLC cases (59) and for 5‑20% of patients with 
acquired drug resistance against first‑ and second‑generation 
EGFR‑TKIs (58,60,61). Lai et al (62) showed that an increased 
copy number of the MET gene is not equal to MET amplifica‑
tion; only MET amplification is a determinant of EGFR‑TKI 
resistance in NSCLC patients.

Due to the crosstalk between MET and RTK (EGFR) 
signaling pathways (63), it has been proposed that the 
combination of MET‑TKIs and EGFR‑TKIs may be a solu‑
tion for MET‑driven EGFR‑TKI resistance (64). After 
disease progression in the context of EGFR‑TKI treatment, 
patients with MET amplification were treated with camatinib 
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combined with gefitinib. The ORR was 29%, and the PFS was 
5.5 months (65). Tepotinib combined with gefitinib prolonged 
the survival time compared with chemotherapy (mOS: 37.3 
vs. 13.1 months) (66). Sequist et al (67) evaluated the efficacy 
of Osimertinib + savolitinib in two global expansion cohorts 
(part B and part D) of the Tatton study, and the results showed 
a higher response rate in subgroup B3 (previously untreated 
with third‑generation EGFR‑TKIs and positive for T790M) 
and subgroup D (previously untreated with third‑generation 
EGFR‑TKIs), with ORR values of 67 and 64% and median 
(m)PFS values of 11 and 9.1 months, respectively. Osimertinib 
combined with savolitinib is also a potential treatment 
approach (67). In addition to the above combination of treat‑
ments, telisotuzumab‑vedotin combined with erlotinib (68), 
capmatinib combined with erlotinib (69), and emibetuzumab 
combined with erlotinib (70) also achieved certain benefits.

PIK3A mutations. PIK3A can induce the phosphorylation 
and subsequent activation of the downstream AKT signal 
transduction pathway and it plays a central role in regulating 
tumor cell growth, reproduction, migration, and apoptosis (71). 
The role of PIK3CA mutations in NSCLC remains contested. 
Some researchers consider PIK3CA mutations to be an inde‑
pendent risk factor for NSCLC patient survival (72), and the 
survival time of patients with EGFR and PIK3CA mutations 
treated with EGFR‑TKIs was shown to be shorter than that 
of people with only EGFR mutations (73). However, it has 
also been shown that PIK3CA mutations have no significant 
effect on NSCLC patient survival times (74). PIK3CA muta‑
tions are a mechanism of acquired EGFR‑TKI resistance in 
patients with EGFR‑mutated lung cancer (75). The frequency 
of PIK3CA mutations after EGFR‑TKI resistance is 2‑3% (76). 
Preclinical studies have found that double targeting of 
MEK and PI3K can effectively control the proliferation of 
EGFR‑TKI drug‑resistant NSCLC cell lines (77). Alpelisib 

(a PI3K inhibitor) has been approved by the Food and Drug 
Administration (FDA) for the treatment of breast cancer (78), 
but it has not been applied for NSCLC after the development 
of resistance to TKIs.

KRAS mutations. KRAS mutations activate downstream 
pathways, such as the MAPK and PI3K pathways, driving the 
occurrence and development of tumors (79). The proportion 
of KRAS mutations after the development of EGFR‑TKI 
resistance is ~1% (76). Tanaka et al (80) suggested that the 
mechanism underlying KRASG12C‑acquired drug resistance 
to KRAS‑TKI is related to the activation of the RAS‑MAPK 
signals and the production of KRASY96D resistance genes. 
The FDA approved the KRASG12C inhibitor sotorasib in May 
2021 to treat NSCLC patients with KRASG12C mutations 
after at least one previous systematic treatment (81).

BRAF mutations. BRAF mutations increase the activity of 
RAF kinase, activates downstream MEK, and regulates cell 
growth, proliferation, differentiation, migration, and apop‑
tosis (82). BRAFV600E is the most common BRAF mutation, 
accounting for 36% of all BRAF mutations (83). BRAF 
mutations account for only 1% of patients with acquired drug 
resistance to TKIs (84). Dabrafenib combined with trametinib 
has been approved by the FDA for the treatment of metastatic 
NSCLC with BRAFV600E mutations (85).

Other rare mutations. The AXL‑mediated Gas6/Axl 
signaling pathway is associated with tumor cell growth, metas‑
tasis, invasion, EMT, angiogenesis, drug resistance, immune 
regulation, and stem cell maintenance (86,87). In 2012, a 
study found that Axl expression was upregulated in patients 
with acquired drug resistance to EGFR‑TKIs, and EGFR‑TKI 
sensitivity was restored after blocking Axl (88). Thus, Axl is 
a promising therapeutic target for patients with acquired drug 
resistance. Small molecule inhibitors, monoclonal antibodies, 
and antibody‑drug conjugates targeting Axl are currently under 

Figure 1. Mechanisms of resistance to first‑ and second‑generation EGFR‑TKIs and the corresponding therapies. EGFR, epidermal growth factor receptor; 
TKI, tyrosine kinase inhibitor.
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development (89). DS‑1205 (an AXL inhibitor) combined with 
gefitinib (90) and BGB324 (an AXL inhibitor) combined with 
erlotinib (91) were evaluated, and preliminary results were 
promising.

PTEN negatively regulates the PTEN/PI3K/Akt signaling 
pathway and regulates cell growth, apoptosis, and migra‑
tion (92). Studies have shown that patients with EGFR mutations 
with PTEN deletions have significantly shorter PFS durations 
than those without PTEN deletions (6 vs. 18 months) (93). 
According to Xun et al (92), the deletion of PTEN in lung 
cancer promotes the carcinogenic function of STMN1 (over‑
expression of which is related to tumor growth, metastasis, and 
poor survival) through the PI3K/AKT pathway. Other reported 
drug resistance mechanisms include loss of neurofibromin 1 
activity (94), amplification of the CT10 homologous oncogene 
of v‑crk avian sarcoma virus (95), a multistep mechanism 
involved in the insulin‑like growth factor 1 receptor (IGF1R) 
pathway (96), and the fibroblast growth factor (FGF) 2/FGF 

receptor 1 (FGFR1) autocrine growth pathway (97). As these 
drug resistance mutations are rare, no drugs targeting them 
have been approved.

EGFR compound mutations and co‑mutations. Compound 
mutations indicate the presence of more than one EGFR muta‑
tion, either common or uncommon, within the same tumor. 
Attili et al (98) found high heterogeneity in the incidence of 
compound mutations (4‑26% of total EGFR mutant cases), 
with the variance possibly due to the different testing methods 
adopted, and the specific mutations considered. In various 
combinations, compound EGFR mutations containing either 
exon 21 p. L858R or exon 19 deletions were common (99). 
The response rate of those tumors with compound mutations 
to EGFR‑TKIs compared with those with single mutations 
is contested. Rossi et al (100) found a longer mOS in the 
compound mutation group than in the single rare mutation 
group (33.6 vs. 12 months; P=0.473), whereas Jiang et al (101) 
concluded that patients in the single mutation group exhibited a 

Table I. Research and development of third‑generation EGFR inhibitors in China.

Name Manufacturer Indications Development phase

MEK162 Betta Pharmaceuticals Advanced NSCLC with a T790M mutation after EGFR Declared/listed
  resistance 
  Previously untreated NSCLC patients with locally Phase 2/3 clinical trial
  advanced or metastatic EGFR sensitive mutations 
AC0010  Acea Biosciences Advanced NSCLC with a T790M mutation after EGFR Declared/listed
(Avitinib)  resistance 
  NSCLC with EGFR mutations Phase 3 clinical trial
BPI‑7711 Beta Pharma, Inc. Advanced NSCLC with a T790M mutation after EGFR Declared/listed
  resistance 
  NSCLC with EGFR mutations Phase 3 clinical trial
ASK120067 Suzhou Aosaikang Advanced NSCLC with a T790M mutation after EGFR Phase 1/2 clinical trial
 Biomedical Co. resistance 
  NSCLC with EGFR mutations Phase 3 clinical trial
SH‑1028 Nanjing Sanhome Advanced NSCLC with a T790M mutation after EGFR Phase 2 clinical trial
 Pharmaceutical Co. resistance 
  NSCLC with EGFR mutations Phase 3 clinical trial
FHND9041 Nanjing Chuangren Advanced NSCLC with a Phase 1/2 clinical trial
 Pharmaceutical  T790M mutation after EGFR resistance 
 Technology Center   
YZJ‑0318 Yangtze River Advanced NSCLC with a T790M mutation Phase 1 clinical trial
 Pharmaceutical (Group) Co.   
MED‑1007 Jiangsu Maidu Advanced NSCLC with a T790M mutation after EGFR Phase 1 clinical trial
 Pharmaceutical Co. resistance 
BEBT‑109 Bebtter Medicine Advanced NSCLC with a T790M mutation after EGFR Phase 1 clinical trial
 Technology resistance  
TY‑9591 Zhejiang  Advanced NSCLC with a T790M mutation Phase 1 clinical trial
 Tongyuan Kang   
TQB3456 Chiatai Tianqing Advanced NSCLC with a T790M mutation Phase 1 clinical trial
Lazertinib Yuhan Corporation Combination of amivantamab for treatment of Phase 1 clinical trial
  Osimertinib resistant NSCLC  
  NSCLC Phase 3 clinical trial

NSCLC, non‑small cell lung cancer; EGFR, epidermal growth factor receptor.
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longer mOS than those in the co‑mutation group (ORR: 64.6% 
vs. 27.4%, P<0.001). More prospective randomized clinical 
trials (RCTs) are required to reconcile these differences.

A co‑mutation is defined as the coexistence of an EGFR 
mutation along with one or more other gene mutations. The 
co‑mutation incidence rate was 66.0% in the retrospective 
study of Jiang (101). Co‑mutations, including TP53 (102,103), 
HER family genes (104), KRAS, MET, and ROS1, are typically 
considered to be associated with poor prognosis (105,106).

Histological transformations
Transformation to SCLC. Among the patients who did not 
maintain a response to EGFR‑TKI treatment, 3‑14% had tumors 
that showed morphological transformation to SCLC (61,107). 
Although the tumors that transformed into SCLC had persistent 
EGFR activation, immunohistochemical analysis showed that 
EGFR expression decreased sharply (108). EGFR‑TKI‑resistant 
lung adenocarcinoma and SCLC share a common clonal origin. 
Significant inactivation of Rb and TP53 (a common mutation 
of classical SCLC) was found in patients with SCLC after 
the development of drug resistance (108‑110). In addition, 
PIK3CA (111) mutations and TERT amplification (112) were 
also observed. The specific mechanisms involved in this transi‑
tion and TKI resistance have not been determined. In addition 
to the above mutations, other studies have suggested that the 
transformation may be related to EMT (113,114). A retrospec‑
tive analysis of this mechanism of drug resistance showed that 
the etoposide/cisplatin regimen is currently the most effective 
treatment (115). In this retrospective study, patients treated with 
anlotinib also achieved an ORR of 66.7% and an mPFS dura‑
tion of 6.2 months. Another small‑sample study reported longer 
PFS durations were obtained with bevacizumab or other TKIs 
combined with chemotherapy (116).

Transformation to lung squamous cell carcinoma 
(SCC). In recent years, several cases of transformation of 
EGFR‑mutated NSCLC to SCC have been reported (117‑121), 
and some reports indicate the association between the 
T790M mutation and SCC transformation (122,123). As 
this morphological transformation is rare, the mecha‑
nism is unclear, although it has been shown that it may be 
related to changes in the PI3K/AKT/mTOR pathway during 
EGFR‑TKI therapy (124). For patients with drug‑resistant 
lung SCC, the prognosis is usually poor, and the mOS is only 
~3.5 months (120). It is difficult to choose follow‑up treatments 
due to the low incidence; Liao et al (121) reported the case of 
a patient who received almonertinib for 6 months after detec‑
tion of the SCC phenotype. At the time of writing the study, 
the patient was continuing almonertinib monotherapy and the 
disease was stable.

EMT. EMT is a process in which epithelial cells lose 
polarity and adhesion to gain increased migratory ability, and 
in the process exhibit a mesenchymal phenotype characterized 
by decreased E‑cadherin and increased vimentin expression as 
well as stem cell‑like features (125,126). EMT is considered 
one of the possible mechanisms of acquired drug resistance to 
EGFR‑TKIs (127). Increased expression of Aurora kinase A 
(AURKA) can induce EMT and contribute to the occurrence 
of acquired EGFR‑TKI resistance (128). Nilsson et al (129) 
found that activation of the YAP and FOXM1 axes serves 
as a driver of EMT‑related EGFR‑TKI resistance. It has also 

been confirmed that reversing EMT can restore sensitivity to 
EGFR‑TKI drugs (116). The AURKA inhibitor alisertib can 
restore the sensitivity of drug‑resistant cells to EGFR‑TKIs 
and partially reverse the EMT process (130). It has also been 
found that Bruton's tyrosine kinase (BTK) mediates dryness 
and EMT characteristics, and the BTK inhibitor acalabru‑
tinib can enhance the effect of gefitinib and Osimertinib in 
TKI‑resistant NSCLC cells (131).

3. Treatment of T790M‑negative tumors after the 
development of resistance to first‑ and second‑generation 
TKIs

Regarding the aforementioned drug resistance mecha‑
nisms, although researchers have performed extensive 
treatment‑related research, no drugs specifically developed 
for acquired drug resistance mechanisms have been approved 
and marketed given the low incidence of these causative muta‑
tions. For the first‑ and second‑generation TKI drug‑resistant 
T790M‑negative population, platinum‑containing dual‑drug 
chemotherapy is currently recommended, but its benefits are 
limited (132). Other treatment options are being explored and 
are summarized below.

Immunotherapy. The relationships between EGFR mutations, 
EGFR‑TKIs, and immunotherapy efficacy are contested. 
A meta‑analysis of large RCTs showed that patients with 
EGFR mutations showed no significant benefit from immu‑
notherapy (133,134). In people with PD‑L1 expression levels 
<50%, the use of EGFR‑TKI inhibitors resulted in a better PFS 
rate and ORR (135). However, studies have also shown that for 
patients with EGFR mutations, the proportion of patients with 
PD‑L1 expression levels ≥50% increased after EGFR‑TKI 
treatment, and the mPFS resulting from subsequent treatment 
with PD‑1 antibodies was longer than that of patients with low 
PD‑L1 expression (7.1 vs. 1.7 months; P=0.0033) (136). These 
results indicate that EGFR‑TKI drugs appear to have a positive 
effect on the tumor microenvironment (TME).

According to the IMpower150 study, a subgroup analysis of 
patients following EGFR‑TKI failure showed that OS benefits 
were obtained after addition of atrizumab; this is the only 
study that has confirmed OS benefits from immunotherapy 
after the development of EGFR‑TKI resistance (137). Another 
ongoing phase II study also showed that the addition of atezoli‑
zumab to the bevacizumab regimen improved the disease 
control rate (DCR) and PFS outcome (138). In the single‑arm 
II phase study by Lam et al (139), a 9.4‑month PFS duration 
was obtained using a quadruple combination of atezolizumab, 
bevacizumab, carboplatin, and pemetrexed. A total of 42.5% 
of the patients were resistant to first‑ and second‑generation 
EGFR‑TKIs. The incidence of treatment‑related adverse 
events was 37.5% (15/40), which is within the range of control‑
lable adverse events. Thus, this combination appears to be a 
feasible treatment.

CT18 is the first prospective immunotherapy study in 
patients with lung adenocarcinoma with EGFR mutations. 
The results showed good clinical benefits (ORR=50%, 
mPFS=7 months, OS=23.5 months) in T790M‑negative 
patients with acquired drug resistance after treatment with 
toripalimab combined with carboplatin and pemetrexed (140). 
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A phase III RCT (TREASURE) is underway, evaluating 
toripalimab plus chemotherapy as second‑line treatment in 
patients with EGFR‑mutant‑advanced NSCLC who were 
previously treated with EGFR‑TKIs; patients with failed 
first‑line EGFR‑TKIs and those who did not harbor T790M 
mutation were enrolled. (141). ORIENT‑31 was a randomized, 
double‑blind, multicenter, phase III RCT that evaluated the 
efficacy and safety of the combination of sintilimab and beva‑
cizumab for treating EGFR‑mutated SCLC after EGFR‑TKI 
treatment. The study found that patients in the quadruple drug 
group had prolonged mPFS (6.9 vs. 4.3 months) and median 
duration of efficacy (8.3 vs. 7.0 months) outcomes compared 
to those in the chemotherapy group (142).

A phase II RCT conducted by Hayashi et al (143) compared 
nivolumab (NIVO) with carboplatin + pemetrexed for treating 
EGFR‑TKI‑resistant patients; NIVO did not exhibit an advan‑
tage over chemotherapy (mPFS 1.7 months vs. 5.6 months, 
mOS 20.7 vs. 19.9 months). Therefore, more prospective trials 
are needed to verify the feasibility of immunotherapy in 
patients with EGFR resistance.

Treatment regimens containing pemetrexed. Pemetrexed is an 
anti‑folic acid drug that can interfere with folic acid metabo‑
lism, resulting in aberrant DNA synthesis in tumor cells (144). 
A cancer registration cohort analysis from Taiwan showed that 
pemetrexed may be suitable as a first choice for chemotherapy 
in patients undergoing chemotherapy after progression with 
EGFR‑TKI treatment (145). A 2018 meta‑analysis showed 
that second‑line drugs combined pemetrexed chemotherapy 
resulted in a longer PFS and OS duration than therapy with 
pemetrexed (146). In a phase II study, researchers compared 
cisplatin plus pemetrexed against pemetrexed alone in patients 
with drug resistance and found no significant difference in 
PFS and OS outcomes between the two groups. The efficacy of 
pemetrexed in NSCLC patients with disease progression after 
first‑line EGFR‑TKI treatment was not improved by adding 
cisplatin (147).

Antiangiogenic drugs. Preclinical studies have shown that 
vascular endothelial growth factor (VEGF) and EGFR share a 
common downstream signaling pathway and acquired EGFR 
resistance is associated with increased VEGF levels (148). 
In vivo and in vitro studies have confirmed that anlotinib (a 
small molecular multitarget tyrosine kinase inhibitor) can 
overcome acquired resistance to EGFR‑TKIs through modu‑
lation of the FGFR1 signaling pathway (149,150). Phase II 
clinical trials have shown that the use of bevacizumab 
combined with afatinib resulted in an ORR of 22% and a PFS 
of 7.1 months in T790M‑negative patients who developed drug 
resistance (151). A patient with EGFRL858R and KRASG12D 
mutations administered a combination of bevacizumab, 
camrelizumab, and pemetrexed after developing EGFR‑TKI 
resistance achieved a benefit lasting ~17 months (152). A 
retrospective analysis in China revealed that the longer the 
duration of the previous EGFR‑TKI treatment had been, the 
longer the PFS duration was when patients received follow‑up 
immunotherapy combined with chemotherapy and antiangio‑
genic drugs (153). Due to the limitations of the above studies, 
additional prospective studies are needed to confirm the effi‑
cacy of antiangiogenic drugs combined with targeted therapy 
or immunotherapy in the future.

4. Resistance mechanisms and treatment progress with 
Osimertinib (third‑generation EGFR‑TKIs)

At present, Osimertinib is the only third‑generation EGFR‑TKI 
preparation that is widely used and that has been studied rela‑
tively extensively. Drug resistance mechanisms associated with 
first‑line use of Osimertinib are similar to those associated with 
second‑line therapy, but the proportion of patients developing 
resistance differs (Fig. 2). At present, the reported mechanisms 
of drug resistance can be divided into EGFR‑dependent and 
EGFR‑independent mechanisms (154,155). The mechanisms 
of EGFR‑dependent drug resistance include EGFR mutations, 
amplification, deletion, and ligand overexpression as well as 

Figure 2. Mechanism of acquired drug resistance against Osimertinib. (A) The mechanism of acquired drug resistance against first line Osimertinib. (B) The 
mechanism of acquired drug resistance against second line Osimertinib.
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tertiary EGFR mutations, whereas EGFR‑independent resis‑
tance mechanisms include activation of abnormal accessory 
pathways, activation of downstream pathways, and histo‑
logical/phenotypic transformation (156).

EGFR‑dependent drug mechanisms
c797s mutation and treatment progress. The Aura3 study 
revealed that 49% of the patients had T790M loss, and 14% 
had EGFRC797S mutations, the most common mutations 
acquired after the development of Osimertinib resistance (154). 
EGFRC797S mutations include cis (98%) and trans mutations 
(2%). T790M and C797S mutations that occur simultaneously 
in the same allele are referred to as cis mutations, and muta‑
tions that occur in different alleles are referred to as trans 
mutations (157,158).

Recent studies have shown that a third‑generation TKI 
combined with a first‑generation EGFR‑TKI can change the 
expression profile of drug resistance genes in lung adenocar‑
cinoma patients with EGFR activation mutations, and T790M 
and trans‑C797S triple mutations (158). Brigatinib combined 
with cetuximab is an effective treatment strategy for these 
lung adenocarcinoma patients with EGFR activation muta‑
tions and T790M and cis‑C797S triple mutations (158,159). 
Chang et al (160) reported the case of a patient with lung 
adenocarcinoma with triple mutations (L858R, T790M, and 
cis‑G796s/cis‑C797s). After treatment failure with brigatinib 
combined with cetuximab, the patient responded to the 
combination of brigatinib, Osimertinib, and bevacizumab. 
Other reported treatments include Osimertinib combined with 
anlotinib (161), chemotherapy combined with antiangiogenic 
agents (162), and apatinib combined with afatinib (163). At 
present, fourth‑generation EGFR‑TKIs targeting drug‑resistant 
T790M mutations are under development, although no drug 
has been approved. Fourth‑generation EGFR‑TKIs in clinical 
trials and currently undergoing research and development and 
are described in subsequent sections.

Other gene mutations and treatment progress. In a 
study where next‑generation sequencing (NGS) analysis was 
performed on 93 samples obtained after the development 
of Osimertinib resistance, EGFRG796/C797, L792, and 
L718/G719 mutations were found in 24.7, 10.8, and 9.7% of 
cases, respectively (164). G724 mutations were also reported 
in some studies (165,166). At present, a drug that targets the 
aforementioned mutated genes is not available. In vitro studies 
have confirmed that L792 is still sensitive to gefitinib (167) 
and that tumors with the L718Q mutations remain sensitive 
to icotinib (168). In a patient with the EGFRG724S/19del 
mutation after second‑line Osimertinib resistance, PFS was 
achieved after using afatinib for 3.8 months (169).

EGFR‑independent mechanisms of drug resistance and 
treatment progress. EGFR‑independent mechanisms of drug 
resistance primarily include activation of abnormal acces‑
sory and downstream pathways and histological/phenotypic 
transformation. Most of the mechanisms of Osimertinib drug 
resistance are the same as those of first‑ and second‑generation 
TKIs.

MET amplification. Leonetti et al (155) demonstrated that the 
incidence of MET amplification after Osimertinib first‑line 

treatment resistance was 7‑15%, and that of MET amplifica‑
tion after second‑line treatment resistance was 5‑50%. In the 
B1 expansion cohort of the TATTON study (previously treated 
with third‑generation EGFR‑TKIs), a 5.5‑month PFS duration 
was obtained with Osimertinib combined with sevotinib (67), 
and other therapeutic developments have been described. 
Zhang et al (170) found that MET amplification weakened the 
response of lung tumors to immunotherapy by inhibiting the 
STING signaling pathway, and that MET inhibitors combined 
with immune checkpoint inhibitors overcame this drug resis‑
tance; however, this information needs to be confirmed by 
further prospective studies. Amivantamab (JNJ‑61186372) is 
a bispecific antibody against EGFR and MET that has been 
approved for the treatment of patients with EGFR exon 20 
insertion mutations (171). Amivantamab can inhibit both 
the phosphorylation of EGFR and MET and the activation 
of downstream signals and has potent antibody‑dependent 
cell‑mediated cytotoxic effects (171,172). Amivantamab is 
inhibited by double targeting, which showed an inhibitory 
effect on several types of mutations secondary to EGFR‑TKI 
resistance (C797S mutations, MET amplification, previous 
resistance to Osimertinib) (173).

HER2 amplification and PIK3CA mutation. HER2 
amplification is one of the mechanisms of Osimertinib 
resistance (174). The AURA3 study showed that HER2 
amplification was detected in 5% (4 out of 73) of second‑line 
Osimertinib‑resistant patients (157). In the FLAURA 
study, HER2 amplification occurred in 2% of first‑line 
Osimertinib‑resistant patients (175). PIK3CA mutations occur 
in patients with Osimertinib resistance, and T790M mutations 
may be retained or lost. Moreover, PIK3CA mutations showed 
different incidences in different studies (176,177).

Changes in other bypass pathways. Abnormal FGFR 
expression can lead to the activation of the FGFR cancer‑related 
signaling pathway effectors (PI3K/AKT, STAT, and MAPK) 
and affect cell proliferation, survival, metabolism, and migra‑
tion as well as the cell cycle (178). In vitro studies found 
that hypoxia can lead to acquired resistance to EGFR‑TKIs 
by increasing the expression of FGFR1 (179). The combined 
use of EGFR‑TKIs and FGFR1 inhibitors (BGJ398) may 
represent a potential therapeutic strategy for the manage‑
ment of NSCLC (179,180). Upregulation of IGF1R is one of 
the mechanisms of drug resistance to EGFR‑TKIs, including 
Osimertinib (181‑183). In cells resistant to Osimertinib that 
exhibit low levels of AXL expression, short‑term IGF‑1R inhi‑
bition combined with Osimertinib can eradicate tumors and 
prevent regrowth (184).

Histology/bypass transformation. Histological transformation 
from lung adenocarcinoma to SCLC, SCC and EMT was also 
observed in patients with Osimertinib resistance (177,185). 
Platinum‑containing dual‑drug chemotherapy is still recom‑
mended for these patients.

5. Treatments available after the development of 
Osimertinib resistance

Fourth‑generation EGFR‑TKI inhibition. Drug resistance to 
third‑generation targeted drugs (Osimertinib) is a dilemma 
faced by several lung cancer patients who receive targeted 



SUN et al:  DRUG RESISTANCE MECHANISMS AND PROGRESS IN THE TREATMENT OF EGFR‑MUTATED LUAD8

therapy. To date, the FDA has not approved targeted therapy 
for progression after treatment with Osimertinib. Thus, the 
research and development of fourth‑generation EGFR‑TKI 
drugs have become a focus recently, and several drugs have 
shown good results in clinical trials.

EAI045 is the first fourth‑generation EGFR‑TKI drug. 
EAI045 combined with cetuximab significantly reduced the 
tumor size in mice carrying L858R/T790M/C797S muta‑
tions, but no obvious effect was observed with single‑agent 
use (186). To improve the activity of EAI045 and the ability to 
use the drug as a single agent, To et al (187) modified EAI045 
and obtained a new allosteric inhibitor, JBJ‑04‑12502, which 
exhibited higher efficacy, lower toxicity, and efficacy against 
EGFR mutations compared with the parent compound. 
JBJ‑04‑12502 inhibits the triple‑drug resistance mechanism 
of patients with L858R/T790M/C797S mutations, the double 
mutation of EGFR‑T70M, and the L858R drug resistance 
mutation. The therapeutic effect of JBJ‑04‑12502 in combi‑
nation with Osimertinib is more potent, although it is still in 
the research and development stage (188). CH7233163 is a 
fourth‑generation EGFR‑TKI inhibitor developed by Roche 
Chugai Pharmaceuticals for patients with a Del19 mutation. 
After the application of CH7233163 in Del19/L858R/T790M, 
L858R/T790M mutant, and Del19 mice, a substantial reduc‑
tion in tumor volume was observed (189). The prospect 
of CH7233163 appears to be more promising than that of 
JBJ‑04‑12502.

Both BLU‑945 and BLU‑701 are fourth‑generation 
EGFR‑TKI inhibitors developed by Blueprint Medicines. 
Both can resist EGFR activation mutations (del19, 21L858R) 
as well as T790M and C797S drug resistance mutation 
activity (190,191). BLU‑945 combined with Osimertinib or 
gefitinib provided a more significant tumor elimination effect 
in n NSCLC mouse model (192). BLU‑701 also exhibited 
intracranial antitumor activity, and both BLU‑701 alone 
and in combination with BLU‑945 showed strong antitumor 
activity (193).

TQB3804 is a fourth‑generation oral EGFR‑targeted 
drug developed by the Zhengda Tianqing Pharmaceutical 
Group. It not only solves Osimertinib resistance caused by 
d746750 (19del)/T790M/C797S and L858R/T790M/C797S, 
but is also effective against the d746‑750/T790M and 
L858R/T790M double mutations associated with resistance to 
first‑ and second‑generation TKIs (194). Correlative clinical 
trials (NCT04128085 and NCT04180150) are currently 
underway (195).

BBT‑176 is an innovative EGFR‑TKI developed by 
Bridge Biotherapeutics in Korea. BBT‑176 showed strong 
anticancer activity in xenotransplantation animal models 
carrying tr iple mutations Del19/T790M/C797S and 
L858R/T790M/C797S (196). Moreover, BBT‑176 in combi‑
nation with the anti‑EGFR antibody cetuximab showed 
significantly enhanced activity (197).

The EGFR and MET bispecific antibody amivantamab is 
also classified as a fourth‑generation EGFR‑TKI. This drug 
is effective against the EGFR exon 20 insertion mutation 
(primary drug resistance mutation) (198), C797S mutation, 
and MET amplification after the acquisition of Osimertinib 
resistance. Amivantamab combined with Lazertinib effec‑
tively overcomes Osimertinib resistance. In 45 patients with 

Osimertinib resistance, the disease control rate reached 60% 
with a median follow‑up period of 4 months (199). All the above 
drugs, except for amivantamab, which has been approved for 
the treatment of the NSCLC EGFR exon 20 insertion muta‑
tion, remain in different stages of research and development or 
clinical trials. Thus, it will be several years before these drugs 
are available for clinical use.

U3‑1402. U3‑1402 is an antibody‑drug conjugate (ADC) 
developed by Daiichi Co., Ltd., which consists of patritumab 
acting on HER3 antibodies and the cytotoxic drug DX‑8951 
(Exitecan, a topoisomerase inhibitor). U3‑1402 is effec‑
tive against different drug resistance mechanisms against 
EGFR‑TKIs, as demonstrated in phase I trial results published 
in 2019 (200). Another phase I study included 57 patients with 
EGFR‑TKI resistance. The DCR was 68% in 44 patients who 
had previously received Osimertinib and platinum‑containing 
chemotherapy. The mPFS reached 8.2 months (201). ADC 
drugs have considerable potential for solving the problem of 
resistance to Osimertinib.

Osimertinib rechallenge. Soo et al (202) showed no benefit 
regarding PFS in patients with T790M‑positive NSCLC 
when treated with Osimertinib combined with bevacizumab 
compared with Osimertinib monotherapy. However, in a 
small‑sample retrospective study, after the development of 
Osimertinib resistance, Osimertinib combined with beva‑
cizumab showed certain benefits. The study compared the 
efficacy and safety of Osimertinib combined with bevaci‑
zumab against chemotherapy combined with bevacizumab in 
patients with Osimertinib resistance. The mPFS duration of 
the two groups was 7.0 vs. 4.9 months, and the mOS was 12.6 
vs. 7.1 months, respectively; the difference was statistically 
significant (203).

The COMPEL study was a randomized, double‑blind 
phase III clinical study that evaluated the efficacy and safety of 
chemotherapy plus Osimertinib or chemotherapy plus placebo 
in advanced NSCLC patients with progressive EGFR muta‑
tions after first‑line treatment with Osimertinib. The study 
is currently underway and will be published in September 
2024 (204).

Immunotherapy. The ORIENT‑31 study included patients 
who were T790M‑negative after first‑ and second‑generation 
EGFR‑TKI treatment and patients who received third‑gener‑
ation EGFR‑TKI treatment. The results showed that the PFS 
duration was significantly prolonged in patients treated with 
sintilimab combined with bevacizumab and chemotherapy 
compared with that of patients treated with chemotherapy 
alone (142). This study was the first to confirm that PD‑1 
inhibitors combined with antivascular drugs and chemo‑
therapy significantly improved PFS outcomes in EGFR‑mutant 
non‑squamous NSCLC patients with progression after 
EGFR‑TKI treatment, providing options for the follow‑up 
treatment of drug‑resistant patients after targeted treatment.

In a single‑arm phase II study of patients administered a 
quadruple combination of atezolizumab, bevacizumab, carbo‑
platin, and pemetrexed, the PFS duration was 9.4 months; 57.5% 
of these patients had been treated with Osimertinib (139). 
The IMpower150 study is currently the only randomized 



ONCOLOGY LETTERS  24:  408,  2022 9

prospective phase III clinical trial that demonstrated OS 
benefits in NSCLC patients in an EGFR‑sensitive mutation 
subgroup (137), showing that the addition of atezolizumab to 
the standard therapy of bevacizumab and chemotherapy repre‑
sents a novel treatment option.

Other treatment options. According to the subgroup analysis 
of the ALTER0303 study (205), patients with EGFR muta‑
tions exhibited PFS and OS benefits following treatment with 
anlotinib. Zhou et al (161) also reported on the case of a patient 
with a cisEGFRT790M‑C797S mutation after Osimertinib 
resistance who was treated with amlotinib combined with 
Osimertinib and achieved partial remission that persisted for 
9 months. The use of afatinib combined with bevacizumab has 
also been reported; it improved the patient's symptoms and 
was continued as the treatment for 12 months (206).

6. Summary and future perspectives

The 21st century is the era of targeted cancer treatment, and 
several promising options for lung adenocarcinoma patients are 
available. Although novel treatments provide survival benefits 
to varying degrees, the problem of drug resistance inevitably 
leads to disease progression. It has been demonstrated that 
tumors become increasingly molecularly heterogeneous 
following targeted therapy (5,207). There is a large body of 
literature implicating intratumoral heterogeneity as a major 
driver of drug resistance (208,209). NGS and single‑cell RNA 
sequencing (scRNA‑seq) are used to study the genetic and 
molecular characteristics of tumor development at various 
stages (210), revealing the heterogeneity of tumor cells and 
monitoring the progress of tumor development.

Maynard et al (211) performed scRNA‑seq of metastatic 
lung adenocarcinoma using 49 clinical biopsies obtained from 
30 patients before and during targeted therapy and found that 
the components of the TME differ at the stages of TKI naïve, 
residual disease (RD), and progression. A more inflammatory 
phenotype was observed in RD following targeted therapy 
that was characterized by T cell infiltration and decreased 
infiltration of immunosuppressive macrophages (211). In 
addition, various immunosuppressive cell states characterize 
progressive disease. Therefore, researchers have proposed 
that if deployed at the appropriate time, treatments that target 
a specific cell state or prevent further adaptation may help 
improve patient survival by constraining continued tumor 
evolution toward complete drug resistance (211).

In recent years, modified T‑cell therapy, particularly those 
that use chimeric antigen receptor (CAR)‑T cells, has attracted 
growing interest in various solid tumors with the clinical 
success of chimeric antigen receptor CAR T‑cell therapy in 
hematological malignancies (212,213). The CAR T strategy 
aims to isolate T cells from the peripheral blood of patients 
or other donors and genetically engineer T cells with CAR 
structures to equip them with the capability of recognizing 
specific antigens on the tumor cell surface. After infusion back 
into patients, these ‘super’ T cells recognize and eliminate the 
cancer cells that express specific target antigens (214). The 
major difference between CAR T cells and tumor‑specific 
T cells is that the former cells are not limited by the major 
histocompatibility complex (215,216). It is critical to identify 

targeted tumor‑associated antigens (TAAs). Ideal TAAs are 
highly and selectively expressed in solid tumors, but weakly 
expressed or absent in normal tissues (217).

The lung adenocarcinoma‑associated TAAs currently 
being investigated in clinical trials on CAR‑T cells include 
mesothelin (MSLN), mucin 1 (MUC1), carcinoembryonic 
antigen (CEA) EGFR, PD‑L1, prostate stem cell antigen 
(PSCA), disialoganglioside GD2 (GD2), and c‑Met (218‑222).

For EGFR‑mutated LUAD, EGFR is definitely an optimum 
TAA. A phase I clinical trial of EGFR‑targeting CAR T‑cell 
therapy to treat patients with EGFR‑positive relapsed/refrac‑
tory NSCLC achieved initial success (NCT01869166). The 
results showed that none of the patients exhibited significant 
toxic side effects after anti‑EGFR CAR‑T‑cell therapy, 
2 patients achieved partial remission, and 5 patients had stable 
disease for 2‑8 months (223). This result provides prelimi‑
nary evidence that EGFR‑targeting CAR T therapy is safe 
and feasible in certain cases of relapsed/refractory NSCLC. 
Currently, there are two ongoing phase I clinical trials in 
patients with lung cancer on C‑X‑C chemokine receptor type 5 
modified EGFR‑targeted CAR‑T cells (NCT05060796 and 
NCT04153799).

Although CAR‑T‑cell therapies have achieved great 
success in hematological malignancies, the study of lung 
cancer is still in the early exploration stage. Numerous 
clinical trials have progressed slowly and have achieved very 
limited efficacy, and several challenges and hurdles remain, 
such as on‑target/off‑tumor toxicity, CAR‑T cell trafficking 
and infiltration into the tumor, TME heterogeneity, immune 
suppression, and cytokine release syndrome (224‑226). 
Recently, Vasic et al (227) found that allogeneic double‑nega‑
tive CAR‑T cells inhibit tumor growth with no off‑tumor 
toxicity in either a lung cancer xenograft model or B‑cell acute 
lymphoblastic leukemia (B‑ALL) was observed. Therefore, 
double‑negative CAR‑T cells may serve as a patient‑accessible 
form of CAR‑T cell therapy.

Due to China's large population and relatively high EGFR 
mutation rate, the identification of the best treatment after the 
development of EGFR‑TKI resistance has become an urgent 
problem. EGFR‑TKIs have been continuously developed and 
are currently in their fourth generation of iteration, and this 
process is accompanied by the continuous optimization of 
pharmacological mechanisms, the emergence of novel drug 
resistance mechanisms, and the development of solutions to 
these new drug resistance mechanisms. Although it may take 
considerably more research to conquer cancer, significant 
levels of drug research and development remain ongoing.
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