Meta-analysis of mRNA expression profiles to identify differentially expressed genes in lung adenocarcinoma tissue from smokers and non-smokers

XIAONA HE^{1*}, CHENG ZHANG^{2*}, CHAO SHI² and QUQIN LU^1

¹Department of Biostatistics and Epidemiology, School of Public Health, Nanchang University; ²Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China

Received June 26, 2017; Accepted December 29, 2017

DOI: 10.3892/or.2018.6197

Abstract. Compared to other types of lung cancer, lung adenocarcinoma patients with a history of smoking have a poor prognosis during the treatment of lung cancer. How lung adenocarcinoma-related genes are differentially expressed between smoker and non-smoker patients has yet to be fully elucidated. We performed a meta-analysis of four publicly available microarray datasets related to lung adenocarcinoma tissue in patients with a history of smoking using R statistical software. The top 50 differentially expressed genes (DEGs) in smoking vs. non-smoking patients are shown using heat maps. Additionally, we conducted KEGG and GO analyses. In addition, we performed a PPI network analysis for 8 genes that were selected during a previous analysis. We identified a total of 2,932 DEGs (1,806 upregulated, 1,126 downregulated) and five genes (CDC45, CDC20, ANAPC7, CDC6, ESPL1) that may link lung adenocarcinoma to smoking history. Our study may provide new insights into the complex mechanisms of lung adenocarcinoma in smoking patients, and our novel gene expression signatures will be useful for future clinical studies.

Introduction

Lung cancer is one of the most common types of cancer and is the leading cause of cancer-related mortality wordwide. Small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC) are the most common types of lung cancer, of which NSCLC accounts for approximately 85% of all cases (1). Lung adenocarcinoma is the most common subtype of NSCLC (40%) in many countries (2,3). To date, many genetic factors have been proposed to be involved in lung adenocarcinoma, including several tumour-suppressor genes (TP53, CDKN2A, STK11, NF1, ATM, RB1, and APC) (4,5). Several new targeted therapies have resulted in considerable clinical benefits for cancer patients in recent years, as well as a deeper understanding of lung adenocarcinoma at the molecular level. One example of a new targeted therapy is epidermal growth factor receptor (EGFR) and KRAS targeted gene therapy (6,7). However, targeted gene therapy is mainly used when patients have special characteristics. EGFR mutations occur more frequently in female lung adenocarcinoma patients with a non-smoking history (8). HER2 mutations tend to occur in non-smoking males (9). In contrast, KRAS mutations occur during the early development of smoking-related lung adenocarcinoma (10). Based on these observations, there is a need to develop individualized treatment programs for patients with unique clinical characteristics. Lung adenocarcinoma is caused by a combination of genetic and environmental effects (11).

More recently, the incidence of lung adenocarcinoma has increased in smokers (12). Tobacco smoke contains a mixture of harmful compounds and carcinogens (13). Therefore, smoking plays an important role in the development of lung adenocarcinoma. Although the correlation between smoking and lung adenocarcinoma has been demonstrated in previous studies, a meta-analysis of the gene mutations in a large number of tissue samples that considers the smoking history in lung adenocarcinoma has not yet been conducted (14). This large scale analysis can reduce the differences caused by different research conditions and can integrate the results from previous studies to evaluate the issue from another point of view. The development of microarray methods for large scale analysis of gene expression makes it possible to perform a more comprehensive analysis for potential genes and molecular pathways associated with lung adenocarcinoma in smoking patients (15). DNA microarray analysis has been applied to investigate whole genomic expression profiles and physiological mechanisms in health and disease (16,17). Therefore, a high-throughput microarray experiment was designed to

Correspondence to: Dr Quqin Lu, Department of Biostatistics and Epidemiology, School of Public Health, Nanchang University, 460 Bayi Avenue, Donghu, Nanchang, Jiangxi 330006, P.R. China E-mail: quqinlu@ncu.edu.cn

^{*}Contributed equally

Key words: meta-analysis, microarray, differentially expressed genes, lung adenocarcinoma, smoking

analyse the genetic expression patterns and identify potential genes to target for lung adenocarcinoma (18). Meta-analysis provides a powerful tool for analysing microarray experiments by combining data from multiple studies (19). Genes identified by meta-analysis tend to overlap with genes identified in other studies, suggesting increased reliability (20). In addition to providing a new perspective, this research topic will further the understanding of the relationship between smoking and lung adenocarcinoma.

The aim of this study was to identify possible candidate genes for personalized treatment for lung adenocarcinoma patients with a history of smoking to provide patients with better treatment options and ensure a good prognosis. Therefore, we conducted a meta-analysis using the same platform of gene expression profile data that associated smoking with lung adenocarcinoma tissue.

Materials and methods

Selection of microarray datasets for meta-analysis. According to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines published in 2009, we performed a detailed and comprehensive search of microarray datasets in the Gene Expression Omnibus (GEO) database of the National Center for Biotechnology Information (NCBI) (http://www.ncbi.nlm.nih.gov/geo/).

Meta-analysis data. To maintain objectivity, the data were simultaneously extracted by two independent reviewers from the original search. Any discrepancies that arose between the two reviewers were resolved by consultation with a third reviewer. The terms 'lung neoplasms' and 'lung cancer' were considered keywords during our search for this study. In addition, studies that reported non-human data were excluded in the selection process for microarray datasets. Finally, 583 datasets were obtained from searching the Gene Expression Omnibus (GEO) database. Datasets with >20,288 samples were elected for the study. We included a dataset in the meta-analysis if it contained i) all samples on the Affymetrix Human Genome U133 Plus 2.0 Array platform, ii) samples from lung adenocarcinoma tissue and iii) samples with valid smoking statuses. According to the criteria, the four datasets that were selected from the 288 datasets included 477 lung adenocarcinoma tissues with valid smoking statuses. Then, we downloaded the lung adenocarcinoma tissue files (CEL) of the four microarray datasets from the GEO database with accession numbers GSE12667, GSE31210, GSE40791, and GSE50081. The four datasets included 477 lung adenocarcinoma patients; 327 of which were smokers, and 150 were non-smokers; the smokers included former smokers, current smokers and ex-smokers.

Meta-analysis of microarray datasets using the same platform. We conducted the meta-analysis of gene expression profiles of the selected four microarray datasets by using R statistical software (http://www.r-project.org/) with the same platform. Prior to the meta-analysis, we performed data normalization of the four datasets using R statistical software. Then, we processed the meta-analysis using the MAMA, mataMA, affyPLM and CLL packages in R statistical software according to the t-test

Figure 1. Selection process of the microarray datasets for meta-analysis of lung adenocarcinoma tissue with smoking status.

Figure 2. The 2932 overlapping differentially expressed genes (DEGs) based on P-value (where the threshold was <0.005) and z-score (where the threshold was an absolute value >3) were detected using Venny 2.1.0.

and z-score methods. During the meta-analysis with R statistical software, a list of differentially expressed genes (DEGs) (upregulated or downregulated) were identified based on the P-values (where the threshold was <0.005) and z-scores (where the threshold was an absolute value >3).

Enrichment analysis of the GO function and KEGG pathway. It is important to understand the biological implications of the identified DEGs in lung adenocarcinoma tissue. According to the meta-analysis results, the most significant 200 DEGs (100 upregulated and 100 downregulated) were selected for enrichment analysis. Then, we conducted the functional enrichment analysis of the gene ontology (GO) function and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway using the WEB-based GEne SeT AnaLysis Toolkit (http://bioinfo.vanderbilt.edu/webgestalt/login.php) under a significance threshold of P<0.05.

PPI network analysis. To further understand and predict the biological activity of the identified DEGs that were based on the results of the GO function and KEGG pathway enrichment analyses, we conducted a protein-protein interaction (PPI)

Sample				
Dataset	Smoking status	Non-smoking status	Tissue	Platform
GSE12667	40	8	Lung adenocarcinoma	Affymetrix Human Genome U133 Plus 2.0 Array
GSE31210	111	115	Lung adenocarcinoma	Affymetrix Human Genome U133 Plus 2.0 Array
GSE40791	82	4	Lung adenocarcinoma	Affymetrix Human Genome U133 Plus 2.0 Array
GSE50081	94	23	Lung adenocarcinoma	Affymetrix Human Genome U133 Plus 2.0 Array

Table I. Characteristic of individual studies retrieved from Gene Expression Omnibus for meta-analysis.

Figure 3. Heat-map representation of the expression profiles for the top 25 upregulated and downregulated genes in the GSE12667 dataset. The clustering of the selected genes on the heat-map was performed by using a hierarchical clustering algorithm that uses an average linkage method and Pearson's correlation coefficient.

network using the Cytoscape software. Prior to this analysis, we imported the DEG-encoding proteins into a protein-protein interaction (PPI) network, which was downloaded from the Biological General Repository for Interaction Datasets (BioGRID, http://thebiogrid.org/).

Results

Selection of microarray datasets related to lung adenocarcinoma for meta-analysis. From the microarray datasets retrieved from the GEO database of NCBI, we extracted 477 GEO lung adenocarcinoma samples that belonged to four microarray datasets, which met our criteria for metaanalysis (see Materials and methods, and Fig. 1). All four GEO series (GSEs) were microarray datasets that used only lung adenocarcinoma tissue with valid smoking statuses. The GEO Platform Files (GPLs) from the four datasets (GSE12667, GSE31210, GSE40791 and GSE50081) were obtained using the Affymetrix 'Gene Chip' (Table I).

Identification of upregulated or downregulated DEGs through meta-analysis. We performed the meta-analysis of gene expression profiles according to t-test and z-score methods using MAMA, mataMA, affyPLM and CLL packages in R statistical software on the same platform. According to the P-value (where the threshold was <0.005) and z-score (where the threshold was an absolute value >3), we were able to identify a total of 2,932 DEGs, including 1,806 upregulated and 1,126 downregulated genes using Venny 2.0 (http:// bioinfogp.cnb.csic.es/tools/venny/index.html). The 200 genes

Figure 4. Heat-map representation of the expression profiles for the top 25 upregulated and downregulated differentially expressed genes (DEGs) in the GSE131210 dataset. The clustering of the selected genes on the heat-map was performed using a hierarchical clustering algorithm that uses an average linkage method and Pearson's correlation coefficient.

Figure 5. Heat-map representation of the expression profiles for the top 25 upregulated and downregulated differentially expressed genes (DEGs) in the GSE40791 dataset. The clustering of the selected genes on the heat-map was performed using a hierarchical clustering algorithm that uses an average linkage method and Pearson's correlation coefficient.

Figure 6. Heat-map representation of the expression profiles for the top 25 upregulated and downregulated differentially expressed genes (DEGs) in the GSE50081 dataset. The clustering of the selected genes on the heat-map was performed using a hierarchical clustering algorithm that uses an average linkage method and Pearson's correlation coefficient.

that showed maximum upregulation and downregulation are shown in Tables II and III, and the overlapping DEGs based on P-values and z-scores are shown in Fig. 2. A subset of the top 50 DEGs (25 upregulated and 25 downregulated) in the four microarray datasets were visualized with heat maps using the Mev software and are shown in Figs. 3-6.

Enrichment analysis of the GO function and KEGG pathway for the top 100 upregulated and downregulated DEGs. We classified the 200 DEGs that were identified through meta-analysis according to the GO hierarchy into functional categories (biological process, molecular function, and cellular component) and based on the KEGG pathway, with a significance threshold of <0.05. The most significant GO terms under the biological processes category were enriched in the following descending order: 'cell cycle phase' (GO:0022403), 'M phase of mitotic cell cycle' (GO:0000087) and 'mitotic cell cycle' (GO:0000278). The most enriched GO terms under the molecular functions and cellular components categories were 'protein binding' (GO:0005515) and 'nuclear part' (GO:0044428). The most enriched KEGG pathway terms were (in descending order): 'Cell cycle' (kegg:04110), 'Oocyte meiosis' (kegg:04114) and 'Ubiquitin mediated proteolysis' (kegg:04120) (Tables IV and V).

PPI network analysis of the DEGs. To understand the biological meaning of the 8 upregulated DEGs identified by

the KEGG pathway under the cell cycle pathway at the protein level, we constructed a PPI network for the proteins encoded by the 8 DEGs with interactions that included 541 nodes and 671 edges as shown in Fig. 7.

Discussion

In the present study, we showed that genes are differentially expressed in lung adenocarcinoma in smoking and non-smoking patients. Some genes that showed the highest expression levels were found in lung adenocarcinoma patients who had a smoking history. Smoking consistently plays an important role in the development of lung adenocarcinoma. Cigarette smoke contains over 400 identified chemicals, at least 250 of which are implicated in tumour initiation and promotion (21). It is estimated that more than 50 chemicals in tobacco smoke cause cancers (22). Cigarette smoke is by far the most widespread link between exposure to known carcinogens and death from lung cancer (23). Lung adenocarcinoma is one of the main types of lung cancer in smokers and cannot be successfully treated with traditional treatments. Therefore, the effects of cigarette smoke on the genes that are implicated in lung adenocarcinoma are critical to increase our understanding of the carcinogenesis and in finding targeted genes. In our study, we found that the cell cycle pathway was significantly altered in lung adenocarcinoma tissues from patients with a smoking history.

Table II. T	The 100	upregulated	genes.
-------------	---------	-------------	--------

Table II. Continued.

Probe ID	Gene	P-value	z-score	Probe ID	Gene	P-value	z-score
218670_at	PUS1	1.26565E-14	-3.364765896	204603_at	EXO1	2.21381E-11	-3.093222948
202856_s_at	SLC16A3	1.31006E-14	-3.005755138	225401_at	C1orf85	2.37168E-11	-4.583223012
1553984_s_at	DTYMK	2.73115E-14	-3.77721059	228703_at	P4HA3	2.44789E-11	-4.354770166
210052_s_at	TPX2	3.28626E-14	-3.156028484	204709_s_at	KIF23	2.78617E-11	-3.130038648
225620_at	RAB35	6.72795E-14	-3.977400883	212322_at	SGPL1	3.15128E-11	-3.303129755
201710_at	MYBL2	1.13465E-13	-3.753904206	202779_s_at	UBE2S	3.25431E-11	-3.246262139
200896_x_at	HDGF	1.32117E-13	-6.606272774	210386_s_at	MTX1	3.28946E-11	-3.499628552
233986_s_at	PLEKHG2	1.34559E-13	-4.721664344	205733_at	BLM	3.44063E-11	-3.183717987
209186_at	ATP2A2	1.52767E-13	-3.331133151	223307_at	CDCA3	3.49276E-11	-3.223011207
202954_at	UBE2C	1.96732E-13	-3.433957425	1555943_at	PGAM5	3.49287E-11	-4.908658645
234992_x_at	ECT2	2.22933E-13	-3.540186205	219493_at	SHCBP1	3.69571E-11	-3.171551777
218468_s_at	GREM1	2.91323E-13	-3.421989473	223785_at	FANCI	4.13012E-11	-3.72118368
221591 s at	FAM64A	3.1064E-13	-3.645233189	212021_s_at	MKI67	4.16123E-11	-3.291213712
223308 s at	WDR5	3.71925E-13	-3.441383479	200750_s_at	RAN	4.22222E-11	-3.060882727
204092 s at	AURKA	4.20552E-13	-4.669115008	229892_at	EP400NL	4.39129E-11	-4.569469931
218593 at	RBM28	5.6688E-13	-3.725504934	204126_s_at	CDC45	4.39451E-11	-3.107729352
204962 s at	SLC35F6	6.05294E-13	-3.16224673	226949_at	GOLGA3	4.51967E-11	-3.569550938
218726 at	HJURP	9.13047E-13	-3.516355847	205895_s_at	NOLC1	4.80713E-11	-3.479055682
206364 at	KIF14	1 22724E-12	-3 097688744	205691_at	SYNGR3	4.92397E-11	-6.345274404
202870 s at	CDC20	1 31761E-12	-3 025537109	204641_at	NEK2	4.94367E-11	-3.260850411
212680 x at	PPP1R14B	1 41753E-12	-3 30292041	223365_at	DHX37	5.08806E-11	-6.413792983
220651 s at	MCM10	1.66711E-12	-3 962832885	229610_at	CKAP2L	5.22091E-11	-3.506800101
2220031_s_at	SLMO2	1.88827E-12	-3 580783528	207590_s_at	CENPI	5.60811E-11	-3.706888048
212541 at	FLAD1	2 68452E-12	-4 335857984	224742_at	ABHD12	6.35478E-11	-3.351775356
223931 s at	CHFR	2.00132E 12	-5 133807637	209052_s_at	WHSC1	6.63429E-11	-3.610265902
203612 at	BYSL	2.91909E 12	-3 332540528	206074_s_at	HMGA1	6.86768E-11	-3.035687751
219874 at	SI C12A8	3 14992F-12	-4 228880162	225554_s_at	ANAPC7	7.7532E-11	-4.210797517
229538 s at	IOGAP3	3 39373E-12	-4 67663851	204649_at	TROAP	8.73972E-11	-3.344919358
38158 at	FSPI 1	3.52074E-12	-4 330276826	212871_at	MAPKAPK5	9.64493E-11	-6.062517519
224753 at	CDCA5	3.8165E-12	-3 102794749	201954_at	ARPC1B	1.04984E-10	-3.29272791
200044 at	SR SF9	5.0105E-12	-4 335016805	203967_at	CDC6	1.15562E-10	-3.032999971
23/015 s at	DENR	6.64646E 12	3.045464333	205024_s_at	RAD51	1.27276E-10	-3.317013997
206316 s at	KNTC1	7 17115E 12	3 03/017863	201127_s_at	ACLY	1.40898E-10	-3.598775099
200310_s_at	PATI 1	7.17113E-12 7.18048E-12	4 555045317	201292_at	TOP2A	1.69439E-10	-3.586121076
220400_{at}		7.18046E-12	3 57331/002	1555274_a_at	EPT1	1.82091E-10	-3.107139925
200730_x_at	DIDC5	7.89540E-12 8.22586E 12	2 071721060	222077_s_at	RACGAP1	1.98689E-10	-3.463568797
202095_s_at		8.23380E-12 8.50246E-12	5 200212575	212949_at	NCAPH	2.04934E-10	-3.123094613
209404_at	AUKKD	0.54240E-12	-3.290213373	214866_at	PLAUR	2.8521E-10	-6.066208054
204430_s_at	SLC2AJ	9.34346E-12	-3.999400232	209836_x_at	BOLA2B	3.03036E-10	-3.581736948
219916_s_at	ASPM WDD12	9.96930E-12	-3.303002473	236957_at	CDCA2	3.37438E-10	-3.267349523
216312_at		1.10365E-11	-3.12/04//3/	204318_s_at	GTSE1	3.6192E-10	-3.165321627
203702_s_at	TILL4	1.10743E-11	-3.222381427	222622_at	PGP	3.89473E-10	-3.166188967
242944_at	FAM83A	1.14144E-11	-6.56980268	218497_s_at	RNASEH1	4.25561E-10	-3.276072648
206205_at	MPHOSPH9	1.1/426E-11	-3.286/43/93	218984_at	PUS7	4.45897E-10	-4.331098443
221520_s_at	CDCA8	1.222E-11	-3.189226567	205394_at	CHEK1	4.6472E-10	-3.071160119
220011_at	AUNIP	1.32323E-11	-5.645650742	210821_x_at	CENPA	4.95303E-10	-3.345790152
203004_s_at	MEF2D	1.419/5E-11	-6.628593875	223484_at	C15orf48	6.08452E-10	-3.301630777
204005_s_at	PAWK	1.44695E-11	-4.589047842	213523_at	CCNE1	6.55394E-10	-4.360746545
200744_s_at	GNB1	1.57292E-11	-3.309783419	209642_at	BUB1	7.26076E-10	-3.325492652
202580_x_at	FOXM1	1.92268E-11	-3.156340828	202240_at	PLK1	8.52925E-10	-3.537560833
201761_at	MTHFD2	2.141E-11	-3.158744955				

Table III. The 100 downregulated genes.

Table III. Continued.

Probe ID	Gene	P-value	z-score	Probe ID	Gene	P-value	z-score
225956_at	CREBRF	0	3.056084	225811_at	C11orf58	2.90212E-13	3.095344537
209740_s_at	PNPLA4	0	8.750866	227847_at	EPM2AIP1	3.27738E-13	3.460553723
204754_at	HLF	0	3.370263	201019_s_at	EIF1AX	3.35065E-13	4.257274339
230163_at	GFRA1	0	3.162875	223695_s_at	ARSD	3.475E-13	5.635180257
242496_at	ART4	0	3.160279	228905_at	PCM1	3.53051E-13	3.340750721
221518_s_at	USP47	0	4.047036	217707_x_at	SMARCA2	3.67262E-13	4.020194349
235830_at	NT5DC1	0	3.951365	225093_at	UTRN	6.21503E-13	3.138806562
235155_at	BDH2	0	3.138416	227425_at	REPS2	7.33413E-13	3.055352168
208741_at	SAP18	0	3.588813	211734_s_at	FCER1A	8.45324E-13	3.411503985
228692 at	PREX2	0	3.033953	244007_at	ZNF462	9.36362E-13	3.786986943
211999 at	MIR4738	0	3.297597	212675_s_at	CEP68	1.00742E-12	3.307657084
227562 at	LAMTOR3	0	3.340261	238454_at	ZNF540	1.13221E-12	3.186059238
229573 at	USP9X	2.22E-16	4.870675	224889_at	FOXO3	1.14175E-12	3.853408162
205756 s at	F8	2.22E-16	3.20333	1558512_at	RP11-819C21.1	1.37579E-12	3.144887286
229319 at	BC022047	2.22E-16	3.024973	213802 at	PRSS12	1.47216E-12	4.357472705
228411 at	PARD3B	4.44E-16	3.454669	225465 at	MAGI1	1.47393E-12	4.208157151
212425 at	SCAMP1	4 44E-16	3 064577	223126 s at	Clorf21	1.56142E-12	3.186640389
212125_at	ZRSR2	4 44E-16	5 174619	230479 at	EIF3F	1.58984E-12	3.299359045
239252 at	COX7B	4 44E-16	3 999039		MAP6	1.66223E-12	3.143593284
200933 x at	RPS4X	4 44E-16	5 299386		PNRC2	1.91847E-12	3.246325539
210829 s at	SSBP2	4.44E-16	3.082665	1560648 s at	TSPYL1	1.9309E-12	3.760805629
210027_s_at	RBMS3	$6.66E_{-}16$	3 71459	212936 at	FAM172A	2.19358E-12	4.299840018
200707_at	ROBO2	6.66E 16	3 615428		CCDC146	2.29194E-12	3.206298087
220709_at	KDM6A	0.00E-10 8 88E 16	5 706073	221564 at	PRMT2	2.38565E-12	3.547995663
203991_s_at	SVNI2RD COV16	0.00E-10	3 517758	43427 at	ACACB	2.44649E-12	3.004593504
227274_{at}	SCN7A	1.11E-15	3 16810		CTC-429P9.3	2.57394E-12	3.228782722
226304_at	GAR1	1.76E-15 2E 15	3.10013		RIOK2	2.69118E-12	3.35934368
223996_{at}	GADI SEGNI	2E-15	2 055601	238472 at	FBXO9	2.69273E-12	3.562133246
210340_{s_a}	NELA	2.44E-15	2 007287		CRBN	2.82396E-12	3.004216036
224970_at	$\mathbf{N}\mathbf{\Gamma}\mathbf{I}\mathbf{A}$	3.11E-13 4 22E 15	2 457400		CLK4	3.30425E-12	3.359190366
203637_at	SEC 62	4.22E-13	2 76127		ATXN10	3.36042E-12	3.408974266
223332_at	SEC02	0.00E-13	5.20152 2.072028		ARID1B	3.38618E-12	3.280003422
200810_s_at	CIKDP CD50	1.49E-14	3.072028		LINC00478	3.50475E-12	4.041998876
200985_x_at		2.22E-14	3.24709		WDFY3-AS2	3.68106E-12	3.077236586
212249_at	PIKJKI Metti 14	2.44E-14	4.98000		SRSF8	4.13358E-12	3.538832842
241089_at		3.42E-14	3.311901 2.001776	235240 at	ATXN3	4.47198E-12	3.59474854
228716_at		4.00E-14	3.021776	240806 at	RPL15	5.22404E-12	3.229351616
205259_at	NKSU2	JE-14	3.392201	228027 at	GPRASP2	5.30198E-12	3.191435286
223588_at	THAP2	5.44E-14	0.445672	209815 at	PTCH1	5.63194E-12	3.080285017
201427_s_at	SEPPI	6.02E-14	3.146142	208760 at	UBE2I	6.31295E-12	3.075043093
219427_at	FAI4	/./E-14	3.056389		KPNA5	6.53722E-12	3.749106743
209807_s_at	NFIX	7.97E-14	3.105386	228420 at	PDCD2	7.1736E-12	3.442288871
201498_at	USP/	8.55E-14	3.827248	227520 at	TXLNG	7.54685E-12	5.386988658
228243_at	RP11-5C23.1	8.84E-14	3.43588	244294 at	GTF2H5	7.70273E-12	4.035395557
238786_at	ANK3	1.58E-13	3.075604	204011 at	SPRY2	7.75358E-12	3.811245705
233249_at	LOC100507073	1.61E-13	3.069721	209614 at	ADH1B	7.83396E-12	3.188622844
208633_s_at	MACF1	1.79E-13	3.260397		FAM120B	8.43059E-12	3.286960689
226816_s_at	KIAA1143	1.94E-13	3.431996	235612 at	PRPF38A	1.023E-11	3.636955078
208792_s_at	CLU	2.46E-13	3.627978	232122 s at	VEPH1	1.20886E-11	3.052642894
210426_x_at	RORA	2.51E-13	3.077789	216342 x at	RPS4XP2	1.22578E-11	6.967247025
229969_at	SEC63	2.86E-13	3.019815		-		

Figure 7. Protein-protein interaction (PPI) network of the 8 upregulated differentially expressed genes (DEGs).

Table IV. The enrichment based on the top 10 GO functions shows the top 100 upregulated and downregulated DEGs.

GO ID	GO term	No. of Genes	P-value
GO:0022403	Cell cycle phase	48	3.26E-18
GO:000087	M phase of mitotic cell cycle	33	6.78E-18
GO:0022402	Cell cycle process	52	6.78E-18
GO:0000278	Mitotic cell cycle	45	6.78E-18
GO:0044428	Nuclear part	70	6.12E-10
GO:0031981	Nuclear lumen	64	1.48E-09
GO:0044422	Organelle part	112	1.63E-09
GO:0005515	Protein binding	112	1.27E-05
GO:0042975	Peroxisome proliferator activated receptor binding	3	0.0097
GO:0019899	Enzyme binding	25	0.0135
GO, gene ontolo	ogy; DEGs, differentially expres	sed genes	

Using several perspectives would allow us to characterise the underlying mechanisms of lung adenocarcinoma in smokers. Thus, we performed a meta-analysis of four independent microarray datasets using the same platform. The large number of DEGs identified in our study implies that our approach produces more reliable results in identifying differences in gene expression levels among lung adenocarcinoma patients who either had a smoking or a non-smoking history. Table V. The enrichment based on the top KEGG pathway shows the top 100 upregulated and downregulated DEGs.

KEGG ID	KEGG pathway	No. of Genes	P-value
kegg:04110	Cell cycle	8	2.45E-06
kegg:04114	Oocyte meiosis	7	9.76E-06
kegg:04120	Ubiquitin mediated proteolysis	5	0.0032
kegg:03013	RNA transport	5	0.0036
kegg:04610	Complement and coagulation cascades	3	0.013
kegg:04115	p53 signalling pathway	3	0.013
kegg:05200	Pathways in cancer	6	0.013
kegg:03060	Protein export	2	0.0144
kegg:03008	Ribosome biogenesis in eukaryotes	3	0.0152
kegg:03440	Homologous recombination	2	0.0168

KEGG, Kyoto Encyclopedia of Genes and Genomes; DEGs, differentially expressed genes.

In this study, the microarray expression datasets derived from lung adenocarcinoma tissue with patients with either a smoking or non-smoking history were publicly available. A number of previous studies have molecularly characterised the genetic profiles in lung cancer patients with or without a smoking history. The present investigation focused on a relatively larger cohort with 477 lung adenocarcinoma tissues from 327 smoking patients and 150 non-smoking patients, thereby providing a more powerful analysis. Our study results were highly consistent with previous DEG analyses, supporting the utility and validity of this analytical approach. Additionally, it also revealed that multiple biological processes and pathways, including cell cycle phase and the cell cycle pathway, were significantly affected in lung adenocarcinoma tissues from smoking patients compared to the non-smoking patients. Consistently, many previous studies have revealed that cigarette smoke extract accelerated premature gene mutations in the cell cycle pathway. Cigarette smoke extract alters the cell cycle via the phospholipid transfer protein/transforming growth factor-β1/cyclinD1/CDK4 pathway (24). Cigarette smoking is a major factor for many cancers including, pancreatic cancer, human ovarian cancer and colon cancer (25-27). This study identified the 8 overexpressed genes in the cell cycle pathway as CDC45, PLK1, CDC20, ANAPC7, CDC6, CHEK1, CCNE1 and ESPL1. According to the P-values in the meta-analysis, we identified a few significant DEGs including CDC45, CDC20, ANAPC7, CDC6, and ESPL1. Based on our meta-analysis results, these five genes may be potential target genes for the treatment of this disease.

CDC45 is a member of the highly conserved multiprotein complex including Cdc6/Cdc18. The replication factor CDC45 has essential functions in the initiation and plays an important role in the intra-S-phase checkpoint (28). CDC45 has been found to be upregulated in many neoplasms, such as breast neoplasms, colorectal neoplasms, lung neoplasms and haematological neoplasms (29).

CDC20 appears to act as a regulatory protein by interacting with several other proteins at multiple points in the cell cycle (30). The CDC20 gene might play an important role in the malignancy of NSCLC. Additionally, CDC20 has been found to be upregulated in lung cancer patients with a smoking history (31). In addition, through this analysis, we identified the overexpression of the CDC20 gene in lung adenocarcinoma patients who had a smoking history compared to the non-smoking patients. Combined with previous research, our analysis demonstrates that the CDC20 gene might play an important role in the treatment of lung adenocarcinoma in smoking patients.

ANAPC7 is an E3 ligase enzyme that ubiquinates various proteins involved in the cell cycle (32). This protein complex may have a pivotal role in the cell cycle control affecting pathological conditions such as cancer (33). ANAPC mutations have been reported in lung squamous cell carcinoma and small cell lung carcinoma.

CDC6, a cell cycle regulatory gene, is an essential regulator of DNA replication and plays important roles in the activation and maintenance of the checkpoint mechanism in the cell cycle (34). CDC6 has been associated with the oncogenic activities in human cancers, such as ovarian cancer, lung cancer and prostate cancer (35,36). However, the biological function and clinical significance of CDC6 in lung adenocarcinoma remain unclear. A previous study suggests that CDC6 is associated with the decline in lung function of ex-smoking in COPD (37). Our study also revealed CDC6 overexpression in lung adenocarcinoma patients with a smoking history compared to non-smoking patients.

ESPL1 is a protein-coding gene, and its overexpression has been found in a variety of human cancers such as rectum

adenocarcinoma, prostate carcinoma, breast carcinoma and lung carcinoma (38,39). Consistent with earlier results, our study revealed that ESPL is overexpressed in lung adenocarcinoma in patients with a smoking history compared to those who had a non-smoking history.

Overall, the present study identified that a few genes are differentially expressed in lung adenocarcinoma samples between smoker and non-smoker patients. This observation supports previous studies; however, our analysis provides new insights that enable better understanding of the molecular mechanisms of lung adenocarcinoma in smokers, which may provide potential targets for the therapeutic design of individualized treatments for lung adenocarcinoma patients who have a smoking history.

Acknowledgements

This research was supported in part by grants form the National Natural Science Foundation of China (31560314 to Q.L.) and the Natural Science Foundation of Jiangxi Province (2016BAB204168 to Q.L.).

References

- Kalemkerian GP, Akerley W, Bogner P, Borghaei H, Chow LQ, Downey RJ, Gandhi L, Ganti AK, Govindan R, Grecula JC, *et al*; National Comprehensive Cancer Network: Small cell lung cancer. J Natl Compr Canc Netw 11: 78-98, 2013.
- 2. Pasche B and Grant SC: Non-small cell lung cancer and precision medicine: A model for the incorporation of genomic features into clinical trial design. JAMA 311: 1975-1976, 2014.
- Saito M, Shiraishi K, Kunitoh H, Takenoshita S, Yokota J and Kohno T: Gene aberrations for precision medicine against lung adenocarcinoma. Cancer Sci 107: 713-720, 2016.
- Ding L, Getz G, Wheeler DA, Mardis ER, McLellan MD, Cibulskis K, Sougnez C, Greulich H, Muzny DM, Morgan MB, *et al*: Somatic mutations affect key pathways in lung adenocarcinoma. Nature 455: 1069-1075, 2008.
- Weir BA, Woo MS, Getz G, Perner S, Ding L, Beroukhim R, Lin WM, Province MA, Kraja A, Johnson LA, *et al*: Characterizing the cancer genome in lung adenocarcinoma. Nature 450: 893-898, 2007.
- de Mello RA, Madureira P, Carvalho LS, Araújo A, O'Brien M and Popat S: EGFR and KRAS mutations, and ALK fusions: Current developments and personalized therapies for patients with advanced non-small-cell lung cancer. Pharmacogenomics 14: 1765-1777, 2013.
- 7. Paul D and Rafael OC: Concurrent targetable genetic driver alterations in KRAS-mutant lung adenocarcinoma. Eur J Cancer 60: e15-e16, 2016.
- 8. Nie Q, Yang XN, An SJ, Zhang XC, Yang JJ, Zhong WZ, Liao RQ, Chen ZH, Su J, Xie Z, *et al*: CYP1A1*2A polymorphism as a predictor of clinical outcome in advanced lung cancer patients treated with EGFR-TKI and its combined effects with EGFR intron 1 (CA)n polymorphism. Eur J Cancer 47: 1962-1970, 2011.
- 9. Gow CH, Chang HT, Lim CK, Liu CY, Chen JS and Shih JY: Comparable clinical outcomes in patients with HER2-mutant and EGFR-mutant lung adenocarcinomas. Genes Chromosomes Cancer 56: 373-381, 2017.
- Raponi M, Winkler H and Dracopoli NC: KRAS mutations predict response to EGFR inhibitors. Curr Opin Pharmacol 8: 413-418, 2008.
- Wu C, Zhu J and Zhang X: Network-based differential gene expression analysis suggests cell cycle related genes regulated by E2F1 underlie the molecular difference between smoker and non-smoker lung adenocarcinoma. BMC Bioinformatics 14: 365, 2013.
- Andreev K, Trufa ID, Siegemund R, Rieker R, Hartmann A, Schmidt J, Sirbu H and Finotto S: Impaired T-bet-pSTAT1α and perforin-mediated immune responses in the tumoral region of lung adenocarcinoma. Br J Cancer 113: 902-913, 2015.

- Talhout R, Schulz T, Florek E, van Benthem J, Wester P and Opperhuizen A: Hazardous compounds in tobacco smoke. Int J Environ Res Public Health 8: 613-628, 2011.
- Li Y, Xiao X, Ji X, Liu B and Amos CI: RNA-seq analysis of lung adenocarcinomas reveals different gene expression profiles between smoking and nonsmoking patients. Tumour Biol 36: 8993-9003, 2015.
- Chee M, Yang R, Hubbell E, Berno A, Huang XC, Stern D, Winkler J, Lockhart DJ, Morris MS and Fodor SP: Accessing genetic information with high-density DNA arrays. Science 274: 610-614, 1996.
- Spies M, Dasu MR, Svrakic N, Nesic O, Barrow RE, Perez-Polo JR and Herndon DN: Gene expression analysis in burn wounds of rats. Am J Physiol Regul Integr Comp Physiol 283: R918-R930, 2002.
- 17. Guo QM: DNA microarray and cancer. Curr Opin Oncol 15: 36-43, 2003.
- Li R, Wang H, Bekele BN, Yin Z, Caraway NP, Katz RL, Stass SA and Jiang F: Identification of putative oncogenes in lung adenocarcinoma by a comprehensive functional genomic approach. Oncogene 25: 2628-2635, 2006.
- Yasrebi H: Comparative study of joint analysis of microarray gene expression data in survival prediction and risk assessment of breast cancer patients. Brief Bioinform 17: 771-785, 2016.
- Hong F, Breitling R, McEntee CW, Wittner BS, Nemhauser JL and Chory J: RankProd: A bioconductor package for detecting differentially expressed genes in meta-analysis. Bioinformatics 22: 2825-2827, 2006.
- 21. Hecht SS: Tobacco carcinogens, their biomarkers and tobaccoinduced cancer. Nat Rev Cancer 3: 733-744, 2003.
- 22. Brüske-Hohlfeld I: Environmental and occupational risk factors for lung cancer. Methods Mol Biol 472: 3-23, 2009.
- 23. Taioli E: Gene-environment interaction in tobacco-related cancers. Carcinogenesis 29: 1467-1474, 2008.
- 24. Chai XM, Li YL, Chen H, Guo SL, Shui LL and Chen YJ: Cigarette smoke extract alters the cell cycle via the phospholipid transfer protein/transforming growth factor-β1/CyclinD1/CDK4 pathway. Eur J Pharmacol 786: 85-93, 2016.
- 25. Glauert HP, Elliott RS, Han SG, Athey M, Lee EY and Gairola CG: Effect of cigarette smoke exposure and mutant Kras overexpression on pancreatic cell proliferation. Oncol Lett 13: 1939-1943, 2017.
- 26. Jeon SY, Go RE, Heo JR, Kim CW, Hwang KA and Choi KC: Effects of cigarette smoke extracts on the progression and metastasis of human ovarian cancer cells via regulating epithelialmesenchymal transition. Reprod Toxicol 65: 1-10, 2016.
- 27. Schmidt U, Wollmann Y, Franke C, Grosse F, Saluz HP and Hänel F: Characterization of the interaction between the human DNA topoisomerase IIbeta-binding protein 1 (TopBP1) and the cell division cycle 45 (Cdc45) protein. Biochem J 409: 169-177, 2008.

- Tercero JA, Longhese MP and Diffley JFX: A central role for DNA replication forks in checkpoint activation and response. Mol Cell 11: 1323-1336, 2003.
- 29. Broderick R, Rainey MD, Santocanale C and Nasheuer HP: Cell cycle-dependent formation of Cdc45-Claspin complexes in human cells is compromized by UV-mediated DNA damage. FEBS J 280: 4888-4902, 2013.
- Weinstein J: Cell cycle-regulated expression, phosphorylation, and degradation of p55Cdc. A mammalian homolog of CDC20/ Fizzy/slp1. J Biol Chem 272: 28501-28511, 1997.
- Pollok S, Bauerschmidt C, Sänger J, Nasheuer HP and Grosse F: Human Cdc45 is a proliferation-associated antigen. FEBS J 274: 3669-3684, 2007.
- 32. Rahimi H, Ahmadzadeh A, Yousef-amoli S, Kokabee L, Shokrgozar MA, Mahdian R and Karimipoor M: The expression pattern of APC2 and APC7 in various cancer cell lines and AML patients. Adv Med Sci 60: 259-263, 2015.
- 33. Zhang X, Xiao T, Cheng S, Tong T and Gao Y: Cigarette smoke suppresses the ubiquitin-dependent degradation of OLC1. Biochem Biophys Res Commun 407: 753-757, 2011.
- Borlado LR and Méndez J: CDC6: From DNA replication to cell cycle checkpoints and oncogenesis. Carcinogenesis 29: 237-243, 2008.
- Sun T-Y, Xie H-J, Li Z, He H and Kong L-F: Expression of CDC6 in ovarian cancer and its effect on proliferation of ovarian cancer cells. Int J Clin Exp Med 9: 10544-10550, 2016.
- 36. Yun SJ, Kim YH, Kang HW, Kim WT, Kim YJ, Lee SC, Kim W-J and Kim T: CDC6 mRNA expression is associated with the aggressiveness of prostate cancer. Eur Urol Suppl 15: e1625, 2016.
- 37. Takabatake N, Toriyama S, Igarashi A, Tokairin Y, Takeishi Y, Konta T, Inoue S, Abe S, Shibata Y and Kubota I: A novel polymorphism in CDC6 is associated with the decline in lung function of ex-smokers in COPD. Biochem Biophys Res Commun 381: 554-559, 2009.
- Finetti P, Guille A, Adelaide J, Birnbaum D, Chaffanet M and Bertucci F: ESPL1 is a candidate oncogene of luminal B breast cancers. Breast Cancer Res Treat 147: 51-59, 2014.
- Zhang N and Pati D: Biology and insights into the role of cohesin protease separase in human malignancies. Biol Rev Camb Philos Soc 92: 2070-2083, 2017.
 - This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) License.