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Abstract. Lung metastasis is an important cause for the low 
5-year survival rate of colorectal cancer patients. Understanding 
the metabolic profile of lung metastasis of colorectal cancer is 
important for developing molecular diagnostic and therapeutic 
approaches. We carried out the metabonomic profiling of lung 
tissue samples on a mouse lung metastasis model of colorectal 
cancer using 1H-nuclear magnetic resonance (1H-NMR). The 
lung tissues of mice were collected at different intervals after 
marine colon cancer cell line CT-26 was intravenously injected 
into BALB/c mice. The distinguishing metabolites of lung 
tissue were investigated using 1H-NMR-based metabonomic 
assay, which is a highly sensitive and non-destructive method 
for biomarker identification. Principal component analysis 
(PCA), partial least squares discriminant analysis (PLS-DA) 
and orthogonal partial least squares discriminant analysis 
(OPLS-DA) were applied to analyze 1H-NMR profiling data 
to seek potential biomarkers. All of the 3 analyses achieved 
excellent separations between the normal and metastasis 
groups. A total of 42 metabolites were identified, ~12 of which 
were closely correlated with the process of metastasis from 
colon to lung. These altered metabolites indicated the distur-

bance of metabolism in metastatic tumors including glycolysis, 
TCA cycle, glutaminolysis, choline metabolism and serine 
biosynthesis. Our findings firstly identified the distinguishing 
metabolites in mouse colorectal cancer lung metastasis 
models, and indicated that the metabolite disturbance may be 
associated with the progression of lung metastasis from colon 
cancer. The altered metabolites may be potential biomarkers 
that provide a promising molecular approach for clinical diag-
nosis and mechanistic study of colorectal cancer with lung 
metastasis.

Introduction

Colorectal cancer is one of the most malignant cancers and the 
third cause of cancer-related mortality worldwide (1). Patients 
with colon cancer (10-30%) have the tendency to develop lung 
metastasis (2). Due to the lung metastasis of colon cancer, 
the 5-year survival rate of colon cancer patients is very low. 
The prevention and early identification of lung metastasis in 
colorectal cancer patients may significantly enhance survival 
rates. Therefore, biomarkers that facilitate the early diagnosis 
of lung metastasis are highly valuable, and investigating the 
potential biomarkers, which are closely associated with the 
progression of lung metastasis from colorectal cancer, is an 
urgent aim of research.

Although distant metastasis is the major cause of colorectal 
cancer-related mortality and a large number of colorectal cancer 
patients develop lung metastasis after treatment, little research 
has focused on the biomarker detection of lung metastasis 
from colon cancer. Gorlick et al showed that colorectal cancer 
metastasis to the lung has a higher thymidylate synthase (TS) 
level than liver metastasis (3), and increased levels of E2F lead 
to increased TS expression in the lung metastasis of colorectal 
cancer (4). In addition, overexpression of HOXB9 was found 
to promote metastasis in colon cancer and stable knockdown 
of HOXB9 reduced the liver and lung metastasis of colon 
cancer in vivo (5). Increasing evidence suggests that cancer 
stem cells (CSCs) play a crucial role in cancer metastasis (6).
Cancer metastasis requires the seeding and successful 
colonization of CSCs at distant organs (7), and cell surface 
marker CDCP1 promotes the adhesion of CRC cells to the 
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lung endothelium (8). Although there are various studies that 
have investigated the biomarkers for colorectal cancer lung 
metastasis, the underlying mechanism remains unclear.

Metabonomics is a relatively new technique that is rapidly 
gaining importance. It is an emerging field of research down-
stream of transcriptomics, genomics and proteomics. The 
critical purpose of metabonomics is to determine thousands 
of small molecules in cells, tissues, organs or biological fluids 
followed by the application of a series of analytical methods 
such as nuclear magnetic resonance, color spectrum and 
mass spectrogram (9). Among these analytical technologies, 
NMR is an ideal instrumental platform for metabolic analysis 
since it offers essentially universal detection, excellent 
quantitative precision, and the potential for high throughput 
screening (>100  samples/day is attainable). In contrast to 
classical biochemical approaches, which often focus on a 
single metabolite or single metabolic reaction, metabonomics 
involves the collection of quantitative data on a broad series of 
metabolites in an attempt to acquire an overall understanding 
of metabolism or metabolic dynamics associated with diseases 
or different stages of diseases. NMR-based metabonomics is 
widely applied to identify potential biomarkers of cancers, such 
as gastric (10), breast (11), esophageal (12), colorectal (13,14) 
and bladder cancer (15). However, little research has focused 
on the metabonomic profiling of cancer metastasis. To date, 
only 3 NMR-based metabonomic studies concerning metas-
tasis have been reported including advanced metastatic breast 
cancer (11), rat hepatocellular carcinoma (16) and renal cell 
carcinoma metastasis (17), which suggest that alterations in 
metabolism such as glycolysis, the choline pathway, TCA cycle 
and glutamine metabolism occur during cancer metastasis. No 
research has reported the metabolic profiling of colon cancer 
with the lung metastasis process, to date.

In the present study, we established a murine lung metas-
tasis model of colorectal cancer by an intravenous injection 
of the murine colorectal cancer cell line CT26 into mice. We 
applied 1H-NMR to study the metabonomic profiling of mouse 
lung tissues and identified 42  distinguishing metabolites 
between the metastasis and normal control groups. Among 
the 42 distinguishing metabolites, 12 were closely related with 
the progression of metastasis. Our results indicate that tumor 
metabolism including glycolysis, glutamine metabolism, and 
TCA cycle and choline metabolism play a critical role in 
the mouse colon cancer lung metastasis process. The altered 
metabolites could be potential biomarkers, which can provide 
a promising molecular diagnostic approach for the clinical 
diagnosis and treatment of colon cancer patients with lung 
metastasis.

Materials and methods

Animals. Syngeneic BALB/c mice (6-8 weeks of age) were 
obtained from the Beijing Animal Center (Beijing, China) and 
housed under controlled environmental conditions. The animals 
(SPF) were maintained at 21̊C in 55% humidity, on a 12-h 
light/12-h dark cycle. All animals were housed in a standard 
animal laboratory allowing free activity and were provided with 
standard food and water ad libitum. All animal procedures were 
performed according to the National Institutes of Health Guide 
for the Care and Use of Laboratory Animals. All of the animal 

protocols were reviewed and approved by the Experimental 
Animal Ethics Committee of Sichuan University (Chengdu, 
China).

Reagents. Sodium-3-(trimethylsilyl)-2,2,3,3-tetradeuterio
propionate (TSP) was purchased from Sigma-Aldrich 
(St.  Louis, MO, USA). Deuterium oxide (99.8%  D) was 
purchased from Norell®, Inc. (Landisville, NJ, USA). Methanol 
and chloroform (CDCl3) were purchased from Fisher Scientific 
(Fairlawn, NJ, USA). Deionized water was obtained from 
an EASYpure II UV water purification system (Barnstead 
International, Dubuque, IA, USA).

Cell culture and in vivo lung metastasis model. CT26 (mouse 
colorectal carcinoma cell line) was purchased from the 
American Type Culture Collection (ATCC; Manassas, VA, 
USA), and was cultured in RPMI-1640 medium supplemented 
with 10% heat-inactivated fetal bovine serum (FBS) (Gibco, 
Grand Island, NY, USA), 100 U/ml penicillin and 100 U/ml 
streptomycin at 37̊C in a humidified atmosphere with 5% 
CO2. Cells were passaged at least 2 or 3 times before use.

BALB/c mice (6-8 weeks of age) were used in the present 
study. Mice in the lung metastasis groups were injected with 
CT26 cells (2x106 cells/mouse) via tail vein, and they were 
sacrificed, 7, 14 and 21 days after cell injection, respectively. 
Mice in the control group were injected with saline via tail 
vein. Lung tissues were collected and stored at -80̊C in 
formalin for subsequent experiments.

Sample preparation for NMR spectroscopy. Lung tissues 
of mice were carefully microdissected to ensure that the 
analyzed tissue contained cancer cells. An amount of 
200-500  mg of frozen tissue samples was weighed and 
suspended in methanol (4 ml/g of tissue) and double distilled 
water (0.85 ml/g of tissue). The suspension was homogenized 
with 20 strokes at 800 rpm, and chloroform (2 ml/g of tissue) 
was added, followed by addition of 50% chloroform (2 ml/g 
of tissue) and homogenization was repeated. The sample was 
left on ice for 30 min, and centrifuged at 1,000 x g for 30 min 
at 4̊C. Then, the sample was separated to 3 phases: a water 
phase at the top, a denatured protein phase in the middle 
and a lipid phase at the bottom. The water phase of each 
specimen was collected and evaporated to dryness under a 
stream of nitrogen. The residue was reconstituted with 580 µl 
D2O containing 30 µM phosphate-buffered solution (PBS; 
pH=7.4) and 0.01 mg/ml sodium-3-(trimethylsilyl)-2,2,3,3-
tetradeuteriopropionate (TSP) as an internal standard (δ0.0). 
After centrifugation at 12,000 x g for 5 min, the supernatant 
was transferred into a 5-mm NMR tube for NMR spectros-
copy (18).

1H-NMR spectroscopic analysis. All tissue samples were 
analyzed using 1H-NMR spectroscopy at 600.13 MHz using 
a Bruker Avance  II 600 spectrometer operating (Bruker 
BioSpin, Rheinstetten, Germany) at 300 K. A one-dimensional 
spectrum was acquired using a standard (1D) Carr-Purcell-
Meiboom-Gill (CPMG) pulse sequence to suppress the water 
signal with a relaxation delay of 5 sec. Sixty-four-free induc-
tion decays (FIDs) were collected into 64 K data points with a 
spectral width of 12,335.5-Hz spectral, an acquisition time of 
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2.66 sec, and a total pulse recycle delay of 7.66 sec. The FIDs 
were weighted by a Gaussian function with line-broadening 
factor 20.3  Hz, Gaussian maximum position  0.1, prior to 
Fourier transformation (19).

Data processing. All NMR data acquired above were 
subjected to pattern recognition (PR) analysis. Before doing 
this, the raw data were manually Fourier transformed using 
MestReNova-6.1.1-6384 software. After phase adjustment 
and baseline correction, the NMR data were referenced to 
the TSP resonance at δ0.0. The whole spectrum was divided 
into 4,500 segments with equal width (0.002 ppm) ranging 
from 9.5 to 0.5 ppm. The region 5.1-4.7 ppm was removed to 
exclude the effect of imperfect water suppression. Finally, the 
data were normalized to eliminate the dilution or bulk mass 
difference among samples and to give the same total integra-
tion value for each spectrum before analysis.

PR analysis. Multivariate analysis was carried out using 
SIMCA-P  +  11 (Umetrics AB, Umeå, Sweden). Principal 
component analysis (PCA), the unsupervised PR method, was 
initially applied to analyze the NMR data to separate the lung 
metastasis nodule samples from normal lung tissues. Partial 
least squares discriminant analysis (PLS-DA) and orthogonal 
partial least squares discriminant analysis (OPLS-DA), super-
vised PR method, were used to improve the separation of the 
different groups. The PLS-DA model was cross-validated by 
permutation analysis (200 times) (20,21).

The default 7-round cross validation was applied with 1/7 
of the samples being excluded from the mathematical model 
in each round, in order to guard against over fitting. R2 and Q2 
were acquired from the PLS-DA model. The variable impor-
tance in the projection (VIP) values of all peaks obtained from 
the OPLS-DA model was analyzed, and only VIP >1 were 

considered relevant for group discrimination (22). Otherwise, 
unpaired Student's t-test (p<0.05) was also used to assess the 
significance of each metabolite. With both VIP and p-value 
meeting the requirements, the metabolites were identified as 
distinguishing metabolites. The corresponding chemical shift 
of metabolites was acquired through previous literature and 
the Human Metabolome Database (http://www.hmdb.ca/).

Results

Construction of the lung metastasis model and metabolic 
profiling of the samples. CT26 cells were injected into the tail 
vein of BALB/c mice to construct the metastasis model. Then, 
the lung tissues were collected at 7, 14 and 21 days after cell 
injection; on the first day of the experiment the specimens of 
the normal group were also collected without cell injection.

The collected samples underwent extraction, and the 
aqueous fractions were investigated using NMR. The typical 
1H-NMR spectra of the aqueous phase extracts of lung tissues 
of the different groups are shown in Fig. 1. The standard 
one‑dimension spectrum provided an overview of all and the 
major metabolites in the integrated regions were identified 
according to the literature data and the Human Metabolome 
Database (http://www.hmdb.ca/). Finally, a series of metabo-
lites which were altered at endogenous metabolite levels were 
observed in the metastasis groups at 7, 14 and 21 days when 
compared with the normal group. The different metabolites 
included amino acids, carbohydrates and lipids which are 
known to be related with metabolic processes, particularly in 
energy metabolism (23).

PR analysis of the normal and different metastasis groups. 
Identification of the different metabolites between the 
normal and metastasis groups was critical for identifying 

Figure 1. 600 MHz representative 1H-NMR spectra (δ9.5-δ0.5) of lung tissue samples. (A) Normal control. (B) Seven days after injection. (C) Fourteen days 
after injection. (D) Twenty-one days after injection.
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biomarkers that may be useful for diagnosis and therapy of 
colon cancer patients who have lung metastasis. OPLS-DA 
analysis was used to investigate differences in metabolites 
between the normal and metastasis groups. The scores of 
PC1 and PC2 showed that each metastasis group including 
7, 14 and 21 days after injection were clearly separated from 
the normal group (Fig. 2A). To identify the distinguishing 
metabolites, their scores and loading plots were obtained from 
the OPLS-DA analysis (Fig. 2B). The loadings were colored 
according to the UV model variable weights and the signals 
in the positive direction indicate upregulated metabolites, 
the negative signals represent downregulated metabolites in 
the metastasis groups compared to the normal group. The 
PLS-DA model was applied and the statistical validation of the 
corresponding PLS-DA model was carried out by permutation 
analysis. The parameters of the different metastasis groups 
were as follows: 7 days, R2=0.92 Q2=0.84; 14 days, R2=0.98 
Q2=0.94; 21 days, R2=0.99 Q2=0.98  (Fig. 2C). The results 
indicated that each model was suitable for data analysis. 
We summarized the distinguishing metabolites between the 
normal and metastasis groups (Tables I and II).

As shown in Table II, acetic acid, choline, creatine, gluta-
mate, glyceryl, glycolate, inosine, isoleucine, lactate, leucine, 

N-acetyl glycoprotein, oxaloacetate, phosphocholine (PC), 
phosphocreatine, p-HPA, pyruvate, serine, threonine, tyrosine, 
uracil, valine and β-hydroxybutyrate were upregulated in the 
metastasis groups compared with the normal group. While 
dimethylamine, glutamine, glycine, O-acetyl glycoprotein, 
sarcosine and succinate were downregulated in the metas-
tasis groups. Many of them increased along with the stage 
of metastasis. Choline and PC were significantly high in the 
7 day group. In addition, O-acetyl glycoprotein decreased 
obviously with a fold-change (FC) >2.5 in each metastasis 
group compared to the normal group.

Trending biomarkers. Biomarker identification is important 
for the detection, diagnosis and treatment of cancer, and 
is also meaningful to investigate the metastatic process of 
colon cancer to the lung. We used box-and-whisker plots, 
which included the concentration ranges, median quartiles 
and extremes to show the representative metabolites of the 
previously identified 42 metabolites between the normal and 
metastasis groups (Fig. 3). A heat map showing the relative 
abundances of the metabolites is shown in Fig. 4.

Most cancer cells prefer the glycolysis pathway to generate 
energy even with an adequate oxygen supply; thus, the 

Figure 2. PR analyses of 1H-NMR spectra between the different metastasis groups and normal control. (A) Score plots of OPLS-DA model processing based 
on the normal group and each metastasis group; red diamonds represent 7 days after injection group; blue boxes represent 14 days after injection group; green 
dots represent 21 days after injection group. (B) Color map shows the significance of metabolite variations between the groups. Peaks in the positive direction 
indicate the increased metabolites in the metastasis groups. Peaks in the negative direction represent the decreased metabolites. (C) Statistical validation of the 
corresponding PLS-DA model by permutation analysis (200 times). R2 is the explained variance, and Q2 is the predictive ability of the model.
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Table I. Differential metabolites derived from the OPLS-DA model of 1H-NMR analysis between the normal control and metas-
tasis groups.

	 Normal vs. metastasis groups
	 -----------------------------------------------------------------------
No.	 Metabolite	 Multiplicitya	 Chemical shift (ppm)	 VIPb	 P-valuec	 FCd

  1	 VLDL: CH3-(CH2)n-	 br	 0.89	 1.68	 0.0074	 -1.08
  2	 Acetate	 s	 1.93	 1.67	 0.0001	 1.22
  3	 Acetic acid	 s	 2.08	 2.29	 0.0000	 1.67
  4	 Acetone	 s	 2.23	 1.27	 \	 -1.04
  5	 Adenine	 m	 8.12	 1.01	 \	 -1.65
  6	 Alanine	 d	 1.48	 1.96	 0.0000	 1.61
		  d	 3.76	 1.78	 0.0018	 1.06
  7	 Arginine	 t	 3.25	 1.24	 \	 -1.11
  8	 CH2OCOR	 m	 4.17	 2.33	 0.0000	 1.73
  9	 Choline	 s	 3.2	 1.52	 0.0001	 1.72
10	 Creatine	 s	 3.04	 2.02	 0.0000	 1.87
		  s	 3.94	 1.90	 0.0000	 1.49
11	 Dimethylamine	 s	 2.73	 2.04	 0.0012	 -1.29
12	 D-ribose	 s	 2.23	 1.27	 \	 -1.04
13	 Ethanol	 t	 1.19	 1.53	 0.0090	 -2.13
		  q	 3.67	 2.32	 0.0000	 -1.32
14	 Formate	 s	 8.45	 1.42	 \	 -1.05
15	 Fumarate	 s	 6.53	 1.50	 \	 1.19
16	 Glutamate	 m	 2.35	 2.01	 0.0000	 1.48
17	 Glutamine	 m	 2.14	 1.81	 0.0001	 -1.05
		  m	 2.45	 2.05	 0.0003	 -1.55
18	 Glutathione	 m	 2.96	 0.90	 \	 1.16
19	 Glyceryl	 m	 4.17	 2.33	 0.0000	 1.73
20	 Glycine	 s	 3.57	 1.63	 0.0492	 -1.04
21	 Glycolate	 s	 3.93	 1.90	 0.0000	 1.49
22	 Inosine	 d	 6.11	 1.99	 0.0001	 2.20
		  s	 8.36	 \	 \	 1.96
23	 Isoleucine	 t	 0.95	 2.10	 0.0000	 1.63
24	 Lactate	 d	 1.33	 2.12	 0.0001	 1.54
		  q	 4.11	 2.03	 0.0000	 2.06
25	 Leucine	 t	 0.96	 2.14	 0.0000	 1.78
		  d	 1.01	 2.09	 0.0003	 1.81
26	 Lysine	 m	 3.77	 1.78	 0.0018	 1.05
27	 N-acetyl glycoprotein	 s	 2.04	 2.20	 0.0000	 1.55
28	 O-acetyl glycoprotein	 s	 2.07	 1.86	 0.0001	 -2.80
29	 Oxaloacetate	 s	 2.35	 2.01	 0.0000	 1.61
30	 Phosphochline	 s	 3.21	 1.52	 0.0001	 1.72
31	 Phosphocreatine	 s	 3.04	 2.02	 0.0000	 1.87
		  s	 3.93	 1.90	 0.0000	 1.49
32	 p-HPA	 s	 3.9	 1.90	 0.0000	 1.49
		  m	 7.28	 1.72	 \	 1.03
		  d	 7.51	 2.36	 0.0000	 5.00
		  d	 7.71	 1.95	 0.0000	 2.42
33	 Pyruvate	 s	 2.37	 1.80	 0.0000	 1.38
34	 Sarcosine	 s	 2.75	 1.83	 0.0082	 -1.36
35	 Serine	 m	 3.98	 2.35	 0.0000	 1.45
36	 Succinate	 s	 2.41	 1.64	 0.0102	 -1.63
37	 Taurine	 t	 3.27	 1.24	 \	 -1.11
		  t	 3.43	 1.24	 0.0100	 -1.11
38	 Threonine	 m	 4.24	 2.00	 0.0008	 1.21
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increased level of lactate in the tumor tissue was not surprising. 
Furthermore, research has shown that a high lactate concentra-
tion is associated with metastasis of tumors consistent with 
the present study (24,25). Pyruvate, an important product of 
glycolysis, is increased along with the progression of colon 
cancer metastasis to the lung, which is a good indicator of 
active glycogenolysis and glycolysis. Oxaloacetate was also 
found to be upregulated, which may be due to the activity 

of pyruvate carboxylase catalyzing the pyruvate which is 
converted to oxaloacetate. Meanwhile, succinate was obvi-
ously downregulated, which suggests that dysregulation of 
the TCA cycle may be correlated with the lung metastasis of 
colorectal cancer.

In the present study, glutamate was significantly increased 
in the metastasis group compared with that in the normal 
group. It has been reported that glutamate is upregulated in 

Figure 3. Box-and-whisker plots illustrate progressive changes of the metabolites between the normal group and metastasis groups. Horizontal line in the 
middle portion of the box, median; bottom and top boundaries of boxes, lower and upper quartile; whiskers, 5th and 95th percentiles; open circles, outliers.

Table I. Continued.

	 Normal vs. metastasis groups
	 -----------------------------------------------------------------------
No.	 Metabolite	 Multiplicitya	 Chemical shift (ppm)	 VIPb	 P-valuec	 FCd

39	 Tyrosine	 d	 6.9	 2.15	 0.0001	 1.53
		  d	 7.2	 2.20	 0.0000	 1.48
40	 Uracil	 d	 5.8	 2.38	 0.0000	 12.15
		  d	 7.54	 2.36	 0.0000	 5.00
41	 Valine	 d	 0.99	 2.02	 0.0000	 1.43
		  d	 1.05	 2.21	 0.0002	 1.49
42	 β-hydroxybutyrate	 m	 4.16	 2.33	 0.0000	 1.73

aMultiplicity: s, singlet; d, doublet; t, triplet; q, quartet; dd doublet of doublets, m multiplet. bVariable importance in the projection was obtained 
from OPLS-DA model with a threshold of 1.0. cp-value obtained from Student's t-test. dFold-change (FC) between normal and metastasis 
groups. Fold-change with a positive value indicates a relatively higher concentration present in metastasis groups while a negative value means 
a relatively lower concentration as compared to the normal group. OPLS-DA, orthogonal partial least squares discriminant analysis; 1H-NMR, 
1H nuclear magnetic resonance; VIP, variable importance in the projection; FC, fold-change.
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Table II. Summary of the different metabolites between each metastasis and normal group.

	 Chemical	 Normal vs. 7 days	 Normal vs. 14 days	 Normal vs. 21 days
	 Multi-	 shift	 -------------------------------------------------	 ------------------------------------------------	 --------------------------------------------------
Metabolite	 plicitya	 (ppm)	 VIPb	 P-valuec	 FCd	 VIPb	 P-valuec	 FCd	 VIPb	 P-valuec	 FCd

VLDL: CH3-(CH2)n-	 br	 0.89	 1.41	 0.034	 1.07	 1.75	 0.001	 -1.21	 1.50	 0.002	 -1.14
Acetate	 s	 1.93	 1.42	 0.028	 1.35	 1.72	 0.002	 1.04	 1.77	 <0.001	 1.29
Acetic acid	 s	 2.08	 1.86	 0.002	 1.39	 2.11	 <0.001	 1.61	 2.00	 <0.001	 2.05
Acetone	 s	 2.23	 1.32	 0.040	 1.09	 1.15	 0.074	 -1.22	 1.54	 0.001	 -1.02
Adenine	 m	 8.12	 1.21	 \	 -1.53	 1.70	 0.007	 -2.22	 1.20	 0.022	 -1.38
Alanine	 d	 1.48	 2.21	 <0.001	 1.42	 1.78	 0.001	 1.62	 1.83	 <0.001	 1.82
	 d	 3.76	 1.86	 0.003	 1.08	 1.96	 <0.001	 -1.01	 1.76	 <0.001	 1.12
Arginine	 t	 3.25	 1.27	 \	 1.07	 1.74	 0.001	 -1.29	 1.14	 0.028	 -1.19
CH2OCOR	 m	 4.17	 2.02	 <0.001	 1.42	 2.06	 <0.001	 1.63	 2.01	 <0.001	 2.21
Choline	 s	 3.2	 2.37	 <0.001	 2.26	 1.71	 0.002	 1.30	 1.86	 <0.001	 1.58
Creatine	 s	 3.04	 1.80	 0.004	 1.42	 2.17	 <0.001	 2.07	 1.86	 <0.001	 2.14
	 s	 3.94	 1.86	 0.002	 1.35	 2.04	 <0.001	 1.58	 1.88	 <0.001	 1.55
Dimethylamine	 s	 2.73	 1.82	 0.009	 -1.04	 2.08	 <0.001	 -1.71	 1.78	 <0.001	 -1.29
D-ribose	 s	 2.23	 1.32	 0.040	 1.09	 1.15	 \	 -1.22	 1.54	 0.001	 -1.02
Ethanol	 t	 1.19	 1.54	 0.036	 -2.30	 1.67	 0.007	 -1.93	 1.52	 0.004	 -2.19
	 q	 3.67	 1.69	 0.018	 -1.04	 2.01	 <0.001	 -1.37	 1.99	 <0.001	 -1.78
Formate	 s	 8.45	 1.47	 0.035	 -1.08	 1.27	 \	 -1.05	 1.29	 0.012	 -1.02
Fumarate	 s	 6.53	 1.96	 0.001	 1.33	 1.51	 0.007	 1.06	 1.73	 <0.001	 1.18
Glutamate	 m	 2.35	 2.11	 <0.001	 1.44	 1.69	 0.002	 1.35	 1.88	 <0.001	 1.73
Glutamine	 m	 2.14	 1.56	 0.013	 1.07	 2.14	 <0.001	 -1.19	 1.80	 <0.001	 -1.04
	 m	 2.45	 \	 \	 1.03	 2.19	 <0.001	 -2.18	 1.98	 <0.001	 -2.33
Glutathione	 m	 2.96	 1.87	 0.002	 1.29	 1.25	 0.038	 1.08	 \	 \	 1.10
Glyceryl	 m	 4.17	 2.02	 <0.001	 1.42	 2.06	 <0.001	 1.63	 2.01	 <0.001	 2.21
Glycine	 s	 3.57	 1.65	 0.008	 1.28	 1.64	 0.003	 -1.24	 1.79	 <0.001	 -1.28
Glycolate	 s	 3.93	 1.86	 0.002	 1.35	 2.04	 <0.001	 1.58	 1.88	 <0.001	 1.55
Inosine	 d	 6.11	 1.99	 0.001	 2.24	 1.90	 <0.001	 1.96	 1.98	 <0.001	 2.41
	 s	 8.36	 2.27	 <0.001	 2.50	 1.45	 0.011	 1.56	 1.38	 0.006	 1.82
Isoleucine	 t	 0.95	 2.09	 0.001	 1.48	 1.88	 <0.001	 1.56	 1.89	 <0.001	 1.88
Lactate	 d	 1.33	 1.63	 0.011	 1.37	 2.09	 <0.001	 1.64	 1.88	 <0.001	 1.61
	 q	 4.11	 2.08	 <0.001	 1.86	 2.12	 <0.001	 2.24	 1.93	 <0.001	 2.10
Leucine	 t	 0.96	 2.11	 <0.001	 1.55	 1.88	 <0.001	 1.71	 1.89	 <0.001	 2.12
	 d	 1.01	 1.72	 0.009	 1.50	 1.80	 0.001	 1.75	 1.90	 <0.001	 2.22
Lysine	 m	 3.77	 2.00	 <0.001	 1.16	 1.96	 <0.001	 -1.01	 1.76	 <0.001	 1.05
N-acetyl glycoprotein	 s	 2.04	 1.70	 0.005	 1.39	 1.91	 <0.001	 1.43	 1.95	 <0.001	 1.88
O-acetyl glycoprotein	 s	 2.07	 2.41	 <0.001	 -2.90	 2.22	 <0.001	 -3.10	 1.88	 <0.001	 -2.44
Oxaloacetate	 s	 2.35	 1.96	 0.001	 1.37	 1.67	 0.002	 1.50	 1.88	 <0.001	 1.94
Phosphochline	 s	 3.21	 2.37	 <0.001	 2.26	 1.71	 0.002	 1.30	 1.86	 <0.001	 1.58
Phosphocreatine	 s	 3.04	 1.80	 0.004	 1.42	 2.17	 <0.001	 2.07	 1.86	 <0.001	 2.14
	 s	 3.93	 1.86	 0.002	 1.35	 2.04	 <0.001	 1.58	 1.88	 <0.001	 1.55
p-HPA	 s	 3.9	 1.86	 0.002	 1.35	 2.04	 <0.001	 1.58	 1.88	 <0.001	 1.55
	 m	 7.28	 1.95	 0.001	 1.17	 1.84	 0.001	 -1.09	 1.69	 <0.001	 1.01
	 d	 7.51	 2.26	 <0.001	 3.01	 2.10	 <0.001	 5.22	 2.02	 <0.001	 6.98
	 d	 7.71	 2.22	 <0.001	 2.31	 1.90	 <0.001	 3.06	 1.73	 <0.001	 1.81
Pyruvate	 s	 2.37	 2.09	 <0.001	 1.30	 1.71	 0.001	 1.26	 1.81	 <0.001	 1.62
Sarcosine	 s	 2.75	 1.03	 \	 1.02	 1.92	 0.001	 -2.10	 1.57	 0.003	 -1.44
Serine	 m	 3.98	 2.31	 <0.001	 1.30	 2.07	 <0.001	 1.40	 2.04	 <0.001	 1.67
Succinate	 s	 2.41	 1.70	 0.015	 -1.45	 1.41	 0.023	 -1.41	 1.70	 0.001	 -2.38
Taurine	 t	 3.27	 1.27	 \	 1.07	 1.74	 0.001	 -1.29	 1.14	 0.028	 -1.19
	 t	 3.43	 1.77	 0.012	 1.06	 1.78	 0.005	 -1.28	 1.19	 0.025	 -1.17
Threonine	 m	 4.24	 1.77	 <0.001	 1.14	 2.06	 <0.001	 1.12	 1.91	 <0.001	 1.39



li et al:  Metabonomic profiling of lung cancer metastasis 3051

many types of cancers and high levels of glutamate may be 
associated with the activation of glutaminolysis, due to an 
increased activity of the mitochondrial enzyme glutaminase 
in metastatic tumors. In addition, research has shown that 
glutamate levels are increased in pancreatic cancer, which can 
promote invasion and migration ability via AMPA receptor 
activation and Kras‑MAPK signaling  (26). Thus, elevated 
glutamate levels may contribute to the metastasis of colon 
cancer and glutamate can be a biomarker for the detection of 
lung metastasis derived from colon. Due to the activation of 
glutaminolysis, glutamine is consumed and utilized by colon 
tumors at much higher rates than other amino acids; thus, 
glutamine was found to be obviously downregulated in the 
metastasis group in our research.

As previously mentioned, there are only 3 literature studies 
that have reported NMR-based metabonomics of metastatic 
tumors and our results are partly consistent with previous 
studies. Choline, a basic constituent of lecithin was upregu-
lated in our research owing to an increased rate of metabolism 
of phospholipids to lipids, or a greater demand for phospho-
lipids to encourage rapid proliferation and aggression of colon 
cancer cells (27). Wang et al analyzed the metabonomics of 
hepatocellular carcinoma with lung metastasis (HLM) rat 
models and found that choline was increased in HLM rat 
models compared with the control group (16).

The concentration of N-acetyl glycoproteins in the metas-
tasis groups was higher than that noted in the non-metastasis 
group and was elevated significantly along with progression. 
This result was consistent with a previous study concerning 
advanced metastatic human breast cancer (11). The obvious 
upregulation of uracil in tissues demonstrated the activation of 
transcriptions in the process of metastasis to meet the needs of 
rapid cell proliferation. Then, the high concentration of inosine 
indicated that the purine metabolism was active in metastatic 
progression. Leucine, isoleucine and serine were increased in 
the metastasis group compared with the normal group that 
satisfy the requirements for structural proteins of cancer cells 
in metastasis.

Discussion

In the present study, we investigated the metabolic profiling 
of mouse colorectal cancer with lung metastasis based on 
1H-NMR. Forty-two different metabolites were identified and 
some of them were significantly correlated with the progression 
of colorectal cancer metastasis to the lung. We summarized 
the metabolic pathways based on human metabolome database 
and the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
and the main disordered pathways included glycolysis, TCA 
cycle, glutaminolysis, choline metabolism and serine biosyn-
thesis (Fig. 5). To the best of our knowledge, little research has 
focused on the metabolic profiling of colorectal cancer with 
lung metastasis. The present study is the first to identify the 
different metabolites in the lung tissues during the process of 
metastasis.

We detected metabolites of whole lung between the 
metastasis groups and normal group due to the ‘seed and soil’ 
hypothesis which was proposed by Paget early in 1889 (28). It 
is well known that sites of metastasis are determined not only 
by the characteristics of the primary tumor cells, but also by the 
microenvironment of host tissues (29). Therapy for metastasis 
should be targeted not only against the cancer cells themselves, 
but also against the homeostatic factors that promote tumor-
cell invasion and metastasis in the tumor microenvironment of 
specific organs (30). Colorectal cancer patients often develop 
liver and lung metastasis probably due to the fact that these 
organs provide suitable soil for colon cancer cell colonization. 
The change in microenvironment may lead to the disorder of 
metabolism and we found that the metabolites of whole lung 
tissue could better reflect the change in the microenvironment 
during the process of metastasis.

Otto Warburg first observed the alteration of cancer cell 
metabolism early in 1921. He found that most cancer cells 
prefer to use glucose at a high level and convert it to lactate 
instead of relying on mitochondrial oxidative phosphorylation 
to generate energy even in the presence of abundant oxygen. 
This is termed the ‘Warburg effect’  (31). Recent studies 

Table II. Continued.

	 Chemical	 Normal vs. 7 day	 Normal vs. 14 day	 Normal vs. 21 day
	 Multi-	 shift	 -------------------------------------------------	 ------------------------------------------------	 --------------------------------------------------
Metabolite	 plicitya	 (ppm)	 VIPb	 P-valuec	 FCd	 VIPb	 P-valuec	 FCd	 VIPb	 P-valuec	 FCd

Tyrosine	 d	 6.9	 1.85	 0.007	 1.48	 1.91	 <0.001	 1.43	 1.93	 <0.001	 1.69
	 d	 7.2	 2.03	 <0.001	 1.47	 2.03	 <0.001	 1.37	 1.96	 <0.001	 1.61
Uracil	 d	 5.8	 2.24	 <0.001	 6.29	 2.16	 <0.001	 12.44	 2.06	 <0.001	 18.43
	 d	 7.54	 2.26	 <0.001	 3.01	 2.10	 <0.001	 5.22	 2.02	 <0.001	 6.98
Valine	 d	 0.99	 1.49	 0.018	 1.24	 1.68	 0.003	 1.43	 1.87	 <0.001	 1.65
	 d	 1.05	 1.59	 0.011	 1.21	 1.78	 0.001	 1.42	 1.93	 <0.001	 1.89
β-hydroxybutyrate	 m	 4.16	 2.02	 <0.001	 1.42	 2.06	 <0.001	 1.63	 2.01	 <0.001	 2.21

aMultiplicity: s,  singlet; d,  doublet; t,  triplet; q,  quartet; dd, doublet of doublets; m, multiplet. bVariable importance in the projection was 
obtained from OPLS-DA model with a threshold of  1.0. cP-value obtained from Student's t-test. dFold-change (FC) between normal and 
metastasis groups. Fold-change with a positive value indicates a relatively higher concentration present in metastasis groups while a negative 
value means a relatively lower concentration as compared to the normal group. \, represents this parameter is not statistically significant. VIP, 
variable importance in the projection.
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show that aerobic glycolysis is not only crucial for tumor 
cell growth, but also essential for tumor cell migration and 
invasion, which is consistent with the results that the lactate 
level was significantly high in the metastasis groups. Research 
has reported that lactate induces secretion of hyaluronan by 
tumor-associated fibroblasts which create a milieu favor-
able for migration that benefits tumor metastasis. The high 
level concentration of lactate leads to normal cell death via 
caspase-mediated activation of the p53-dependent apoptotic 
pathway (32), but cancer cells can export lactate by monocar-
boxylate transporters (MCTs) resulting in the acidification of 
the microenvironment (33). The low pH of the extracellular 
environment provides a favorable condition for the activation 

of proteases, such as matrix metalloproteinases (MMPs) (34), 
which in turn can help cancer cells degrade the extracellular 
matrix (ECM) and facilitate metastasis (35). Thus, aerobic 
glycolysis may increase cancer cell migration and invasive-
ness due to the disturbance of the microenvironment which 
is beneficial for their proliferation and metastasis but toxic 
to normal cells (36). Therefore, the increased lactate in lung 
tissues could benefit the metastatic ability of colorectal cancer 
cells.

Pyruvate, the end product of glycolysis, was upregulated 
in our research and a previous study showed that pyruvate 
promotes cancer cell metastasis. Anoikis resistance, or the 
ability of cells to live detached from the EMC, is a property of 
epithelial cancers. Caneba et al found higher pyruvate uptake 
and oxygen consumption in more invasive ovarian cancer cells 
than their less invasive counterparts under detached condi-
tions, and pyruvate has an effect on highly invasive ovarian 
cancer cell migration ability (37).

However, increased aerobic glycolysis, enhanced gluta-
mine metabolism is now considered a key feature of cancer 
cells and contributes to cancer cell migration. Our research 
showed moderate downregulation of glutamine and upregu-
lation of glutamate in lung tissues in the metastasis groups 
compared with the normal group. In cancer cells, glutamine 
is catabolized to glutamate by glutaminase. Glutamate is then 
catabolized by glutamate dehydrogenase to α-ketoglutarate to 
feed the TCA cycle (38). Recent studies suggest that glutamine 
metabolism contributes to cancer cell migration. Glutamine 
can support lipogenesis by providing both acetyl‑CoA and 
NADPH, which, in turn, regulates the activation of AKT (39), 
and the AKT pathway is involved in the migratory and inva-
sive abilities of many cancer cell lines (40,41). In malignant 
glioma, a high extracellular concentration of glutamate is 
released, and released glutamate acts as an essential autocrine/
paracrine signal that promotes cell invasion (42). Glutamate 
was also found to promote invasion and migration of pancreatic 
cancer cells via AMPA receptor activation and K-ras-MAPK 

Figure 4. Heat maps of the abundances of metabolites. Heat map showing 
relative abundances of metabolites between the CT26 injection group and 
normal controls.

Figure 5. Metabolic pathways of significantly altered metabolites between 
the CT26 injection group and normal controls. Red represents metabolites 
that were upregulated in the metastasis groups compared to the normal 
group. Blue represents metabolites that were downregulated in the metastasis 
groups compared to the normal group. Boldface indicates not measured or 
not significant between the two groups.
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signaling (26). Thus, downregulation of glutamine and upreg-
ulation of glutamate in the present study was consistent with 
above study, and may play an important role in lung metastasis 
in colorectal cancer.

Abnormal choline metabolism is emerging as a metabolic 
hallmark that is associated with oncogenesis and tumor 
progression (43). In the present study, two-choline metabolism 
pathway-related metabolites (choline/phosphocholine) were 
upregulated. Previous studies have reported the correlation 
of choline metabolism, cancer metastasis including breast 
cancer  (44) and hepatocellular carcinoma (16), and malig-
nant transformation  (43). Choline is an essential nutrient 
transported by choline transporters from plasma to cells 
that can be a rate‑limiting step in phosphocholine formation. 
Phosphocholine is synthesized to phosphatidylcholine, which 
together with other phospholipids form the characteristic bilayer 
structure of cellular membranes and regulates membrane 
integrity (45). When highly malignant breast cancer cells were 
transfected with metastasis suppressor gene nm23 (46,47), it 
was found that the ratio of phosphocholine/glycerocholine was 
lower than that of the empty vector-transfected cells, also an 
increase of phosphocholine level was detected in NIH 3T3 
cells transfected with mutant ras oncogene (48). Thus, upregu-
lation of choline and phosphocholine in our research may be 
due to the activating genes that control cell metastasis in the 
process of metastasis.

The results from our studies showed that serine biosyn-
thesis was also involved in the process of colorectal cancer 
metastasis to the lung, with the serine concentration in the 
metastasis groups higher than that in the normal group. A 
study of Pollari et al suggested that 3 genes involved in the 
L-serine biosynthesis pathway, phosphoglycerate dehydroge-
nase (PHGDH), phosphoserine aminotransferase 1 (PSAT1) 
and phosphoserine phosphatase (PSPH) were upregulated in 
highly metastatic breast cancer cells, which is in agreement 
with our research  (49). PHGDH, which catalyses the first 
step in the serine biosynthesis pathway, is elevated in 70% of 
estrogen receptor (ER)-negative breast cancers suggesting that 
serine biosynthesis is active in malignant tumors (50). Ectopic 
expression of PHGDH in mammary epithelial cells was found 
to disrupt acinar morphogenesis and induce other phenotypic 
alterations that may predispose cells to transformation (51). 
Similarly, glycine and related metabolites, or their associated 
metabolic pathways, have been identified as central to cancer 
metastasis (52) and cellular transformation (50,53).

In addition, we observed the upregulation of leucine, 
isoleucine and valine in the metastasis group relative to the 
normal group, which is consistent with published literature 
that reported decreased expression for genes involved in 
valine, leucine and isoleucine degradation in metastatic colon 
cancer (54). However, glucose, branched-chain amino acids 
(BCCAs) including valine, leucine and isoleucine can serve 
as energy substrates either (38) in brain interstitial space with 
lower glucose level than that of blood or when glucose is limited 
some cells can use amino acids to support their survival (55). 
Thus, the upregulation of BCCAs in our finding may be due 
to the rapid consumption of glucose, which meets the energy 
supply during lung metastasis progression. It is also reported 
that, BCCAs, particularly leucine, enhance tumor invasiveness 
through activation of the mammalian target of rapamycin 

complex 1 (mTORC1). Thus, the increase in BCCAs in the 
lung may provide a suitable microenvironment for metastatic 
processes.

In conclusion, in the present study, we analyzed the 
metabolic profiling of colorectal cancer with lung metastasis 
compared with a normal control based on 1H-NMR spec-
troscopy combined with multivariate statistical analysis in a 
mouse model. We identified the distinguishing metabolites and 
found that metabolic pathways such as glycolysis, TCA cycle, 
glutaminolysis, choline metabolism and serine biosynthesis, 
may be involved in the process of metastasis. The present 
study provides evidence that tumor metabolism regulation 
plays a critical role in tumor metastasis; the underlying aber-
rant metabolic pathways could be considered as novel targets 
for cancer therapy.
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