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Abstract. Anti‑angiogenesis is one of the most general 
clinical obstacles in cancer chemotherapy. Kaempferol is a 
flavonoid phytochemical found in many fruits and vegetables. 
Our previous study revealed that kaempferol triggered apop-
tosis in human umbilical vein endothelial cells (HUVECs) by 
ROS‑mediated p53/ATM/death receptor signaling. However, 
the anti‑angiogenic potential of kaempferol remains unclear 
and its underlying mechanism warranted further exploration in 
VEGF‑stimulated HUVECs. In the present study, kaempferol 
significantly reduced VEGF‑stimulated HUVEC viability. 
Kaempferol treatment also inhibited cell migration, invasion, 
and tube formation in VEGF‑stimulated HUVECs. VEGF 
receptor‑2 (VEGFR‑2), and its downstream signaling cascades 
(such as AKT, mTOR and MEK1/2‑ERK1/2) were reduced as 

determined by western blotting and kinase activity assay in 
VEGF‑stimulated HUVECs after treatment with kaempferol. 
The present study revealed that kaempferol may possess 
angiogenic inhibition through regulation of VEGF/VEGFR‑2 
and its downstream signaling cascades (PI3K/AKT, MEK and 
ERK) in VEGF‑stimulated endothelial cells.

Introduction

Anti‑angiogenesis is becoming a very promising goal for 
cancer therapy (1,2). Angiogenesis is a new passageway from 
pre‑existing blood vessels and an essential step involved in 
physiological and tumor pathological processes (1,3). Tumor 
cell growth and metastases processes depend on the induction 
of a satisfactory blood support (1,4). Many chemotherapeutic 
agents such as paclitaxel (Taxol) inhibit tumor cell growth, 
proliferation and induce apoptotic cell death in cancer treat-
ment. Furthermore, the blocking of angiogenesis provides a 
novel therapeutic target against tumor cells (5,6). In clinical 
anti‑angiogenic therapy, bevacizumab (Avastin) is a mono-
clonal antibody for anti‑vascular endothelial growth factor 
(VEGF) that counteracts the action of VEGF and inhibits 
tumor angiogenesis (7,8). Numerous phytochemicals, such as 
curcumin or epigallocatechin‑3‑gallate (EGCG) have been 
demonstrated to exert anti‑angiogenic bioactivities in several 
in vitro and in vivo models  (9‑11). Thus, identification of 
phytochemicals with non‑cytotoxic effects on normal cells 
and effective anti‑angiogenic action could be of great clinical 
significance (11‑13).
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Kaempferol is a flavonoid phytochemical found in fruits 
and vegetables and in some traditional Chinese medicines 
(TCM)  (14‑16). Kaempferol has been reported to exert 
biological activities such as anti‑inflammatory (17,18), anti-
oxidant (19,20), cardioprotective (19) and antitumor (21‑23). 
Kaempferol has been demonstrated to provide chemopre-
ventive effects on different tumor systems including tumor 
initiation, promotion, and progression (24,25). Recently, our 
previous study revealed that kaempferol caused endoplasmic 
reticulum stress and mitochondria‑dependent apoptosis 
in human osteosarcoma U‑2 OS cells  (26) and triggered 
AMPK and AKT‑dependent autophagic cell death in human 
hepatocarcinoma SK‑HEP‑1 cells (27). In addition, we also 
demonstrated that kaempferol suppressed U‑2 OS cell metas-
tasis through suppression of the ERK/p38/JNK and AP‑1 
signaling pathways (28). In an anti‑angiogenic study, our earlier 
research indicated that kaempferol induced ROS‑mediated 
p53/ATM‑dependent apoptosis in human umbilical vein 
endothelial cells (HUVECs) (29). However, there is no avail-
able information regarding the possible major target and 
anti‑angiogenic mechanism of kaempferol in endothelial cells. 
In the present study, we analyzed the anti‑angiogenic effects 
of kaempferol on HUVECs. Our results demonstrated that 
kaempferol inhibited HUVEC proliferation, migration and 
tube formation. The molecular levels indicated that kaemp-
ferol suppressed VEGF receptor‑2 (VEGFR‑2) expression 
and its downstream signaling cascades (AKT/mTOR and 
MEK/ERK) in HUVECs.

Materials and methods

Chemicals and reagents. Kaempferol, 3‑(4,5‑dimethylthi-
azol‑2‑yl)‑2,5‑diphenyltetrazolium bromide (MTT), vascular 
endothelial growth factor (VEGF), the other chemicals and 
reagents were purchased from Sigma‑Aldrich (St. Louis, MO, 
USA) unless otherwise stated. Medium  200, Low Serum 
Growth Supplement (LSGS) and Trypsin‑EDTA were obtained 
from Thermo Fisher Scientific, Inc. (Carlsbad, CA, USA). 
The primary antibodies [VEGFR‑2 (cat. no. sc‑504), PI3K 
(cat. no. sc‑1637), p‑AKT (Ser473) (cat. no. sc‑7985‑R), AKT 
(cat. no. sc‑1618), p‑mTOR (Ser2448) (cat. no. sc‑101738), mTOR 
(cat. no. sc‑8319), p‑MEK1/2 (Ser218/Ser222) (cat. no. sc‑7995), 
MEK1/2 (cat.  no.  sc‑436), p‑ERK (Thr202/Tyr204) 
(cat.  no.  sc‑16982), ERK (cat.  no.  sc‑135900) and β‑actin 
(cat. no. sc‑47778)] and secondary antibodies against goat 
anti‑mouse (cat.  no.  sc‑2005)/‑rabbit (cat.  no.  sc‑2004) 
and mouse anti‑goat (cat.  no.  sc‑2354) immunoglobulin 
(IgG)‑horseradish peroxidase (HRP) were obtained from 
Santa Cruz Biotechnology (Santa Cruz, CA, USA).

Cell culture. HUVECs were obtained from the Bioresources 
Collection and Research Center (BCRC), Food Industry 
Research and Development Institute (Hsinchu, Taiwan). The 
cells were cultured in Medium 200 and LSGS in a humidified 
atmosphere containing 5% CO2 and 95% air at 37˚C. The cells 
were applied within the second to fifth passages, and all assays 
performed used the same culture media with 50 ng/ml VEGF.

C y t o t ox i c  a s s a y.  V E G F ‑ s t i mu l a t e d  H U V E C s 
(1x104 cells/100 µl/well) were seeded into 96‑well microplates 

and then incubated with or without 50, 100, 150 and 200 µM of 
kaempferol for 24 h. Cell viability was detected by MTT assay 
as previously described (27,28). Briefly, as soon as kaempferol 
exposure was completed, 10 µl MTT solution (5 mg/ml) was 
added to each well, and the plate was incubated for an addi-
tional 3 h. The purple crystals were dissolved with the addition 
of 100 µl DMSO. The optical density ratio was assessed spec-
trophotometrically at 570 nm. The percentage of cell viability 
at each concentration relative to the untreated control group (% 
of control) was plotted.

Wound healing migration assay. HUVECs were plated into 
6‑well plates and incubated to 90% confluence for 24 h. A 
linear wound was scratched using a 200‑µl pipette tip through 
the monolayer before cellular debris was removed. Then, 
VEGF‑stimulated HUVECs were exposed to 50, 100, 150 and 
200 µM of kaempferol for 24 h. The healing process was 
captured using a phase‑contract microscope after the wound 
was introduced prior to kaempferol incubation. Cell migration 
was determined from the images of five random fields. The gap 
size was analyzed by NIH ImageJ version 1.46 for Windows 
between the migrating cells from the opposing wound edge, 
and the data were expressed as the % of the initial gap size as 
previously described (30,31).

Boyden chamber Transwell assay. Cell invasion ability was 
detected as previously described  (31,32). The Transwell 
(Millicell Cell Culture Insert; EMD Millipore, Billerica, 
MA, USA) with 8‑µm polycarbonate filters was used 
after being pre‑coated with Matrigel (2  mg/ml, 20  µl; 
BD Biosciences, Bedford, MA, USA) for 2 h at room tempera-
ture. VEGF‑stimulated HUVECs (4x103 cells/0.4 ml culture 
medium) were seeded onto the upper compartment prior to 
50, 100, 150 and 200 µM of kaempferol treatment for 24 h. 
The cells were then fixed with 4% paraformaldehyde in PBS 
and then stained with 2% crystal violet. The invading cells 
were counted under a light microscope before quantification 
with NIH ImageJ version 1.46 for Windows.

Tube formation assay. HUVECs were placed at a density 
of 5x104 cells/well into 24‑well flat‑bottomed plates after 
Matrigel (BD Biosciences) pre‑coating at 37˚C for 30 min. 
The VEGF‑stimulated HUVECs (5x104 cells) thereafter were 
treated with or without 50, 100, 150 and 200 µM of kaempferol 
for 24 h. After exposure, HUVEC tube or network formation 
was evaluated using a phase‑contrast microscope as previously 
described (33,34).

VEGFR‑2, AKT and ERK1/2 kinase assay. VEGF‑stimulated 
HUVECs (5x106  cells/75T flask) were incubated with or 
without 50, 100, 150 and 200 µM of kaempferol. After incuba-
tion for 6 h, the cells were lysed, and the activity of VEGFR‑2, 
AKT and ERK1/2 kinase was determined in accordance 
with the manufacturer's instructions provided in the AKT 
Kinase Assay kit (Nonradioactive), the p44/42 MAP Kinase 
Assay kit (Nonradioactive) and the HTScan VEGF Receptor 
2 Kinase Assay kit, respectively (Cell Signaling Technology, 
Inc., Danvers, MA, USA). Consequently, the purified samples 
were loaded on 12% SDS‑PAGE to detect targeting proteins 
by immunoblotting analysis as previously described (35,36).
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Western blot analysis. VEGF‑stimulated HUVECs 
(5x106 cells/75T flask) were exposed to 50, 100 and 200 µM 
of kaempferol for 6  h. After being harvested and lysed, 
the protein concentration was assessed with the Bio‑Rad 
Protein Assay kit (Bio‑Rad Laboratories, Inc., Hercules, CA, 
USA). Quantified protein lysates (40 µg) were subjected to 
10‑12% SDS‑polyacrylamide electrophoresis (SDS‑PAGE) 
gels to separate protein extracts as detailed by our previous 
studies  (37,38). The primary antibodies (VEGFR‑2, PI3K, 
p‑AKT, AKT, p‑mTOR, mTOR, p‑MEK1/2, MEK1/2, p‑ERK 
and ERK, at 1:1,000 dilution) were hybridized overnight at 
4˚C, followed by the appropriate HRP‑conjugated secondary 
antibodies (1:5,000 dilution) that were used before the electro-
chemiluminescence (ECL) reagent (Immobilon Western HRP 
substrate kit; Merck Millipore, Temecula, CA, USA). The 
densitometric quantification of each blot was carried out using 
NIH ImageJ 1.46 software.

Statistical analysis. The data are presented as the 
means ± standard deviation (SD) from at least three separate 
experiments. Statistical data was analyzed using Student's 
t‑test, and statistical significance was considered to be P<0.05 
and P<0.001.

Results

Kaempferol reduces HUVEC viability. First, VEGF‑stimulated 
HUVECs after 0, 50, 100, 150 and 200 µM of kaempferol 
exposure for 24 h were assessed for growth inhibition and 
cytotoxicity. Our results indicated that kaempferol signifi-
cantly decreased viable VEGF‑stimulated HUVECs, and this 
effect was in a concentration‑ dependent manner (Fig. 1).

Kaempferol inhibits cell migration and invasion, as well as 
disrupts tube formation in VEGF‑stimulated HUVECs. To 
explore the anti‑angiogenic effects of kaempferol in vitro, 
its inhibitory influences on VEGF‑induced tube formation 
and migration were investigated. Our data demonstrated that 
kaempferol concentration‑dependently suppressed cell migra-
tion as determined by wound healing assay (Fig. 2A and B). 

Kaempferol also significantly suppressed cell inva-
sion (Fig. 3A and B) in a concentration‑dependent manner. 

Figure 2. Kaempferol suppresses migratory potential of VEGF‑stimulated 
HUVECs in vitro. (A) Images of the wound healing assay (x100, magnifi-
cation) were performed after confluent monolayers were wounded. The 
wounded monolayer was incubated with 50, 100, 150 and 200 µM of kaemp-
ferol for 24 h. (B) Migration distances were quantified with ImageJ software. 
Each bar represents the mean ± SD in triplicate. *P<0.05 and ***P<0.001 vs. 
the VEGF‑treated only control.

Figure 1. Kaempferol inhibits cell viability in VEGF‑stimulated HUVECs. 
Cells were treated with 50, 100, 150 or 200 µM of kaempferol for 24 h and 
then viability was determined using the MTT assay. Data are plotted as the 
means ± SD (n=3). *P<0.05 and ***P<0.001 vs. the untreated control.

Figure  3. Kaempferol reduces VEGF‑stimulated HUVEC invasion 
in vitro. (A) Effects of kaempferol treatment on the invasive ability of 
VEGF‑stimulated HUVECs were analyzed by a Boyden chamber assay. 
(B) The number of invading cells was assessed as mentioned in Materials and 
methods. Each bar is representative of the mean ± SD of three independent 
samples for each treatment. *P<0.05 and ***P<0.001 vs. the VEGF‑treated 
only control.
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To detect tube formation by endothelial cells, kaempferol 
at 50, 100, 150 and 200 µM was added for 24 h. The results 

revealed that kaempferol markedly disrupted the tube‑like 
structures and network formation (Fig. 4A and B), and this 
effect was concentration‑dependent. Therefore, we deter-
mined that kaempferol exhibits anti‑angiogenic effects on 
VEGF‑stimulated HUVECs in vitro.

Kaempferol suppresses VEGFR‑2 signaling in VEGF‑ 
stimulated HUVECs. To clarify whether the angiogenic 
suppression requires VEGFR‑2 signaling in kaempferol‑treated 
HUVECs, the level of VEGFR‑2 was detected. The protein 
level of VEGFR‑2  (Fig. 5A) and kinase activity  (Fig. 5B) 
were markedly suppressed by kaempferol exposure in a 
concentration‑dependent manner. Our data demonstrated 
that kaempferol‑inhibited angiogenesis may be involved in 
VEGFR‑2 signaling in VEGF‑stimulated HUVECs.

Kaempferol alters abundance of PI3K/AKT/mTOR signaling 
in VEGF‑stimulated HUVECs. To determine the major 
pathway involved in the anti‑angiogenic effect of kaempferol, 
we detected PI3K/AKT/mTOR signaling after kaempferol 
treatment at 6 h. Our results indicated that the protein levels 
of PI3K, and phosphorylation of both AKT and mTOR 
were significantly decreased in a concentration‑dependent 
manner (Fig. 6A). The results revealed that PI3K/AKT/mTOR 

Figure  4. Kaempferol inhibits capillary‑structure formation of 
VEGF‑stimulated HUVECs. (A) The inhibitory effect of kaempferol on 
capillary tube formation in VEGF‑stimulated HUVECs with Matrigel was 
assessed. (B) The level of tube length was detected as mentioned in Materials 
and methods. Each bar is representative of the mean ± SD of three indepen-
dent samples for each treatment. *P<0.05 and ***P<0.001 vs. the VEGF‑treated 
only control.

Figure 5. Kaempferol suppresses VEGFR‑2 signaling in VEGF‑stimulated 
HUVECs. (A) Cells were treated with 50, 100 and 200 µM of kaempferol for 
6 h. Cells were then harvested, and the protein expression levels of associated 
VEGFR‑2 were illustrated by western blot analysis. β‑actin was employed 
as an internal control. (B) Cells were treated for 6 h and VEGFR‑2 kinase 
activity was assessed as described in Materials and methods. The quantifica-
tion of the data was performed, and the results represent the means ± SD 
(n=3). ***P<0.001 vs. the control.

Figure 6. Kaempferol alters abundance of PI3K/AKT/mTOR signaling and 
inhibits AKT kinase activity in HUVECs. (A) Cells were exposed to 50, 
100 and 200 µM of kaempferol for 6 h. Cells were then harvested and lysed 
before the levels of PI3K, p‑AKT (Ser473), AKT, p‑mTOR (Ser2448) and 
mTOR were detected by western blot analysis. β‑actin was employed as an 
internal control. (B) Cells were incubated with kaempferol for 6 h, and AKT 
kinase activity was assessed. The results represent the the means ± SD (n=3). 
***P<0.001 vs. the control.
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signaling contributed to the kaempferol‑induced angiogenic 
effects on VEGF‑stimulated HUVECs.

Kaempferol affects the protein levels of phosphorylation of 
MEK and ERK signaling in VEGF‑stimulated HUVECs. 
We next aimed to clarify whether kaempferol‑induced 
anti‑angiogenesis in HUVECs was mediated mainly 
through phosphorylation of the MEK and ERK pathways. 
To demonstrate this, we further investigated the protein 
levels of phosphorylated MEK and phosphorylated ERK and 
determined that both were significantly decreased in a concen-
tration‑dependent manner after kaempferol exposure (Fig. 7A). 
The finding demonstrated that kaempferol attenuated angio-
genesis on VEGF‑stimulated HUVECs through the MEK1/2 
and ERK pathways.

Kaempferol inhibits AKT and ERK kinases in VEGF‑stimulated 
HUVECs. To determine whether AKT and ERK activities are 
involved in HUVECs, we assessed the kinase activities of AKT 
and ERK. AKT kinase (Fig. 6B) and ERK1/2 kinase (Fig. 7B) 
activities were concentration‑dependently suppressed by 
kaempferol exposure. Therefore, we provide direct evidence 
that kaempferol inhibited angiogenic effects by blocking AKT 
and ERK signaling in VEGF‑stimulated HUVECs.

Discussion

Flavonoids are important phytochemicals found in foods 
like fruits, vegetables, wine and tea  (14‑16,39). Notably, 
kaempferol is a flavonoid phytochemical, which exists in 
a variety of fruits and vegetables, including onions, kale, 
broccoli, apples, cherries, berries, tea and red wine (40,41). 
Kaempferol has multiple bioactivities, including antitumor 
effects, an antioxidant activity, and an anti‑inflammatory func-
tion (17‑20). In addition, kaempferol has induced apoptotic and 
autophagic cell death and/or cell cycle arrest in various tumor 
cell lines, including colon, liver, gastric and bladder cancer 
cells  (25,27,42‑47). Kim et al  (48) first demonstrated that 
kaempferol modulated angiogenesis and immune‑endothelial 
cell adhesion. Zhao et al (49) revealed that kaempferol from 
Pu‑erh tea had anti‑colorectal tumor cells and anti‑angiogen-
esis effects on HUVECs. However, the target and molecular 
mechanism involved in the anti‑angiogenic effects of kaemp-
ferol are still unknown. Notably, cell migration, invasion, 
tube formation and proliferation of endothelial cells are 
necessary processes during tumor angiogenesis (1,12,50). In 
the present study, we are the first to report that kaempferol at 
50, 100, 150 and 200 µM inhibited VEGF‑stimulated HUVEC 
cell proliferation (Fig. 1), inhibited cell migration (Fig. 2) 
and invasion (Fig. 3), and these effects were vital factors in 
angiogenic activity. Markedly, kaempferol inhibited tube 
formation (Fig. 4) in VEGF‑stimulated HUVECs. Our results 
revealed that kaempferol triggered anti‑angiogenic activity in 
VEGF‑stimulated HUVECs, and this finding is in agreement 
with our previous study by our research group (29).

It is well known that vascular endothelial growth factor 
(VEGF) stimulates VEGF receptor further to activate its 
kinase activity which is a serious step in initiated tumor 
angiogenesis (51). Suppression of angiogenesis through the 
blocking of the VEGF/VEGFR signaling pathway has devel-
oped as a potential approach in antitumor therapy (51,52). 
VEGFR family members include KDR  (kinase insert 
domain‑containing receptor; VEGFR‑2), FLT1  (Fms‑like 
tyrosine kinase; VEGFR‑1), and FLT4  (VEGFR‑3)  (51). 
VEGFR‑2 binds VEGF‑A, which is expressed in vascular 
endothelial cells and hematopoietic stem cells  (53). In the 
present study, we focused on VEGFR‑2 and its downstream 
signaling in kaempferol‑treated HUVECs. Our results demon-
strated that kaempferol triggered anti‑angiogenic activity in 
VEGF‑stimulated HUVECs by decreasing the VEGFR‑2 
protein level (Fig. 5A) and kinase activity (Fig. 5B). It has been 
documented that Y1175 and Y1214 in human VEGFR‑2 are 
the main auto‑phosphorylation sites following VEGF binding, 
and the activation of several downstream pathways, including 
PI3K/AKT and MEK/ERK levels  (54,55). Our results 
revealed that kaempferol also reduced VEGFR‑2 downstream 
protein levels, including PI3K, p‑AKT, p‑mTOR (Fig. 6A) 
and p‑MEK1/2, p‑ERK1/2 signaling  (Fig.  7A). In addi-
tion, kaempferol also reduced AKT and ERK1/2 kinase 
activity  (Figs. 6B and 7B). Our findings revealed that the 
kaempferol‑inhibited angiogenic effects on VEGF‑stimulated 
HUVECs may require VEGR‑2 signaling.

In conclusion, these data clearly revealed the molecular 
signaling pathway in VEGF‑stimulated HUVECs induced by 
kaempferol as summarized in Fig. 8. These findings provide 

Figure 7. Kaempferol downregulates the levels of MEK and ERK signaling 
and suppresses ERK kinase activity in HUVECs. (A) Cells were exposed 
to 50, 100 and 200 µM of kaempferol for 6 h. The protein expression levels 
[p‑MEK1/2 (Ser218/Ser222), MEK1/2, p‑ERK (Thr202/Tyr204) and ERK] 
were revealed using immunoblotting analysis. β‑actin was used as an internal 
control. (B) Cells were treated with kaempferol for 6 h, and ERK1/2 kinase 
activity was assessed. The results represent the means ± SD (n=3). *P<0.05 
and ***P<0.001 vs. the control.
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evidence demonstrating the anti‑angiogenic activity of kaemp-
ferol, and we suggest that kaempferol which is a phytochemical 
may act as an angiogenesis inhibitor for cancer treatment in 
the near future.
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