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Abstract. Infection with Helicobacter pylori is the strongest 
risk factor for the development of chronic gastritis, gastric 
ulcer and gastric carcinoma. The majority of the H. pylori-
infected population remains asymptomatic, and only 1% 
of individuals may progress to gastric cancer. The clinical 
outcomes caused by H. pylori infection are considered to be 
associated with bacterial virulence, genetic polymorphism of 
hosts as well as environmental factors. Most H. pylori strains 
possess a cytotoxin-associated gene (cag) pathogenicity island 
(cagPAI), encoding a 120-140 kDa CagA protein, which is the 
most important bacterial oncoprotein. CagA is translocated 
into host cells via T4SS system and affects the expression of 
signaling proteins in a phosphorylation-dependent and inde-
pendent manner. Thus, this review summarizes the results of 
relevant studies, discusses the pathogenesis of CagA-mediated 
gastric cancer.
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1. Introduction

Helicobacter pylori is a spiral-shaped, flagellated, micro-
aerophilic Gram-negative bacillus first described in 1982 by 
Marshall and Warren. H. pylori is thought to colonize the 

gastric mucosa of >50% of the world's population, with the 
higher prevalence in the developing countries (1,2). However,  
the majority of H. pylori-infected population is asymptom-
atic, but resulting in chronic gastritis. Only 10% of infected 
individuals occurred symptomatic diseases. Furthermore, 
experimental and epidemiological studies have indicated that 
H. pylori infection indeed increase the risk of gastric cancer. 
Based on this evidence, the World Health Organization 
International Agency for Research on Cancer classified 
H. pylori as class Ⅰ carcinogen in 1994. The estimated total of 
infection-attributable cancer is 1.9 million cases every year, 
which is 17.8% of the global cancer burden. The principal 
agent is H. pylori, ~63.4% of all stomach cancer or 5.5% of 
the global cancer burden would be attributable to H.  pylori 
infection.

The interindividual differences in risk of H. pylori-induced 
gastric diseases involve significant heterogeneity of both 
host genetics and H. pylori strain virulence factors. In the 
H. pylori-associated diseases pathogenic mechanisms, several 
strain-specific virulence factors were reported, such as cagA 
(cytotoxin-associated gene A), vacA (vacuolating cytotoxin A), 
hpaA (Helicobacter pylori adhesin A), babA (blood group 
antigen binding adhesin), dupA (duodenal ulcer-promoting 
gene A), iceA (induced by contact with epithelium) genes. One 
of the main virulence factors is CagA, which is associated with 
higher risk of gastric cancer and peptic ulcer. CagA protein 
can interact with intercellular proteins and activate signaling 
pathways through both tyrosine phosphorylation-dependent 
or independent mechanisms. Here, we review the possible 
underlying pathogenic mechanisms of the oncoprotein CagA 
in H. pylori-induced gastric diseases.

2. Cytotoxin associated gene pathogenicity island (cagPAI) 
and cytotoxin-associated gene A (cagA)

The cag PAI is an ~40-kb DNA, which likely was acquired 
by horizontal gene transfer from another strain in the course 
of evolution. The cag PAI contains ~31 genes including cagA, 
cagB, cagC, cagL, cagM, cagI, cagY, which encode the CagA 
protein and functional components of a type  IV secretion 
system (T4SS) (3,4). cag PAI is found in >95% East Asian 
strains, whereas 60% of Western strains isolated are cag 
PAI-positive (5). In some strains, cagPAI is split into a right 
segment (cagI) and a left segment (cagII) by an insertion 
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sequence (IS605). IS605 was associated with gastric cancer 
that was higher in H. pylori isolated from patients with gastric 
carcinoma than in patients with duodenal ulcer or chronic 
gastritis (6).

The cagA gene is ~3,500-5,000 bp located in the begin-
ning region of cag PAI, encoding 120-145 kDa CagA protein. 
It is a recognized marker for the entire cag locus. The size of 
the cagA gene and its protein varies in different strains due 
to structural diversity in its C-terminal region. In Western 
populations, cagA-positive strain is associated with enhanced 
induction of gastritis, peptic ulcer, and higher risk of gastric 
cancer. However, in East Asia cagA gene is not associated 
with an increased risk of gastric diseases where almost all 
strains are cagA-positive (7,8). Franco et al constructed the 
Mongolian gerbils infection model. They indicate that loss 
of CagA prevents the development of cancer in this model 
(9). Ohnishi et al provided first direct evidence for the role 
of CagA as a bacterium-derived oncoprotein by transgenic 
mouse model (10).

3. Translocation and phosphorylation of CagA protein

Translocation of CagA into host epithelial cells is the first step 
in the processes of CagA-induced diseases. Several different 
Cag proteins are involved in the translocation of CagA (11). 
CagL carries a RGD (arginine-glycine-aspartate) motif that 
is important for binding and interaction with integrin α5β1 
receptor on gastric epithelial cells, and triggers CagA delivery 
into the target cells, as well as downstream signaling to active 
tyrosine kinases including FAK, Src and EGFR (12,13). 
CagM, along with CagX and CagT, forms an outer membrane-
associated T4SS subcomplex (14). CagX and CagT interact 
directly, the C-terminal region of CagX is important for CagT 
interaction, and CagT depends on CagX for its stabilization 
(15). CagE is one of the energy providing components of CagA 
translocation. CagE is an inner membrane associated active 
NTPase and has multiple interacting partners including the 
inner membrane proteins CagV and Cagβ (16).

As reported, CagA also facilitates its translocation into 
host epithelial cells by T4SS-induced externalization of phos-
phatidylserine from inner leaflet of the plasma membrane. The 
protein binds to phosphatidylserine via Lys-Xn-Arg-X-Arg 
(K-Xn-R-X-R) motif present in the central region of CagA. The 
2 arginine residues in K-Xn-R-X-R motif are highly conserved 
among CagA proteins derived from H. pylori strains (13,17). 
It has previously been reported that C-terminal CagA secre-
tion signal and N-terminal CagA domain (D1) are crucial for 
efficient translocation (18). Collectively, these findings indicate 
that all components of this type IV secretion system, including 
the effector protein CagA, are encoded on the cag pathoge-
nicity island.

Once the protein has entered these target cells, CagA 
localizes to the inner surface of the cellular membrane, once 
again by the interaction between the K-Xn-R-X-R motif with 
phosphatidylserine (13). Then parts of CagA proteins undergo 
tyrosine phosphorylation at the C-terminal Glu-Pro-Ile-
Tyr-Ala (EPIYA) motifs by Src family kinases and Abl kinase, 
while other CagA molecules remain unphosphorylated (19-21).

CagA can be tyrosine phosphorylated at EPIYA motifs, 
which is found as part of repetitive region in the C-terminal 

of CagA. Based on the amino acid sequences surrounding 
each of the EPIYA motifs, four distinct EPIYA motifs 
(EPIYA-A, -B, ‑C, -D) have been classified. EPIYA-A and 
EPIYA-B are present throughout the world, EPIYA-C is 
found in strains isolated from Western countries. In contrast, 
East Asian strains carry East Asian CagA, which contains 
EPIYA-D (22,23) (Fig. 1). Through database searching and 
in silico analysis, Zhang et al revealed a strong non-random 
distribution of the EPIYA-B motif polymorphisms (including 
EPIYT and EPIYA) in Western H. pylori isolates, and provide 
evidence that the EPIYT are significantly less associated with 
gastric cancer than the EPIYA. CagA B-motif phosphoryla-
tion status is essential for its interaction with host PI3-kinase 
during colonization and that CagA with an EPIYT B-motif 
had significantly attenuated induction of interleukin-8 and the 
hummingbird phenotype, had higher affinity with PI3-kinase, 
and enhanced induction of AKT compared to the EPIYA 
(24). It was reported that the two SH2 domains from SHP-2 
(Src homology 2-containing protein tyrosine phosphatase-2) 
bind to highly related sequences pY-(S/T/A/V/I)-X-(V/I/L)-X-
(W/F). Intriguingly, the consensus motif perfectly matches the 
SHP-2-binding site of EPIYA-D (pY-A-T-I-D-F). Furthermore, 
EPIYA-C (pY-A-T-I-D-D) replacement of the pY + 5 position 
in Western CagA, reduces the binding affinity to SHP-2. 
This East Asian-specific sequence conferred stronger SHP-2 
binding and morphologically transforming activities to 
Western CagA. So the East Asian CagA or larger numbers 
of EPIYA-C in Western CagA was associated with atrophic 
gastritis and increased the risk of gastric cancer. Several recent 
reports have demonstrated that the ABCCC type can induce 
the intestinal metaplasia, IL-8, perturbation of Crk adaptor 
proteins, anti-apoptotic effect and carcinogenic effect more 
significantly than ABC type (25-28) (Fig. 2).

4. CagA phosphorylation-dependent or independent effects

Perturb host cell functions by CagA phosphorylation-
dependent effects. Once within the host cells, CagA undergoes 
tyrosine phosphorylation at EPIYA motifs by Src family 
kinases (SFKs) and Abl kinase. Along with the report that 
c-Src only phosphorylated EPIYA-C or EPIYA-D, whereas 
c-Abl phosphorylated all EPIYA motifs. CagA proteins were 
phosphorylated on 1 or 2 EPIYA motifs, but never simultane-
ously on 3 motifs. Furthermore, none of the phosphorylated 
EPIYA motifs alone was sufficient for deregulation of cell 
growth and motility. Western CagA EPIYA-A and EPIYA-C 
were preferred combination phosphorylation, either across two 
CagA molecules or simultaneously on one (21,29).

CagA proteins were probably from a dimer in host cell by 
a 16-amino-acid CagA multimerization (CM) sequence, which 
is located downstream of the EPIYA-C motif in C-terminal 
region (30). After phosphorylated CagA (pCagA) from a 
homodimer through the CM sequence, the pCagA dimer can 
bind with a single SHP-2 molecule via its two homologous 
SH2 domains (31). The pCagA-SHP-2 complex triggers the 
phosphatase activity of SHP-2, which in return causes the 
dephosphorylation of focal adhesion kinase (FAK) and activa-
tion of Ras/MAPK/ERK signaling pathway (32-34).

In addition to SHP-2, the phosphorylated EPIYA-A, -B can 
specifically bind to the C-terminal Src kinase (Csk) and acti-
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vate Csk, and then the inhibitory tyrosine residues of SFKs are 
phosphorylated by Csk. So Csk is characterized as a negative 
regulator of SFKs, which results in reduced EPIYA phos-
phorylation of CagA. Therefore, the CagA-Csk interaction 
may establish a negative feedback mechanism that prevents 
damage to the host cells from H. pylori. This could be harmful 
to the long-term colonization of H. pylori in stomach (35).

CagA can associate with Crk adaptor proteins (Crk-Ⅰ, Crk-Ⅱ, 
Crk-L) EPIYA-phosphorylation-dependently. CagA-Crk 
interaction plays a critical role in promoting cell scattering 
by inducing several downstream signaling pathways, such as 
SoS1/H-Ras-Raf-MEK and C3G-Rap1/B-Raf-MEK (36). The 
human β-defensins (hβDs) are antimicrobial peptides that 
are highly active against H. pylori during early infection via 
EGFR-dependent activation of MAP kinase and JAK/STAT 
signaling pathways. However, during prolonged infection, 
hβD1 and hβD3 is subsequently downregulated by phosphory-
lated CagA (37,38) (Fig. 3).

Disruption of epithelial cells by CagA phosphorylation-
independent effects. CagA also exerts numerous effects within 
host cells in a tyrosine phosphorylation-independent manner. 
A CRPIA (conserved repeat responsible for phosphorylation-
independent activity) motif, FPLKRHDKVDDLSKVG, in 
the C-terminal region of CagA, which is distinct from the 
EPIYA motifs used for phosphorylation. The CRPIA motif in 
non-phosphorylated CagA was involved in interacting with the 
hepatocyte growth factor scatter factor receptor c-Met, which 
is involved in invasive growth of tumor cells. CagA binds c-Met 
and could represent an adaptor protein, which associates with 
phospholipase Cγ (PLCγ) and activates phosphatidylinositol 
3-kinase/Akt signaling. This in turn led to the activation of 
β-catenin and NF-κB signaling, which promotes proliferation 
and inflammation (39,40).

CagA can interact with Grb2, which results in the activation 
of the Ras/MEK/ERK pathway and leads to cell scattering as 
well as proliferation. This ability of CagA is independent from 
the tyrosine phosphorylation. However, the EPIYA sequences 
are indispensable for the Grb2 binding and induction of the 
cellular responses (41).

Moreover, CagA associates with the epithelial tight-junc-
tion scaffolding protein ZO-1 and the transmembrane protein 
JAM (junctional adhesion molecule), causing an ectopic 
assembly of tight-junction components at sites of bacterial 
attachment, and altering the composition and function of the 
apical-junctional complex (42).

CagA physically interacts with E-cadherin independently 
of EPIYA motif phosphorylation. The CagA/E-cadherin inter-
action impairs the E-cadherin/β-catenin complex, causing 
cytoplasmic and nuclear accumulation of β-catenin (43). Then 
it leads to nuclear translocation of free β-catenin, where it 
binds to the transcriptional cofactors of the Wnt pathway and 
upregulates the transcription of targeted genes such as axin, 
cyclin and myc (44). H. pylori alters the E-cadherin/β-catenin 
complex, leading to formation of a multiproteic complex 
composed of CagA, c-Met, E-cadherin, and p120-catenin. This 
complex abrogates c-Met and p120-catenin tyrosine phosphor-
ylation and suppresses the cell-invasive phenotype induced 
by H. pylori (45). CagA deregulation of β-catenin requires 
residues 1,009-1,086 and residues 908-1,012 of Western CagA 
and East Asian CagA, respectively, and is mediated by the CM 
motif of CagA (46).

CagA also disrupts the tight junction and causes loss of 
apical-basolateral polarity by interaction with PAR1/MARK 
kinase, which is a central regulator of cell polarity. Association 
of CagA inhibits PAR1 kinase activity and prevents atypical 
protein kinase C (aPKC)-mediated PAR1 phosphorylation. 
The PAR-aPKC system is the molecular machinery that 

Figure 1. Amino acid arrangements of the EPIYA motif region of CagA. There are three types EPIYA motifs, EPIYA-A, EPIYA-B, EPIYA-C in Western 
CagA. In contrast, East Asian CagA contains EPIYA-A, EPIYA-B and EPIYA-D motifs.
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converts initial polarity cues in the establishment of 
complementary membrane domains along the polarity axis. 
CagA-PAR1 complex dissociates PAR1 from the membrane, 
collectively causing junctional and polarity defects. The 
PAR1 also promotes CagA multimerization, which stabilizes 
the CagA-SHP2 interaction (47-49). This interaction is also 
dependent on the CM motif of CagA. The CM sequence of 
CagA isolated from East Asian H. pylori binds PAR1b more 
strongly than that of CagA isolated from Western H. pylori. 
Within Western CagA species, the ability to bind PAR1b is 
proportional to the number of CM sequences (50).

Lu et al found that CagA binds not only PAR1b but also 
other PAR1 isoforms, with order of strength as follows: 

PAR1b > PAR1d > or = PAR1a > PAR1c. They also indicate 
that malfunctioning of microtubules and myosin II by CagA-
mediated PAR1 inhibition cooperates with deregulated SHP-2 
in the morphogenetic activity of CagA (51). In MDCK tissue 
culture model, association of CagA with MARK2 not only 
causes disruption of apical junctions, but also inhibition of 
tubulogenesis and cell differentiation (52). Furthermore inhi-
bition of PAR1b kinase activity contributed to an increased 
hummingbird phenotype. CagA-mediated inhibition of 
PAR1b and then prevented PAR1b mediated phosphoryla-
tion, which inactivates a RhoA-specific GEF, GEF-H1 and 
thereby strengthens the hummingbird phenotype induced 
by CagA-stimulated SHP2 (53). Moreover, the interaction of 

Figure 2. Amino acid arrangements of SHP2, East Asian CagA and Western CagA. The consensus motif perfectly matches the SHP-2-binding site of EPIYA-D 
(pY-A-T-I-D-F). In Western CagA, EPIYA-C (pY-A-T-I-D-D) replacement of the pY + 5 position reduces the binding affinity to SHP-2.

Figure 3. The roles of the CagA in pathogenesis of H. pylori infection in a phosphorylation-dependent and independent manner.
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CagA with PAR1 is associated with reduction of an inhibitor 
NF-κB, called IκB kinase, which regulates microtubule 
stability by phosphorylating microtubule-associated proteins 
(MAPs). Since microtubule destabilization leads to the activa-
tion of NF-κB by promoting IκBα degradation, impairment 
of the microtubule system by CagA-PAR1 interaction may 
give a cytoskeletal cue that stimulates IκB degradation (54). 
Additionally, CagA was described to affect activity of protein 
kinase C-related kinase 2 (PRK2), which acts downstream of 
Rho GTPases and is known to affect cytoskeletal rearrange-
ments and cell polarity (55) (Fig. 3).

5. CagA destroys the host cells via epigenetic modifications

Epigenetics may be defined as the mechanisms that initiate 
and maintain heritable patterns of gene function and regula-
tion in a heritable manner without affecting the sequence of 
the genome. Epigenetic modifications include DNA meth-
ylation, post-translational modifications of histone proteins, 
microRNA expression, genomic imprinting and chromatin 
remodeling (56,57) (Fig. 4).

DNA methylation. DNA methylation is an important epigen-
etic modification involved in the regulation of numerous 
biological processes. In mammals, DNA methylation mainly 
occurs in the context of cytosine-phosphate-guanine (CpG) 
dinucleotides (58). H. pylori infection potently induces meth-
ylation of CpG islands (CGIs) to various degrees. Methylation 
levels of specific CGIs seemed to reflect gastric cancer risk 
in H. pylori-negative individuals (OR 95% CI 2.2-32). The 
promoter CpG islands of FLNc, HAND1, THBD, p41ARC, 
HRASLS and LOX gene were reportedly altered by H. pylori 
infection (59-62). In vitro experiments showed significant 
CagA aberrant epigenetic silencing of let-7 expression leading 
to Ras upregulation by histone and DNA methylation (63). A 
significantly increased risk of RUNX3 methylation (OR, 4.28; 

95% CI, 1.19-15.49) was observed with a high consumption of 
nuts in patients with CagA-positive H. pylori infection (64).

MicroRNAs. miRNAs are small, non-coding RNAs, which 
regulate gene expression in a sequence-specific manner. 
miRNAs have been implicated in the etiology, progression 
and prognosis of diseases, and many studies have shown that 
profiles of miRNA expression differ between infection and 
non-infection with H. pylori (65,66). miRNAs are involved in 
H. pylori-related pathology via the regulation of the transcrip-
tion and expression of various genes, playing an important role 
in inflammation, cell proliferation, apoptosis and differentia-
tion (67,68).

CagA may be involved in cellular regulation of certain 
miRNAs in the gastric epithelium. miRNA expression 
patterns in H. pylori-infected gastric mucosa are determined 
by microarray. The results found that expression levels of let-7 
family miRNAs are significantly altered following infection 
with CagA positive strain (69). CagA enhanced c-myc, DNA 
methyltransferase 3B (DNMT3B) and enhancer of zeste 
homologue 2 (EZH2) expression and attenuated miR-26a and 
miR-101 expression, which resulted in the attenuation of let-7 
expression (63). Using mammalian miRNA profile microar-
rays, miR-1290 and miR-584 expressions are upregulated 
in CagA-transformed cells. miR-1290 is upregulated in an 
Erk1/2-dependent manner, and miR-584 is activated by NF-κB. 
Foxa1 is an important target of miR-584 and miR-1290, which 
promote the epithelial-mesenchymal transition significantly 
(70). In vitro, CagA inhibited miR-370 expression, which led to 
overexpression of FoxM1. The upregulated FoxM1 expression 
altered the expression of p27 (Kip1), and promoted prolifera-
tion in gastric cells (71). CagA may function as an initiator in 
the process of carcinogenesis by upregulating miR-222, which 
further participates in the progression of cancer by promoting 
proliferation and inhibiting RECK (reversion-inducing 
cysteine-rich protein with Kazal motifs) (72). Shortly after 

Figure 4. The diagram of CagA-mediated epigenetic modifications.
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H. pylori infection, miR-372 and miR-373 synthesis is highly 
inhibited, leading to the post-transcriptional release of LATS2 
expression and thus, to a cell cycle arrest at the G1/S transi-
tion. This downregulation of a specific cell cycle-regulating 
microRNA is dependent on the translocation of CagA into 
the host cells (73). The integrative analysis and immunohis-
tochemistry staining validation indicated that miR-155 and 
miR-146b are upregulated in H. pylori-positive gastroduodenal 
ulcer. Further experiments in gastric epithelial cells revealed 
that CagA mediated upregulation of miR-155 and miR-146b, 
which decreases IL6 overexpression (74).

Histone modifications. Nucleosomes are represented by DNA 
wrapped around eight histone proteins, H2A, H2B, H3, and 
H4. Histones are primary protein components of eukaryotic 
chromatin and play a role in gene regulation. A histone modi-
fication is a covalent post-translational modification (PTM) to 
histone proteins which include methylation, phosphorylation, 
acetylation, ubiquitylation, and sumoylation (75,76).

Substantial research has investigated the effects of H. pylori 
infection on histone modification. Chromatin immunoprecipi-
tation analysis of NCI-N87 and primary gastric cells revealed 
that H. pylori induce cell cycle control factor p21WAF1 overex-
pression. H. pylori is associated with hyperacetylation of histone 
H4 which can release HDAC-1 from the p21WAF1 promoter (77). 
cagPAI-dependent decreases of H3 phosphorylation levels at 
serine 10 (pH3Ser10) and threonine 3 (pH3Thr3) are observed. 
H. pylori causes a strong decrease of the cell division cycle 
25 (CDC25C) phosphatase (78). Liang et al demonstrated 
that RBP2, a newly identified H3K4 demethylase, can be 
induced by CagA via PI3K/AKT-Sp1 pathway depending on 
AKT phosphorylation. Furthermore, the novel CagA-PI3K/
AKT-Sp1-RBP2-Cyclin D1 pathway links chronic inflamma-
tion to tumor during GC development (79).

In conclusion, the CagA protein is encoded by cag PAI and 
delivered into the host cells during the T4SS system. Following 
translocation, Src and Abl kinases phosphorylate CagA 
on EPIYA motifs. Phosphorylated CagA can interact with 
SHP2, Csk, Crk and hβD, which trigger several intracellular 
signaling pathways resulting in epithelial cell gene expression. 
The unphosphorylated CagA directly interacts with certain 
intracellular proteins such as PARIb, E-cadherin/β-catenin, 
c-Met, Grb2 and ZO-1, then disrupts the cell-to-cell junctions 
and gastric epithelial cell polarity.
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