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Abstract. The MET tyrosine kinase receptor plays an impor-
tant role during tumor development and progression being 
responsible for proliferation, morphogenetic transformation, 
cell motility and invasiveness. High expression of the MET 
receptor has been shown to correlate with increased tumor 
growth and metastasis, poor prognosis and resistance to radio-
therapy. Moreover, MET expression and activation has been 
shown to be associated with therapy resistance. The occurrence 
of resistance to targeted therapy might be related to the pres-
ence of cancer stem cells (CSCs). CSCs are a subpopulation 
of cells in the tumor that possess the ability of self-renewal, 
clonogenicity, radioresistance and self-sustained protection 
from apoptosis. Recently, MET has been postulated as an 
essential factor supporting the functional stem cell phenotype 
in some tumors and as a CSC factor is believed to be respon-
sible for therapy resistance. This review presents the results 
from recent studies identifying MET as a potential marker of 
CSCs and tumor initiating cells, demonstrating pivotal role 
of MET in supporting stem cell phenotype and indicating the 
role of MET in acquiring resistance to antitumor therapy.
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Introduction

The major problem in the fight against cancer is metastatic 
disease and growing resistance to available therapies. 
Therefore, it is important to understand the mechanisms 
responsible for the emergence and development of tumors to 
establish novel molecular-based strategies to enable a more 
successful destruction of aggressive tumor disease.

One of the well-known factors connected with tumor 
growth and metastasis is the MET receptor  (1). The MET 
tyrosine kinase receptor together with its ligand, hepatocyte 
growth factor (HGF) also known as scatter factor (SF), was 
identified to play a key role during embriogenesis (2-5). At the 
early stages of development, HGF and MET, are expressed in 
endoderm and mesoderm and act in an autocrine manner (2). 
Later, during organogenesis, MET is expressed in epithelial 
cells of many organs (liver, kidney, lung and skin), whereas 
HGF in mesenchymal cells (2). Moreover, MET is expressed 
in some myoblasts and neuronal precursors, and contributes 
to the development of muscular and nervous structures (2,5). 
Crucial role of MET during embryogenesis was confirmed in 
experiments with knockout mice that died in utero at E15 (4). 
HGF/MET axis is also important in the process of skin, liver 
and kidney regeneration (6,7).

Ligand-induced MET activation leads to phosphorylation 
of tyrosine residues (Tyr1230, Tyr1234 and Tyr1235) in the 
kinase domain of the receptor and allows binding of effector 
proteins, such as Gab1, Grb2, Shc, PI3K, Src, STAT3 or 
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PLCγ (8). It activates mainly the RAS-MAPK and PI3K-AKT 
pathways leading to pleiotropic biological effects on various 
target cells including the induction of cell proliferation, 
morphogenetic transformation, cell motility and invasiveness 
under both normal and pathological conditions (9-11). The last 
findings also indicate that MET is able to act through c-Abl 
and p-38-MAPK to induce p53 phosphorylation and promotes 
cell survival (12).

The MET receptor is considered a good candidate for 
targeted therapies  (13). However, although MET seems to 
be a very good target in development of new strategies, both 
in vitro and in vivo studies have shown that prolonged usage 
of tyrosine kinase inhibitors results in resistance to treatment 
and MET has been proposed as a new factor responsible 
for therapy resistance (14,15). Resistance to treatment is the 
major limitation and problem of contemporary oncology. This 
phenomenon may be partially related to the presence of cancer 
stem cells (CSCs).

The isolation and characterization of CSCs was begun 
by Lapidot and colleagues  (16) who showed that a small 
population of human acute myeloid leukemic (AML) cells, 
were capable of initiating human AML after transplantation 
into severe combined immune-deficient (SCID) mice (16). 
CSCs as defined by the American Association for Cancer 
Research (AACR) workshop on CSCs, are a subpopulation 
of cells in the tumor that have self-renewal capacity and can 
give rise to heterogeneous cancer cells that comprise the 
tumor (17). CSCs are defined as cancer-initiating cells (CICs) 
as well, because of their property of retaining long-term 
self-renewal ability in vitro, and driving clonal expansion in 
xenotransplantation assays (18,19). CSCs are inherently resis-
tant to radiochemotherapy owing to efficient DNA repair and 
self-sustained protection from apoptosis (18,20,21). Growing 
evidence shows that CSCs are responsible for resistance to 
conventional therapies, and thus, are the most likely cause of 
tumor recurrence (22). It has been postulated that stemness 
features of CSCs allow them to escape conventional antitumor 
therapy and maintain minimal residual disease, resulting in 
tumor relapse (23). Recently, it has been shown, in samples 
from patient tumors, that CSC marker expression is associ-
ated with a poorer clinical results and may have prognostic 
value (24-26). However, identifying markers, that could better 
characterize and isolate a population of CSCs for some tumors, 
remains challenging and recently, several potential candidates 
have been proposed.

The MET receptor has been postulated as an essential 
factor responsible for the functional cancer stem cell pheno-
type in some tumors and as a CSC factor is believed to be 
responsible for therapy resistance. The present review provides 
examples that MET may be a potential cancer stem cell factor 
responsible for drug resistance and tumor relapse.

2. MET receptor in cancer

In the early 1990s it was shown that mouse and human cell 
lines with overexpression of HGF and/or MET become 
tumorigenic and metastatic in nude mice and the level of MET 
and HGF directly correlates with invasiveness and metastatic 
process (27). Nowadays, it is well documented that deregulation 
of MET expression and activity is characteristic for multiple 

cancer types and is a key event underlying tumor progression 
and metastasis (1). A large number of studies show that HGF 
and/or MET are frequently expressed in human carcinomas and 
in other types of solid tumors and in their metastases (1). MET 
overexpression has been demonstrated in a variety of tumors, 
including lung, breast, ovary, cervical, kidney, colon, thyroid, 
liver, gastric carcinomas, glioma and osteosarcoma (28-41). 
Activating point mutations of MET occur in sporadic and 
inherited human renal carcinomas, hepatocellular carcinomas 
and several other cancer types (33,35,42).

Moreover, in case of MET and/or its ligand HGF, over-
expression or misexpression often correlates with poor 
prognosis (1,31,33,37). MET was shown to be more frequently 
amplified in advanced stage of colorectal and gastric cancers 
suggesting its role in the metastatic process of malignant 
progression (33,43,44). It was demonstrated for human head 
and neck cancers that activating mutations of MET are clonally 
selected during the process of metastasis and its level increased 
from 2% in the primary tumors to 50% in the metastases (45). 
Interestingly enough, MET expression may vary within the 
same tumor. As Pennacchietti and colleagues showed (46) both 
in carcinoma and sarcoma cells hypoxia promotes the expres-
sion of met protooncogene and hypoxic areas overexpress the 
MET receptor leading to activation of invasive growth (46). It 
was also shown that MET-positive cells within glioblastoma 
are located close to the nearest blood vessels (47). MET posi-
tive cells co-express glioblastoma stem cell markers, CD133 
and CD15, compared with MET-negative cells. Moreover, 
MET expression was efficient in inducing tumor formation 
regardless of CD133 expression (47). CD133 glycoprotein has 
been widely used to purify hematopoietic stem and progenitor 
cells and it was shown to define a subpopulation of brain tumor 
cells with significantly increased capacity for tumor initiation 
in xenograft models (48,49). The authors suggest that MET 
signaling was responsible for glioblastoma stem cell mainte-
nance, migration and resistance to radiation (47).

The group of Comoglio  (50) revealed that MET could 
be genetically selected for the long-term maintenance of 
the primary transformed phenotype, and some tumors were 
dependent on sustained MET activity for their growth and 
survival (51). Moreover, they proposed that MET overexpres-
sion in tumors is not only due to transcriptional induction at 
single-cell level but also expansion of the stem/progenitor 
subpopulation of cells inherently expressing MET (52). It has 
been also shown that cells displaying high MET copy number, 
overexpression of this receptor and ligand-independent consti-
tutive activation, are addicted to this oncogene and responsive 
to anti-MET drugs (53-56).

3. MET receptor as a prognostic marker

High MET expression pattern is currently associated with 
increased tumor growth rate and metastasis, poor prognosis 
and resistance to radiotherapy (57-59). MET overexpression 
has been postulated as a prognostic factor in lung (60,61), 
breast (62), head and neck (63), gastric (64), ovarian (65) and 
clear cell renal cell carcinoma (66). MET overexpression is 
also associated with poor prognosis and tumor invasiveness 
in glioblastoma patients (67,68). It has been demonstrated that 
enhanced level of MET in primary colorectal cancer may 
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predict tumor invasion and metastatic process (69). High MET 
protein level and its activation, resulting from MET amplifica-
tion, have been reported as associated with a poor prognosis 
in colorectal and gastric cancers (33,44,64). It was also shown 
that MET overexpression was significantly associated with 
worse 3- and 5-year overall survival, progression-free survival 
and distant metastases in cervical cancer patients (70). Similar 
results were obtained after a follow-up of 50 months for multiple 
myeloma patients, where high MET mRNA expression char-
acterized a worse progression-free and overall survival (71). 
Moreover, co-expression of the MET receptor together with 
CD47 was proposed as a novel prognostic factor for survival 
of patients suffering from luminal breast cancer (72). Another 
study proposed the MET receptor as independent predictor of 
decreased 5-year survival of patients with invasive ductal breast 
carcinoma (62). Similar results were obtained by the Edakuni 
group (73) and showed correlation between co-expression of 
HGF and MET in breast cancer, histologic grade and reduced 
patient survival (73). All these examples highlight MET as a 
prognostic factor whose presence and activity is important for 
the overall survival and development of metastatic disease in 
tumor patients.

4. Resistance to MET inhibitors

The HGF-MET pathway has been proven to be an attractive 
drug target for antitumor therapies. Several monoclonal anti-
bodies or small molecules targeting HGF or MET have been 
discovered and used in monotherapy, in combination with 
other targeted therapy or with chemotherapy (13). Despite 
encouraging results involving the use of MET inhibitors in 
the laboratory and in clinical trials, as well as in studies with 
other RTK inhibitors, it has been suggested that resistance 
will develop even in the subset of cancers that initially derive 
clinical benefits  (14,15). Several possible mechanisms of 
resistance to MET inhibitors such as, MET point mutations, 
amplification or MET gene overexpression, activation of MET 
parallel pathways or amplification of the KRAS gene, have 
been described (74-76). Cepero and colleagues (74) established 
cell lines resistant to long-term treatment with MET inhibitors 
and showed that prolonged exposure to increasing doses of 
c-MET inhibitors leads to amplification, overexpression and 
activation of wild-type MET and KRAS in gastric cell lines. 
Furthermore, they observed strong activation of the mitogen-
activated protein kinase (MAPK) pathway (74).

Another mechanism of resistance showed that cells devel-
oped resistance by acquired mutation in the MET activation 
loop or activated epidermal growth factor receptor pathway due 
to increased expression of transforming growth factor α (75). 
Two other studies showed that overexpression of HER family 
members in gastric carcinoma cells and non-small cell lung 
cancer cells are responsible for acquired resistance to MET 
kinase inhibitors (76,77). The authors concluded that cells 
carrying high MET copy number will undergo an oncogenic 
switch that will create an ERBB tyrosine kinase depen-
dency (76,77).

A recent study revealed the acquisition of secondary resis-
tance to MET monoclonal antibodies. In a very elegant study 
of Martin and coworkers  (78), MET-addicted lung cancer 
cells continuously treated with MET monoclonal antibody 

became resistant to treatment, as a result of an increase of 
MET gene copy number and MET overexpression. However, 
MET antibody resistant cells were sensitive to MET-specific 
small tyrosine kinase inhibitors (TKIs) and acquired drug-
dependence. Moreover, cells resistant to MET TKIs can still be 
sensitive to treatment with the antibody. The authors suggest 
that a discontinuous, combined treatment by antibodies and 
chemical kinase inhibitors may increase the clinical response 
and bypass resistance to anti-MET targeted therapies through 
synergistic effect on tumor cells (78). The results demonstrate 
that despite the acquired resistance to one type of inhibitors, 
it is possible to use another type and achieve good therapeutic 
effects. Furthermore, these results show the importance of 
MET as a therapeutic target.

5. MET inhibition overcomes drug resistance

Both in vitro and in vivo studies have shown that prolonged 
treatment with tyrosine kinases inhibitors (TKIs) results in 
resistance to treatment and MET receptor has been proposed 
as a new factor responsible for resistance to targeted therapies 
including epidermal growth factor receptor (EGFR), vascular 
endothelial growth factor receptor (VEGFR), human epidermal 
receptor 2 (HER-2) and B-raf (BRAF) inhibitors (14,15). This 
phenomenon was demonstrated for the first time in lung cancers 
driven by mutations in the EGF receptor (79). In the study, 
22% of patients who developed resistance to gefinitib, selective 
inhibitor of EGFR kinase, demonstrated amplification of the 
MET proto-oncogene. The amplification of MET driven ERBB3 
(Erb-B2 receptor tyrosine kinase 3) dependent activation of 
PI3K, a pathway specific to the EGFR/ERBB family receptors, 
suggests that MET amplification may promote drug resistance 
in other ERBB-driven cancers (79). It is worth noting, that inhi-
bition of MET signaling restored sensitivity to gefitinib (79,80). 
Another study reported that MET, as an RTK frequently coex-
pressed with Her2, in Her2 positive breast cancer, contributes 
to trastuzumab resistance of Her2-overexpressing breast cancer 
cells through sustained AKT activation (81).

HGF-MET axis was also shown to be involved in resis-
tance to anti-VEGR therapy. In tumors resistant to inhibitor of 
VEGF pathway, sunitinib, after treatment with highly selective 
MET inhibitor, PF-04217903, together with sunitinib, tumor 
growth was inhibited (82). The study on renal cell carcinoma 
model demonstrated that the MET receptor is involved in 
sunitinib acquired resistance (83). Combined treatment with 
the VEGF and MET inhibitors induced prolonged survival 
and inhibited tumor growth in mice giving hope for potential 
therapeutic use in the clinical treatment (83).

In light of these data MET seems to be a very good target 
for tumors resistant to tyrosine kinase targeted therapies. 
However, the activity and function of the receptor depend 
on the cell type and heterogeneity of tumors. Recent studies 
connect the presence of the MET receptor with cancer stem 
cell phenotype.

6. MET receptor and stem cells

It has been demonstrated that the MET receptor is expressed 
in stem/progenitor cells in various types of adult normal 
tissues and maintains stem cell properties. The MET receptor 
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was considered as a putative pancreatic stem/progenitor cell 
marker in adult mouse pancreas (84,85). In the developing 
liver, cells expressing MET can form stem cell colonies in vitro 
and migrate and differentiate into liver parenchymal cells and 
cholangiocytes when they were transplanted into the spleen or 
liver of mice subjected to liver injury (86). The essential role of 
the HGF/MET axis in hepatocyte-mediated liver regeneration, 
was shown by Ishikawa and colleagues with the use of MET 
knockout mice (87). In the liver, the MET receptor supported 
survival, proliferation, sphere formation and differentiation 
properties of oval cells (87). Another study showed that MET, 
in cardiac stem cells and early committed cells, is responsible 
for proliferation, survival, migration and regeneration of the 
infracted myocardium and improvement of ventricular func-
tion (88).

The study by Chmielowiec et al (89) underlined a funda-
mental role of MET during regenerative process in the adult 
skin. The authors demonstrated that MET signaling not 
only controls growth and migration of keratinocytes during 
embryogenesis but is also essential for the generation of the 
hyperproliferative epithelium in skin wounds (89). It was also 
demonstrated that MET signaling is a key mechanism in main-
taining stem cell niche in brain important for neural stem cell 
growth and self-renewal (90).

7. MET receptor and cancer stem cells

Recently, the MET receptor has been postulated as an essential 
factor responsible for the functional CSCs phenotype in some 
tumors. It was reported that MET expression was associated 
with glioblastoma stem cells (GSCs) identified by prospective 
isolation from fresh tumors (47) or with neurospheres endowed 
with specific genetic/molecular features  (91). Furthermore, 
MET was considered to play a central role in maintaining 
CSC populations in human glioblastoma multiforme (GBM), 
suggesting a link between MET signaling and CSCs (91,92). 
Other studies, on GBM cell subpopulations, showed that only 
cells expressing high level of MET retained clonogenic, tumori-
genic and radioresistant properties, features of CSCs (47,91). 
The authors demonstrated pivotal role of MET in supporting 
the pool of GBM SCs (47). They used freshly isolated patient-
derived GBM cells and provided evidence suggesting that MET 
plays critical role in SC maintenance, migration and resistance 
to radiation (47). Subpopulation with high MET level displayed 
enhanced kinetics growth and was highly tumorigenic in vivo as 
well (47,91). Moreover, only small population of GBM cells has 
been shown to be positive for the MET receptor and to contain 
amplification of MET, independent of other RTKs (93,94). The 
study by Li et al (95) involved MET as a novel, functional, stem 
cell marker for pancreatic adenocarcinoma. The authors identi-
fied the population with a high expression of MET and suggested 
that the receptor regulates SCs proliferation, cell renewal and 
has the ability to form tumors in NOD/SCID mice (95). This 
study also showed that the use of the MET inhibitor or small 
hairpin RNAs in pancreatic adenocarcinoma significantly 
inhibited tumor sphere formation and self-renewal capacity (95). 
In pancreatic tumors established in NOD SCID mice, MET 
inhibition decreased tumor growth, reduced the population of 
CSCs and prevented the development of metastases (95). The 
study of Sun and Wang (96) on human head and neck squamous 

cell carcinoma (HNSCC) demonstrated that MET expressing 
cells have the capacity for self-renewal (96). Furthermore, the 
MET receptor was responsible for tumor formation and meta-
static process in NOD/SCID mice and cisplatin resistance (96). 
It was also shown that the HGF/MET axis regulates stem- like 
phenotype in human prostate cancer (97). the study of Gastaldi 
and coworkers  (98) emphasized the role of MET in breast 
tumorigenesis. The authors showed that MET acts as a critical 
regulator of luminal cell proliferation and differentiation in the 
context of murine mammary morphogenesis (98). Moreover, 
the authors presented that MET is preferentially expressed in 
luminal progenitors and its activation stimulates clonogenic 
activity in vitro, confers repopulating potential in vivo and 
promotes aberrant branching morphogenesis  (98). Table  I 
summarizes the data with reference to MET expression corre-
lated with cancer stem cell phenotype.

Our study on rhabdomyosarcoma showed that silencing 
of the MET receptor stimulates tumor cell differentiation and 
activation of MET signaling may be the cause of its develop-
ment and progression (99,100). We have also demonstrated that 
cervical cancer cells depend on sustained MET activity for their 
growth and survival and downregulation of MET decreased 
tumor growth and forced tumor differentiation in vivo (101). Our 
observation on cervical cancer patient samples revealed that low 
level of MET accompanied low-grade squamous intraepithelial 
lesion, whereas increased heavily in high-grade squamous 
intraepithelial lesion and invasive carcinoma (101) (Fig. 1).

Table I. MET expression and cancer stem cell phenotype.

Tumor type	 Refs.

Breast cancer	 (98)
Colon cancer	 (115)
Glioblastoma	 (47,91,92,103)
Head and neck	 (96)
Pancreatic adenocarcinoma	 (95)
Prostate cancer	 (97)

Association of MET expression with the stem/progenitor status.

Figure 1. Immunohistochemical staining showed marked increase in the level 
of MET receptor in samples from cervical cancer patients (101). 
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8. MET receptor and stem cell markers

The MET receptor not only supports stem-like phenotype 
of cancer cells but also affects the expression and activity 
of stem cell markers. It has been shown that MET signaling 
can regulate glioma subpopulations and expand the pool of 
stem-like cells. the study of Li and colleagues (92) revealed 
that MET positively correlates with stem cell marker expres-
sion and the neoplastic stem cell phenotype in glioblastoma 
neurospheres, as well as in clinical glioblastoma specimens. 
MET expression and activation influences the expression of 
reprogramming transcription factors known to support embry-
onic stem cells, Sox2, Klf4, c-Myc, Oct4 and Nanog, known 
to induce stem-like properties in differentiated cells (92,102). 
Moreover, MET enhances stem cell characteristics of neuro-
sphere formation and neurosphere cell self-renewal (92). The 
MET receptor supports the GBM SC phenotype by involving 
an endogenous dynamic mechanism analogous to cellular 
reprogramming (92). It was shown that MET-positive cells 
expressed high levels of stemness transcriptional regulators, 
Oct4, Nanog and Klf4, when compared to MET-negative cells 
and the activation of MET signaling increases the expression 
of the Oct4, Nanog and Klf4 (103). The expression returned to 
basal levels in response to MET inhibition (103). It was also 
shown that MET induces a stem-like phenotype in prostate 
cancer and is expressed together with stem-like markers 
CD49b and CD49f and  (97). Another study reported that 
cabozantinib, a novel inhibitor of MET, downregulated CSC 
markers, SOX2 and CD133, induced apoptosis and increased 
efficacy of gemcitabine, currently used in standard therapy for 
advanced pancreatic cancer (104).

In our study, we have reported that blocking of the MET 
receptor could influence expression and function of the chemo-
kine CXCR4 receptor in rhabdomyosarcoma and cervical 
carcinoma cells (99,101). Cells with decreased MET expression 
had impaired intracellular signaling and chemotaxis toward 
SDF-1 gradient, a ligand of the CXCR4 receptor, which was 
in accordance with decreased expression of CXCR4 (99,101). 
CXCR4 overexpression and hyperactivation was shown for 
the first time to correlate with the metastatic ability of breast 
cancer cells (105). Since that time, the SDF-1-CXCR4 axis has 
been shown to be involved in the regulation of metastasis to 

organs that highly express SDF-1 (e.g., lymph nodes, lungs, 
liver and bones) (106). It was postulated that cancer stem cells 
and trafficking of normal stem cells involve similar mecha-
nisms regulated partially by CXCR4 (107).

Table II summarizes the study of the correlation between 
the MET receptor and cancer stem cell markers.

9. MET as a CSC factor responsible for therapy resistance 

Growing evidence shows that CSCs are responsible for 
resistance to conventional therapies, and thus, are the most 
likely cause of tumor recurrence (22). It has been postulated 
that stemness features of CSCs would allow them to escape 
conventional antitumor therapy and maintain minimal residual 
disease, leading to tumor relapse (23). It has been shown for 
breast cancer (108) and glioma (21) that CSCs survived after 
radiation, repaired their damaged DNA more efficiently than 
their non-CSC counterparts and began the process of self-
renewal  (21,108). Recently, it has been shown, in samples 
from patient tumors, that CSC marker expression is associated 
with a poor clinical outcome and may have prognostic value 
(24-26,109).

The study of Bardelli and colleagues (110) with the use 
of human colorectal cancer metastases xenografted in mice, 
demonstrated that amplification of the MET oncogene is a 
mechanism of both primary and secondary resistance to anti-
EGFR therapies. In the study by Jun et al (103) the authors 
used a mouse model of GBM and demonstrated that treatment 
of EGFR-positive GBM with gefitinib, a TKI, results in the 
induction of MET expression in a subset of cells that have GSC 
characteristics. MET signaling was a requisite for initiation and 
maintenance of the GSC features. The results emphasized the 
capacity for MET to support the GSC phenotype that involves an 
endogenous dynamic mechanism analogous to cellular repro-
gramming (103). It was also presented that MET amplification 
mediates in developing of EGFR tyrosine kinase inhibitors 
resistance in EGFR-mutant lung cancer cells (111,112). The 
authors showed that small population of cells carrying MET 
amplification may pre-exist in EGFR-mutated lung cancers. 
These cells, not driven by EGFR mutations, can be positively 
selected by therapy with EGFR inhibitors and sustain resis-
tance to EGFR inhibitors (111). It was demonstrated that the 

Table II. MET expression and cancer stem cell factors.

Stem cell marker	 Function	 Tumor type	 Refs.

Sox2	 transcription factor	 glioblastoma pancreatic cancer	 (92,104)
Klf4	 transcription factor	 glioblastoma	 (92,103)
c-Myc	 transcription factor	 glioblastoma	 (92)
Oct4	 transcription factor	 glioblastoma	 (92,103)
Nanog	 transcription factor	 glioblastoma	 (92,103)
CD49b 	 α2 integrin	 prostate cancer	 (97)
CD49f	 α6 integrin subunit	 prostate cancer	 (97)
CD133	 stem cell biomarker	 pancreatic cancer	 (104)
CXCR4	 chemokine receptor	 rhabdomyosarcoma, cervical carcinoma	 (99,101)

Correlation of MET receptor and stem/progenitor factors.
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response to specific inhibitors was efficiently counteracted by 
a variety of growth factors with prominent role of the MET 
receptor ligand HGF (111,112). BRAF-mutant melanomas or 
ERBB2-driven carcinomas have been also rescued from drug 
sensitivity by exposing them to HGF (113,114). Recent study 
of Luraghi and coworkers (115), showed that effects of EGFR 
inhibition in sensitive colorectal cancer initiating cells (CCIC) 
could be counteracted by HGF supporting in  vitro CCIC 
proliferation and resistance to EGFR inhibition. It was also 
shown, for colon cancer, that HGF, secreted by tumor micro-
environment, activates β-catenin-dependent transcription and 
thereby influences CSC clonogenicity and restores the CSC 
phenotype in more differentiated tumor cells both in vitro and 
in vivo (116,117).

All the observations are clinically appealing because 
combined treatment with an EGFR and MET inhibitor, 
specifically in patients with evidence of MET amplification 
at baseline, may lead to extended progression and better 
outcome.

A study showed that MET amplification together with 
EMT, and stem cell-like features are observed in non-small 
cell lung cancer cells with acquired resistance to Afatinib, 
an EGFR-TKI (118). It was also demonstrated that resistance 
of non-small lung cancer patients to EGFR inhibitors is due 
to EGFR T790M mutation and MET amplification  (119). 
Moreover, the patients acquired resistance to the MET 
receptor inhibitors used as a therapeutic approach in clinical 
trials. The mechanism of the resistance involved ABCB1 
overexpression, which was associated with CSC properties 
and EMT (119).

Taken together, MET involved in enhancing and main-
taining cancer stem cell properties may be responsible for 
resistance to antitumor therapy (Fig. 2).

10. Conclusions

Targeted therapies with compounds inhibiting a specific 
target molecule opened a new direction in the treatment of 
cancer. The development of targeted therapies requires the 
identification of good targets that are known to play a key 
role in tumor cell growth and survival and are more effective 
and less toxic than previous standards of care involving cyto-
toxic therapies (120). Targeted therapy relies on the concept 
of ‘oncogene addiction’ that reveals a possible ‘Achilles' heel’ 

of cancer cells, wherein they depend on a single oncogenic 
pathway for sustained proliferation and/or survival (121,122). 
This means that the inhibition of a single pathway, gene or 
protein to which they are addicted results in the inhibition 
of their growth or even their death  (121). Unfortunately, 
targeted therapeutics in cancer has not yet met the high 
expectations of patients and physicians because some patients 
relapsed following treatment with specific inhibitors as a 
result of acquired resistance mechanisms (120,123). CSCs 
have been shown to be largely responsible for chemoresis-
tant phenotypes in various tumors, thus, the development 
of new, targeted, effective therapies has become focused 
on identifying factors that drive and sustain CSCs. The 
CSC hypothesis predicts that only therapies that efficiently 
eliminate population of CSCs are able to induce long-term 
response and stop tumor recurrence. The activation of the 
MET receptor axis has been directly implicated in acquiring 
chemoresistance, maintaining clonogenicity and ability to 
self-renew in various tumor cell populations. In the light 
of our knowledge MET seems to have two faces: acts as a 
promising factor for developing personalized cancer therapy 
and as a factor responsible for cancer stem cell properties and 
therapy resistance.
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