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Abstract. The objective of this study was to identify the 
optimal gene and gene set for hepatocellular carcinoma 
(HCC) utilizing differential expression and differential 
co-expression (DEDC) algorithm. The DEDC algorithm 
consisted of four parts: calculating differential expression 
(DE) by absolute t-value in t-statistics; computing differential 
co-expression (DC) based on Z-test; determining optimal 
thresholds on the basis of Chi-squared (χ2) maximization and 
the corresponding gene was the optimal gene; and evaluating 
functional relevance of genes categorized into different 
partitions to determine the optimal gene set with highest mean 
minimum functional information (FI) gain (Δ*

G). The optimal 
thresholds divided genes into four partitions, high DE and 
high DC (HDE-HDC), high DE and low DC (HDE-LDC), 
low DE and high DC (LDE‑HDC), and low DE and low DC 
(LDE-LDC). In addition, the optimal gene was validated by 
conducting reverse transcription-polymerase chain reaction 
(RT-PCR) assay. The optimal threshold for DC and DE were 
1.032 and 1.911, respectively. Using the optimal gene, the 
genes were divided into four partitions including: HDE-HDC 
(2,053  genes), HED-LDC (2,822  genes), LDE-HDC 
(2,622 genes), and LDE-LDC (6,169 genes). The optimal gene 
was microtubule‑associated protein RP/EB family member 1 
(MAPRE1), and RT-PCR assay validated the significant 
difference between the HCC and normal state. The optimal 
gene set was nucleoside metabolic process (GO\GO:0009116) 

with Δ*
G = 18.681 and 24 HDE-HDC partitions in total. In 

conclusion, we successfully investigated the optimal gene, 
MAPRE1, and gene set, nucleoside metabolic process, which 
may be potential biomarkers for targeted therapy and provide 
significant insight for revealing the pathological mechanism 
underlying HCC.

Introduction

Hepatocellular carcinoma (HCC) is the fifth most common 
cancer worldwide and the third leading cause of cancer-related 
mortality (1), making it urgent to identify early diagnostic 
markers and therapeutic targets (2). HCC primarily develops 
from cirrhosis caused by chronic infection of hepatitis B 
virus (HBV) or hepatitis C virus (HCV), alcoholic injury, and 
to a lesser extent from genetically determined disorders (3). 
However, the heterogeneity of HCC presents unique chal-
lenges in identifying biomarkers and exploring the molecular 
pathogenesis in this disease (4).

With advances in high-throughput experimental tech-
nologies, they have been applied to explore diagnostic gene 
signatures and biological processes of human diseases (5), 
providing novel insights into the underlying biological mecha-
nisms of HCC. Identifying differentially expressed genes that 
have similar expression profiles with known disease genes 
is the main method to evaluate biomarkers (6). Differential 
expression (DE) analysis has been widely used to explore genes 
with different expression levels across different conditions 
in many gene expression studies (7,8), especially in cancer 
research (9,10). Meanwhile, differential co-expression (DC) 
analysis mainly aims to gain insight into altered regulatory 
mechanisms between classes, by studying their difference in 
gene co-expression patterns (11). Comparing the two types of 
analysis, DC analysis is more suitable for identifying disease 
genes that may not show significant changes in expressional 
levels, relative to DE analysis (12,13).

From a biological perspective, if a relationship exists 
between DE and DC analysis, biological explanations such 
as cellular functions corresponding to such a dependency 
should be sought. The integrated DE and DC information may 
provide new opportunities for selecting functional relevant 
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genes and dissecting complex disease mechanism. Therefore, 
in this study, we integrated the DE and DC together, termed 
the DEDC algorithm, to investigate the optimal gene and 
gene set for HCC. These genes and gene set may be poten-
tial biomarkers for early detection and therapeutic targets of 
HCC, and provide insight to reveal the underlying pathological 
mechanisms for this tumor.

Materials and methods

The inference process of the optimal gene and gene set 
according to the DEDC algorithm was comprised of four steps: 
calculating DE by absolute t-value in t-statistics; computing 
DC based on Z-test; determining optimal thresholds depen-
dent on Chi-squared (χ2) maximization; evaluating functional 
relevance of genes categorized into different partitions. In 
addition, the optimal gene was validated by conducting reverse 
transcription-polymerase chain reaction (RT-PCR) assay, which 
further confirmed the feasibility of the DEDC algorithm. The 
overview of the analytical framework is illustrated in Fig. 1.

Gene expression data. Two gene expression profiles 
[E-GEOD-57727  (14) and E-GEOD-57957  (15)] for HCC 
were recruited from the ArrayExpress database. The char-
acteristics are displayed in Table  I. A total of 44  normal 
samples and 96 tumor samples were collected from the two 
datasets. In order to control quality of the datasets, standard 
pre-treatments were performed for them, which comprised 

background correction based on robust multi-array average 
(RMA) algorithm (16); normalization preformed according to 
quantile based algorithm (17); probe correction by Microarray 
Analysis Suite (MAS) software algorithm (18) and expression 
summarization through median polish method (16).

Subsequently, by removing invalid or duplicated probes 
and converting preprocessed data on the probe level into gene 
symbol through annotate package (19), we gained 13,666 and 
13,937 genes in total in E-GEOD-57727 and E-GEOD-57957, 
respectively. Additionally, to remove the batch effects caused 
by the use of different experimentation plans and method-
ologies, we utilized batch mean-centering (BMC) method in 
inSilicoMerging package to merge the two preprocessed gene 
expression profiles into a single group (20). Measured gene 
expression values (x̂ k

ij) of gene i in sample l of the batch k were 
calculated by subtracting the mean xi:

Calculating DE. For the purpose of calculating DE levels 
between HCC and a normal condition, we applied absolute 
t-value in t-statistics to quantify the degree of DE of each 
gene  (21). Considering the gene expression data set with 
m  genes from samples of two conditions: one condition 
consisted of tumor or HCC samples (T), while the other was 
composed of normal controls (N). The absolute t-value |ti| for a 
gene i (1 ≤ i ≤ m) was calculated as following:

Where XT and XN represent the mean expression levels in the 
tumor and normal conditions, AT and AN stand for the amount 
of samples in two conditions, and VT and VN are the standard 
deviations of expression levels in the tumor and normal condi-
tions. Note that a higher absolute t-value indicates a larger DE 
difference.

Computing DC. Z-test, which quantifies the correlation 
difference between expression levels of two genes (12), was 
implemented to evaluate the DC relations between any two 
genes in the tumor and normal samples. For any two genes i 
and j, this process mainly included three steps: calculating the 
Pearson's correlation coefficient (PCC) separately over the 
samples in normal and tumor state, r N

ij and r T
ij (22); transforming 

the correlations r N
ij  and r T

ij into normally distributed forms z H
ij and 

z T
ij by the Fisher-transforms (23); and computing the measure 

for DC, Zij. The calculated formulas are listed as follows:

Where A is the number of samples of the gene expression 
data; g(i, l) or g( j, l) is the expression level of gene i or j in 
the sample l under a specific condition;           or           repre-
sents the mean expression level of gene i or j. According to 
this, we could obtain r N

ij for normal condition and r T
ij for tumor 

condition. When rij indicates r N
ij, z N

ij is defied as:

Figure 1. The scheme flow for identification of the optimal gene and gene set 
in hepatocellular carcinoma.

Table I. Characteristics of gene expression profiles.

	 Samples
Accession no.	 (normal/tumor)	 Platform

E-GEOD-57727	 62 (5/57)	A -GEOD-14951 - Illumina
		  HumanHT-12 WG-DASL
		  V4.0 R2 expression beadchip
E-GEOD-57957	 78 (39/39)	A -GEOD-10558 - Illumina 
		  HumanHT-12 V4.0
		  expression beadchip
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z T
ij was evaluated similarly:

And thus,

Identifying optimal DE and DC thresholds. With DE and DC 
measures defined, we investigated the relationship between 
DE and DC for every gene in the expression data in turn based 
on Pearson's χ2 test which provided information not only 
on the significance of any observed differences, but also on 
exact categories accounting for any differences found (24). 
Moreover, to address whether genes with higher DC to gene i 
tended to (or tended not to) have higher DE, two thresholds 
were identified based on Pearson's χ2 maximization, of which 
one was used for defining high or low DE (ti), and the other was 
employed to assess high or low DC (zij).

Selecting optimal threshold. The threshold selection algorithm 
based on χ2 maximization is described as follows. A pair of 
optimal thresholds for each gene i, z*

i and t*
i, were sought from 

a set of threshold candidates, {(zij, ti)} (1 ≤ i, j ≤ m), for the 
DC and DE variables, respectively. To each pair of threshold 
candidates, every gene was categorized into one of following 
four partitions as shown in Fig. 2: i)  low DC and low DE 
(LDC-LDE), termed as SLDC-LDE; ii)  low DC and high DE 
(LDC-HDE), denoted as SLDC-HDE; iii) high DC and low DE 
(HDC-LDE), denoted as SHDC-LDE; and iv) high DC and high 
DE (HDC-HDE), denoted as SHDC-HDE.

From the four partitions, we counted the number of 
observed genes in each partition. The observed frequency (O) 
was formally defined as: OB_C = ⎸SBC

⎸where B = {LDE, HDE} 
and C = {LDC, HDC}. Assuming the two DE and DC vari-
ables were independent, the expected frequency was              . 
Additionally, the χ2 value for gene i was computed as follows:

Note that there were m tests in total, since the χ2  tests 
were performed for m possible threshold candidates. As a 

consequence, m maximum χ2 values were produced, and were 
compared with each other. We selected the threshold candidate 
pair with maximized χ2 value as the pair of optimal thresholds 
for gene i, (z*

i, t*
i).

Performance of optimal threshold. Some possible relation-
ships may be presented between HDE and HDC with a certain 
gene, such as positive, negative and no significant relationship. 
To evaluate whether the association between them was signifi-
cant ulteriorly, adjusted residual was employed (25), which 
are asymptotically standard normal results obtained from 
dividing it by its standard error. A cell-by-cell comparison of 
observed and estimated expected frequencies show the nature 
of the dependence. Larger values are more relevant when the 
degree of freedom is larger and it becomes more likely that 
at least one is large simply by chance (26). In this study, we 
defined that if the observed number of genes found in HDE 
and HDC partition was higher than the expected frequency, the 
association between HDE and HDC was regarded as positive. 
Conversely, if the observed frequency was less than expected, 
the association was considered to be negative.

Evaluating functional relevance. In this study, we utilized 
pre-defined gene sets which included Gene Ontology (GO) 
sets (27,28), Reactome pathways (29) and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathways (30) as background 
data to weigh the functional relevance of the partition genes 
which were detected by the optimal thresholds. Firstly, to 
determine whether a set of partition genes was significantly 
overrepresented in a functional gene set or not, two-tailed 
Fisher's exact test based on the hyper-geometric distribu-
tion was conducted in a partition (31), and P for each gene 
was obtained. The P was adjusted and corrected utilizing 
Bonferroni (32) and Benjamini and Hochberg (33). In addition, 
the most significant gene set associated with the partition with 
the lowest P was defined as the best associated gene set.

Subsequently, functional information (FI) was proposed 
to perform comparison of P over different partitions (34). FI 
could quantify the significance of association between a gene's 
HDE and HDC partition SHDE-HDC and a functional gene set G. 
When the significance of the association was high, P was small 
and in turn FI was high.

FISHDE-HDC,G = -log2(P)

The gain of FI by combining the HDE and HDC criteria 
over an individual criterion of DE for a given gene set G is 
defined as:

Δ '
G = FISHDE-HDC,G - FISHDE,G

Of which FISHDE,G is the FI for the association between a 
HDE gene partition SHDE and a functional gene set G. Similarly, 
the gain of FI, Δ"

G, by combining the HDE and HDC criteria 
over an individual criterion of DC for a given gene set G was 
calculated. Thus, the minimum of individual FI gains could be 
computed as:

Δ*
G = min (Δ '

G, Δ"
G)

The minimal FI gain was high only when both of the 
individual gains were high. It was low when any one of the 

Figure 2. Genes were divided into four partitions based on the optimal dif-
ferential expression (DE) and differential co-expression (DC) threshold for 
every gene.
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individual gains was low. A negative gain mean FI on the basis 
of the combining criteria was lower than either one or both of 
the individual criteria.

Validation of the optimal gene by RT-PCR. To validate the 
expression level of the optimal gene, RT-PCR assay was 
performed. Total RNA was prepared from HCC cell line 
HCC-LM3 which was kindly provided by Cancer Center, Qilu 
Hospital of Shandong University (Jinan, China). Cells were 
cultivated in Dulbecco's modified Eagle's medium (DMEM)/
F-12 containing 10% fetal bovine serum (FBS) (Gibco; Life 
Technologies, Carlsbad, CA, USA), and antibiotics of 100 U/ml 
penicillin G, 100 µg/ml streptomycin and 250 ng/ml fungizone 
(Carl Roth, Karlsruhe, Germany) at 37˚C in a humidified incu-
bator with 5% CO2 atmosphere (Shanghai Samsung 
Experimental Instrument Co., Ltd., Shanghai, China). When 
the cultures reached confluence (6 days), cells were treated 
with 0.05% trypsin/1  mM EDTA for 5  min at 37˚C. 
Subsequently, the cell suspension was diluted with DMEM/
F-12 supplemented with 10% FBS to a concentration of 
2x105 cells/ml, and plated in 12-well culture plates (1 ml/well). 
Culture medium was changed after 24 h and then every 3 days. 
For the cDNA synthesize, RNA was treated with Oligo (dT)18 
primers (Invitrogen, Carlsbad, CA, USA), 2 µl RNasin (40 U/
µl), 8.0 µl 5X reverse transcriptase buffer, 8.0 µl dNTPs and 
2 µl AMV reverse transcriptase (5 U/µl). The reactions were 
incubated for 1 h at 42˚C, 15 min at 70˚C, and adjusted to a 
final volume of 50 µl. The data were normalized to β-actin 
reference. The primer sequences of forward (5'-AGG 
CCCATCTCAACACAGAG-3') and reverse (5'-CGT 
TCTCCTGGCAAATCAAT-3') were employed to produce an 
amplicon of 217 bp.

For PCR amplification, the mixture contained 10 µl of 
10X PCR buffer I and 1 µl of Taq DNA polymerase (both 
from Invitrogen), 3 µl of each forward and reverse primer, 
8 µl of dNTPs. Conditions were as follows: 30 sec at 95˚C 
for pre‑denaturation, followed by 35 cycles of 45 sec at 94˚C, 
30 sec at 55˚C and 1.5 min at 72˚C, and a final 10 min exten-
sion at 72˚C. Three replicates of the assay within or between 
runs were performed to assess the reproducibility. Products of 
PCR experiment were analyzed by 1.5% agarose gel electro-
phoresis and Quantity One software of gel imaging analyzer 

(Bio-Rad, Hercules, CA, USA). In addition, each test was 
carried out in triplicate at least and the results were anaylzed 
using statistical process by SPSS, Inc. (Chicago, IL, USA) (35). 
The data are expressed as mean ± standard deviation (SD). 
Differences between groups were assessed by unpaired, two-
tailed Student's t-test (36). P<0.05 was considered to indicate a 
statistically significant different.

Results

Data. In the present study, a total of 13,666 genes were obtained 
in the gene expression data which included tumor (HCC)  (T) 
and normal samples (N) for further exploitation, and thus 
m=13,666. When evaluating the functional relevance of the 
selected genes, we collected 7,114 functional gene sets or path-
ways in total, of which 5,895 sets were from GO, 999 sets were 
from Reactome pathways and 220 pathways were from KEGG 
pathways. To make these gene sets more reliable and confident, 
we took intersections between gene sets and the 13,666 genes, 
and selected gene sets with the number of intersected genes 
>3 as the background gene sets. Finally, 7,103 pathways were 
identified for background gene sets in total.

Optimal gene. First of all, we calculated the DE and DC vari-
ables for the 13,666 genes in the gene expression data utilizing 
t-test and Z-test, respectively. Based on χ2 maximization, the 
dependencies between the DE and DC variables for candidate 
thresholds were evaluated. We selected the maximal χ2 value 
as the optimal thresholds, (z*

i, t*
i), z*

i =1.032 and t*
i =1.911, 

and the corresponding gene or optimal gene was microtu-
bule‑associated protein RP/EB family member 1 (MAPRE1) 
with P=2.67E-43. The gene partitions were identified based 
on the optimal thresholds, which provide a flexible framework 
to study genes with different DE and DC characteristics (such 
as HDE, LDE, HDC and LDC). The significance between the 
DE and DC variables was calculated and the P was adjusted 
for multiple testing as described in the Materials and methods 
section. Furthermore, to evaluate whether the association 
between HDE and HDC was significant ulteriorly, adjusted 
residual was employed. The results showed that 2,053 genes 
out of all genes in the HCC data had a significant HDE and 
HDC association (adjusted P<0.05).

Figure 3. RT-PCR results for the optimal gene microtubule‑associated protein RP/EB family member 1 (MAPRE1). The expression of one gene in hepatocel-
lular carcinoma compared to normal controls was indicated by its P-value, *P<0.05, significant change.
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Moreover, for the purpose of determining the expression 
level of the optimal gene MAPRE1 in HCC samples and 
normal controls, RT-PCR analysis was conducted using the 
HCC cell line HCC-LM3. Three replicates were performed to 
make the results more reliable than for one replicate, and we 
took the mean value as the final outcome. The assay mainly 
included RNA extraction, cDNA synthesis and PCR amplifi-
cation. Then the significance analysis was conducted on the 
results using SPSS software. The RT-PCR results are displayed 
in Fig. 3. We found that there was a significant difference for 
the relative expression level of MAPRE1 between the HCC and 
normal group (P<0.01). Collectively, these results indicate that 
the gene plays an important role in the progression of HCC 
and confirmes the feasibility of our algorithm to identify the 
optimal gene.

FI of HDE-HDC partitions. Among the HDE-HDC partitions 
of 2,053 genes selected from the HCC and normal set, we inves-
tigated the distribution of FI of their best associated gene sets 
and compared it to those using individual HDC or HDE criteria 

based on the background gene sets and Fisher's exact test. The 
distributions are shown in Fig. 4. A significant observation 
was that when using the HDE-HDC criteria, a large group of 
4,007 partitions was obtained at an FI between 5 and 10.

In addition, the best associated gene set for each gene 
partition of these positive associations was obtained, and 
the top 10 best associated gene sets with the highest mean 
minimum FI gain (Δ*

G) are shown in Table  II. The result 

Figure 4. Distribution of functional information for high differential expres-
sion (HDE) (in blue), high differential co-expression (HDC) (in yellow) 
and HDE-HDC (in red) gene partitions using hepatocellucar carcinoma 
vs. normal group.

Table II. Top 10 best associated gene sets with highest mean minimum FI gain.

Rank	 Gene sets	 Gene set category	 Δ*
G

  1	 Nucleoside metabolic process	 GO\GO:0009116	 18.681
  2	 Complement and coagulation cascades	 KEGG\hsa04610	 17.692
  3	 Nonsense mediated decay independent of the exon junction complex	 REACTOME\REACT_75768.1	 15.294
  4	 Viral gene expression	 GO\GO:0019080	 13.465
  5	 Structural constituent of ribosome	 GO\GO:0003735	 12.028
  6	 mRNA processing	 GO\GO:0006397	 11.794
  7	 Nuclear-transcribed mRNA catabolic process	 GO\GO:0000956	 11.389
  8	 Resolution of sister chromatid cohesion	 REACTOME\REACT_150425.2	 10.452
  9	 Proton-transporting two-sector ATPase complex	 GO\GO:0016469	 10.040
10	 GTPase activity	 GO\GO:0003924	 9.983

FI, functional information; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.

Figure 5. The top 10 best associated gene sets with high mean minimum 
functional information (FI) gain for high differential expression (HDE), high 
differential co-expression (HDC) and HDE-HDC partitions. The HDE-HDC 
partitions (in red) yielded significantly higher mean FI than HDE partitions 
(in blue) or HDC partitions (in yellow) as marked by blue or yellow asterisks, 
respectively. The combined HDE-HDC criteria outperformed both of the 
individual criteria in all gene sets (marked by blue and yellow asterisks).
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showed that nucleoside metabolic process (GO\GO:0009116) 
with Δ*

G=18.681, complement and coagulation cascades 
(KEGG\ hsa04610) with Δ*

G =17.692, and nonsense 
mediated decay independent of the exon junction complex 
(REACTOME\REACT_75768.1) with Δ*

G=15.294 were the 
top three gene sets. Fig. 5 shows the top 10 gene sets with 
mean FI for HDE, HDC and HDE-HDC partitions. We found 
that the combined HDE-HDC criteria outperformed both of 
the individual criteria in all gene sets, as marked by both blue 
and yellow asterisks.

Association between MAPRE1 and the nucleoside metabolic 
process. To illustrate the DC and DE analysis in more detail, 
we selected the first ranked best association gene set for further 
exploration. As shown in Fig. 5, the first ranked gene set was 
nucleoside metabolic process. It was the best associated gene 
set among a total of 24 HDE-HDC partitions. Among these 
partitions, the gene MAPRE1 attained a highest minimum 
FI gain of 18.681. Specifically, the gene set was associated 
with the HDE-HDC, HDE, and HDC partitions with the 
adjusted P of 2.67E-43, 3.98E-07 and 4.24E-18, respectively. 
The average expression of MAPRE1 in the tumor state was 
significantly higher than that in the normal state (P<0.05). 

Moreover, the scatter plots of DE and DC for MAPRE1 are 
shown in Fig. 6A, and red dashed lines represent the optimal 
thresholds. With the optimal gene of (1.032, 1.911), genes 
were divided into four partitions including: HDE-HDC 
(2,053  genes), HED-LDC (2,822  genes), LDE-HDC 
(2,622 genes), and LDE-LDC (6,169 genes). The amount of 
expected frequencies for HDE-HDC was 1667.7, which was 
lower than the observed 2,053, and hence the association 
was positive. Genes of nucleoside metabolic process in these 
four partitions are highlighted using triangles as shown 
in Fig. 6B.

The scatter plot of DE and correlation between genes and 
MAPRE1 in the normal (Fig. 7A) and tumor state (Fig. 7B) are 
shown in Fig. 7, separately. Most selected genes in HDE-HDC 
partitions were more positively correlated with MAPRE1 in 
the tumor group compared to the normal state. All of selected 
genes in the HDE-HDC partition attained a higher expression 
in the HCC state. There was a difference for the correlation with 
MAPRE1 between the normal and tumor state. Meanwhile, a 
network for MAPRE1 and 238 gene enriched in nucleoside 
metabolic process was constructed (Fig. 8). In the network, 
79, 40, 41 and 78 genes belonged to HDE-HDC, LDE-HDC, 
HDE-LDC and LDE-LDC partition, respectively.

Figure 6. The scatter plot of differential expression (DE) and differential co-expression (DC) for microtubule‑associated protein RP/EB family member 1 
(MAPRE1). Each point in the plot stands for a gene. The optimal thresholds for DC and DE are indicated by red dashed lines. (A) Heatmap of the Chi-squared 
(χ2) for the threshold candidates. (B) Gene set nucleoside metabolic process (GO\GO:0009116) was best associated with the HDE-HDC partition. The triangles 
represent genes found in nucleoside metabolic process and different colors denote different DE and DC values: HDE-HDC (red); LDE-HDC (blue); HDE-LDC 
(green); LDE-LDC (pink).

Figure 7. The scatter plot of differential expression (DE) and correlation between microtubule‑associated protein RP/EB family member 1 (MAPRE1) and 
every gene in the (A) healthy state and (B) tumor state. Each point in the plot represents a gene. A positive t-value indicates a higher gene expression in the 
tumor state compared to the normal state, and vice versa; a negative t-value indicates a lower gene expression in the tumor state compared to the healthy state. 
The optimal threshold for DE is indicated using a red dashed line. The triangles represent genes found in nucleoside metabolic process, and different colors 
denote different DE and DC values: HDE-HDC (red); LDE-HDC (blue); HDE-LDC (green); LDE-LDC (pink).
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Discussion

Generally, researchers concentrate only on DE or DC analysis, 
and it is rarity for a study to integrate the two types of analysis 
together. In the present study, we employed a DEDC method 
which combined DE and DC analysis to investigate the optimal 
gene and gene set in HCC. When compared with the single 
approach, the DEDC algorithm is a valuable methodology for 
investigating biological functions of genes exhibiting disease-
associated DE and DC combined characteristics, and these 
functional genes and processes may not be easily revealed 
through DE or DC approach alone. The main procedures 
for this approach include calculation of DE and DC levels, 
determination of the optimal thresholds and evaluation of 
functional relevance of different gene partitions. The optimal 
threshold for DC and DE were  1.032 and  1.911, and the 
corresponding gene was MAPRE1 which was validated by 

RT-PCR assay (P<0.05) between HCC and the normal state. 
This outcome also confirmed the feasibility of the DEDC 
method in turn.

MAPRE1, encoded EB1, regulates microtubule dynamic 
instability and chromosomal stability during mitosis, 
interacts with the adenomatous polyposis coli (APC) tumor 
suppressor, and may play an important role in tumorigen-
esis (37). Dysregulation of the APC-EB1 interaction, through 
APC mutation or EB1 overexpression, may promote cellular 
proliferation, spindle defects, and aberrant chromosomal 
segregation (38). Overexpression of MAPRE1 has been found 
to induce nuclear accumulation of β-catenin and activate the 
β-catenin/T-cell factor pathway leading to a promotion of cell 
growth and increase in colony formation (39,40). Moreover, 
Taguchi et al showed a significant elevation of circulating 
MAPRE1 protein in newly diagnosed and pre-diagnostic 
colorectal cancer plasma samples (41). It was demonstrated that 

Figure 8. The network between microtubule‑associated protein RP/EB family member 1 (MAPRE1) and nucleoside metabolic process. Nodes represent genes, 
and an edge stands for the interaction between two genes. Genes with higher differential expression (DE) are shaded using a deeper red color. Genes with 
different differential co-expression (DC) and DE values are circled with different colors: HDE-HDC (red); LDE-HDC (blue); HDE-LDC (green); LDE-LDC 
(pink).
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this gene was elevated in tissue from head and neck cancer (42) 
and was correlated with tumor size and associated with poor 
differentiation in HCC tissue (43). Therefore, we inferred that 
MAPRE1 plays a significant role in the progression of HCC, 
and it was consistent with our RT-PCR result. The finding 
confirmed the accuracy and feasibility of the DEDC method.

Based on the DEDC algorithm, the optimal gene set 
was nucleoside metabolic process (GO\GO:0009116) 
with Δ*

G=18.681 and 24  HDE-HDC partitions in total. 
Nucleoside metabolic process refers to chemical reactions 
and pathways involving a nucleoside, a nucleobase linked to 
either β-D-ribofuranose (a ribonucleoside) or 2-deoxy-β-D-
ribofuranose (a deoxyribonucleoside), for example, uridine, 
inosine, guanosine, adenosine, cytidine and deoxyadenosine, 
deoxyguanosine, deoxycytidine and thymidine (44). Metabolic 
incorporation of azido nucleoside analogues into living cells 
enables sensitive detection of DNA replication through copper 
(I)-catalyzed azide-alkyne cycloaddition and strain-promoted 
azide-alkyne cycloaddition (45), whereas the altered DNA 
replications often lead to disease or even cancer. A previous 
study suggested that MYC contributes to the metabolic repro-
gramming of tumor cells by stimulating nucleotide synthesis 
and mitochondrial biogenesis (46). Recently, Laks et al showed 
that nucleoside salvage pathway kinases regulate hematopoi-
esis by linking nucleotide metabolism with replication stress 
in glioblastoma patients  (47). Hence, we may deduce that 
nucleoside metabolic process is closely correlated to tumors. 
It is the first time to uncover the functions of nucleoside meta-
bolic process in HCC.

In conclusion, we successfully investigated the optimal 
gene (MAPRE1) and gene set (nucleoside metabolic process) 
which may be potential biomarkers for targeted therapy and 
we provide significant insight for revealing the pathological 
mechanism underlying HCC.
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