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Abstract. In the present study, we summarize the role of the 
shared and independent (epi)genetic background between 
endometrioid carcinoma (EC) and clear cell carcinoma (CCC), 
two histological subtypes of endometriosis-associated ovarian 
cancer (EAOC). Using the PubMed database, we conducted 
a literature review of various studies related to the malig-
nant transformation of endometriosis. Both endometriosis 
and EAOC face potential environmental hazards, including 
hemoglobin (Hb), heme and free iron, which induces DNA 
damage and mutations. Although EC is distinguished from 
CCC due to different morphologies, both represent common 
environmental profiles and maintain the similar (epi)genomic 
abnormalities with multiple overlaps and share similar 
molecular signatures. By contrast, EAOC also has disease-
specific gene signatures corresponding with each histological 
subtype: Estrogen receptor promotes EC cell proliferation 
(‘go’) and hepatocyte nuclear factor-1β (HNF-1β) induces 
CCC cell cycle arrest (‘stop’) under oxidative stress condi-
tions. This model underscores a subtype-dependent ‘go or 
stop’ dichotomy, possibly through better ability to adapt in 
a changing environment. It was found that cyst fluid Hb and 
iron concentrations were significantly lower in EAOC when 
compared to benign ovarian endometrioma (OE), supporting 
the hypothesis that the redox imbalance plays a key role in 
the pathogenesis of EAOC. There are at least two phases of 
iron carcinogenesis and tumor progression: The initial wave 
of iron-induced oxidative stress and DNA mutations would 
be followed by the second big wave of subsequent synthesis 
of the antioxidants, which diminishes cellular oxidative stress 
capacity, increases apoptosis resistance and promotes tumor 
initiation and progression. Special emphasis is given to novel 
pathophysiological concepts of malignant transformation of 
endometriosis.

Introduction

Endometriosis is defined as the presence of the ectopic implan-
tation of endometrial glands and stroma at extra-uterine sites. 
Endometriosis is a common, chronic inflammatory disease that 
affects ∼10% of women of reproductive age (1,2). The common 
symptoms of this disease are dysmenorrhea, dyspareunia, 
chronic pelvic pain and infertility (1,2). Epidemiologically, 
endometriosis has been reported to increase the risk of certain 
types of malignancies, particularly for ovarian endometrioid 
carcinoma (EC), clear cell carcinoma (CCC), low-grade serous 
carcinoma and seromucinous neoplasms (3-6). CCC and EC of 
the ovary are the two most common types of ovarian cancer, 
which arise from endometriosis (4-6). Endometriosis is found 
in approximately 20% of EC and CCC cases, presents adja-
cent to the tumor, and has direct topological continuity with 
the carcinoma (3). Patients with endometriosis-associated 
ovarian cancer (EAOC) belong to the relatively younger-aged 
population, and have early-stage and low histological grade 
tumors compared with non-EAOC patients (7). EAOC tumors 
frequently occur in perimenopausal and early postmenopausal 
women. Ovarian cancer is known to develop in approximately 
1% of women with endometriosis (4). Endometriosis may be 
related to an increased risk of EAOC; however, the underlying 
mechanism remains largely unknown. Over the past decade, 
a dramatic shift has occurred in our understanding of the 
pathophysiology of EAOC.

The aim of the present study was to provide an overview 
of the current pathophysiological concepts of the malignant 
transformation of endometriosis. We summarize recent knowl-
edge about the role of the shared and independent (epi)genetic 
background between EC and CCC, and the current hypotheses 
regarding the pathophysiology of the malignant processes.

Data collection methods

A computerized literature search was conducted to identify 
relevant studies reported in the English language. We collected 
a comprehensive literature search from the PubMed and 
Embase databases up to April, 2018, combining the keywords 
‘endometriosis’, ‘endometriosis-associated ovarian cancer’, 
‘endometrioid carcinoma’, ‘clear cell carcinoma’, ‘pathogen-
esis’, ‘carcinogenesis’, ‘oxidative stress’, ‘hemoglobin’, ‘iron’, 
‘inflammation’, ‘endothelial cells’, ‘extracellular matrix’ 
and ‘microenvironment’. A variety of combinations of these 
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terms were used, depending on which database was searched. 
Furthermore, the references of each article were searched to 
identify potentially relevant studies. Publications of original 
studies and review articles were included, while those docu-
menting opinions, points of view or anecdotes were discarded.

Results

The mechanisms underlying the malignant transformation 
of endometriosis. The gene expression profile-based clus-
tering divided ovarian cancer into two groups, type  I and 
type II, which is generally based on the potential clinical and 
translational value of the dualistic model of ovarian carcino-
genesis (8,9). Type I ovarian cancer consists of patients with 
low-grade serous, mucinous, EC, CCC and slow-growing 
tumors, while type II is composed of patients with rapidly-
growing high-grade serous carcinoma (HGSC) and highly 
aggressive malignancies (8,9). EAOC belongs to the type I 
category and consists of two major subtypes originating 
from EC and CCC, which exhibits different pathological and 
clinical features, characterized by unique morphologies and 
responses to treatment (6).

EC may occur during an estrogenic mode of action 
due to the observed induction of estrogen receptor (ESR) 
isoforms  (10-14). Estrogen is considered to be involved in 
ovarian cancer progression (15). The Wnt/β-catenin signaling 
pathway regulated by estrogen is highly activated in EC and 
inhibits oxidative stress-induced cell apoptosis (16-18). By 
contrast, estrogens are known to produce reactive oxygen 
species (ROS) and are implicated in cellular carcinogenesis, 
as chronic oxidative stress promotes cell growth, survival and 
the tumorigenic potential of breast cancer cells (19). In the 
present study, we provide an update on the recent advances in 
the understanding of the reduction-oxidation (redox)-related 
molecular signaling and imbalance in the cellular redox state 
in malignant transformation of endometriosis (8,20-27). The 
pathogenesis of the malignant transformation of endome-
triosis remains obscure; however, the results of several studies 
support the hypothesis that the redox imbalance, inflamma-
tory/immune response, cell cycle regulation and hormone 
activity are the deregulated functions and act in a dynamic 
epigenetic network (20,22,23,24).

Redox imbalance: Possible unexpected results. Repeated 
episodes of hemorrhage occur in endometriosis throughout 
menstruation  (23). Red blood cells accumulate in ovarian 
endometrioma (OE) and in the pelvic cavity through retrograde 
menstruation. The destruction of red blood cells leads to the 
release of Hb, heme and free iron (22,28). While Hb provides 
life-sustaining oxygen delivery, extracellular free Hb produces 
toxic heme degradation products and is a source of ROS due 
to inherent peroxidase activity (22,28,29). These findings are 
consistent with and are supported by in vitro experimental 
data  (30) and in  vivo clinical data  (31). Yamaguchi  et  al 
presented, for the first time, that the iron-induced persis-
tent oxidative stress within the endometriotic cyst leads to 
dynamic changes in the oxidative environment, which may 
play a crucial role in the process of endometriosis carcinogen-
esis (30). The authors reported that patients with endometriotic 
cysts had significantly higher cyst fluid concentration of free 

iron (100.9 mmol/l = 5,635 mg/l), compared to those with 
non-endometriotic cysts (0.075 mmol/l = 4.19 mg/l) (30). Free 
iron concentrations in CCC (4.27 mmol/l = 238 mg/l) were 
20-fold lower than those in endometriotic cysts (30). Since free 
iron has a propensity to induce oxidative stress, DNA damage, 
protein modification and lipid peroxidation, we hypothesized 
that patients with EAOC would have much higher levels of 
iron-related compounds compared with those with benign OE. 
Therefore, Yoshimoto et al extensively investigated cyst fluid 
levels of iron-related compounds in benign OE and EAOC (31). 
The median ± SD concentrations of total iron, heme iron and 
free iron for OE and EAOC cysts were 244.4±204.9 mg/l vs. 
14.2±36.6 mg/l (total iron), 303.9±324.4 mg/l vs. 27.6±53.4 mg/l 
(heme iron), and 13.5±16.2 mg/l vs. 3.9±2.7 mg/l (free iron), 
respectively (31). The concentrations of total iron, heme and 
free iron in EAOC were 17-, 11- and 3-fold lower than those in 
OE, respectively (31). There are no significant differences in 
cyst fluid concentrations of iron-related compounds between 
patients with CCC and those with EC. Several assays for the 
measurement of iron-related compounds are available: In a 
previous study, there was a significant difference in the cyst 
fluid iron levels between the two methods (30,31), which may 
be due to the different chelate colorimetric assay methods and 
differences in their analytical performances. Notwithstanding 
these limitations, patients with EAOC had much lower levels 
of iron-related compounds compared with those with benign 
OE.

Hemoglobin, heme and free iron in endometriotic cysts 
can lead to distortion in the homeostatic redox balance, the 
so-called redox imbalance (22). Total iron is composed of 
heme iron and nonheme iron (free catalytic form of iron, Fe2+). 
Free iron is labile and catalyzes the Fenton chemical reac-
tion, resulting in the generation of hydroxyl radical (•OH) as 
follows: Fe2+ + H2O2 Ú Fe3+ + OH- + •OH. The iron-dependent 
Fenton reaction has been shown to lead to genomic alterations, 
including a Cdkn2a/2b deletion and a Met amplification, during 
carcinogenesis in an animal model  (32). Yoshimoto  et  al 
found, for the first time, that the great majority of iron in the 
cyst fluid is considered to be heme iron, but not free iron (31). 
Hemoglobin and heme iron are oxidized from the oxyhemo-
globin (oxyHb-Fe2+) to the methemoglobin (metHb-Fe3+) with 
generation of the superoxide anion (O2

-) as an autoxidation as 
follows: Hb-Fe2+ (oxyHb) + O2 Ú Hb-Fe3+ (metHb) + O2

-. Since 
heme iron is abundant in the cyst fluid of benign OE, autoxida-
tion, rather than the Fenton reaction, may be the main process 
accomplishing the oxidative reaction.

It would be of interest to determine the origin and biolog-
ical function of metHb that is abundantly expressed in benign 
OE. Peritoneal concentrations of nitric oxide (NO) metabolites 
(nitrite and nitrate) in patients with endometriosis have been 
shown to be significantly higher than those in patients with 
non-endometriosis (33). Inducible NO synthase (iNOS) is an 
enzyme that catalyzes the production of NO from L-arginine. 
The mRNA level of iNOS has also been shown to be higher 
in the endometriosis group than in the non-endometriosis 
group (34). Thus, the serum NO level is elevated in the endo-
metriosis group as compared to the control group due to 
the induction of iNOS. NO can oxidize oxyHb to metHb as 
follows (35): HNO + 2[HbO2]2+ Ú 2[Hb]3+ + NO3

- + HO2
-. 

Therefore, metHb is known as an oxidative stress marker and 
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causes production of free radicals to induce oxidative stress by 
reacting with peroxides (hydrogen peroxide, lipid hydroperox-
ides) (29). MetHb is downregulated in EAOC when compared 
to benign OE, which supports the hypothesis that paradoxi-
cally, a shift in the balance between oxidants and antioxidants 
in EAOC is in favor of antioxidants (24). Glutathione, one of the 
most abundant endogenous antioxidant, is responsible for the 
conversion of metHb to oxyHb (36). It plays a role in repairing 
damage induced by oxidative stress in cancer cells and stops 
the process of cancer cachexia (36). Glutathione constitutes the 
survival advantage for cancer cells and is required for cancer 
initiation and progression (37,38). To date, a number of studies 
have demonstrated that the oxidant-antioxidant imbalance 
plays a critical role in the initiation and progression of multi-
stage carcinogenesis of endometriosis (23,30,39-41). These 
studies support the redox imbalance hypothesis that there are 
at least two stages of iron carcinogenesis and tumor progres-
sion: The initial wave of iron-induced oxidative stress would 
be followed by the second big wave of subsequent synthesis 
of the antioxidants, which diminishes cellular oxidative stress 
capacity, increases apoptosis resistance and promotes tumor 
initiation and progression.

Similar epigenetic modifications: Gene-environment inter-
actions. The practical and theoretical implications was 
discussed with regard to the current knowledge of epigenetic 
modifications in benign OE and EAOC. An excess of heme 
iron and non-heme iron is toxic to cell and tissue components. 
Hackett et al reported the quantification of total iron from 
the hematoma folllowing an intracerebral hemorrhage in an 
animal model (42). Neuronal cell death was observed at a 
concentration of ~1.0 µg/cm2 (42). The iron concentration of 
the brain tissue at the periphery of the hematoma has also 
been shown to be ~400 mg/l in two human subjects (43). The 
iron concentration in OE (244.4 mg/l) is almost similar to 
intracerebral hemorrhage (400 mg/l), suggesting that endo-
metriotic cells may face the crisis of death. Under prolonged 
stressful conditions, endometriotic cells must cope with 
various internal and external ROS for survival. The choice 
between cell survival and death depends on the net result 
of ROS production and their elimination by antioxidative 
enzymes (44). High levels of ROS promote DNA damage and 
cell death, although perhaps surprisingly, low levels of ROS 
are known to be associated with the development of tumors 
and then the process of carcinogenesis (22-24,31). Thus, an 
imbalance in the cellular redox state may play an important 
role in the mechanism of its long-term carcinogenic effect; 
gene-environment interactions may modify an individual's 
susceptibility to this type of cancer.

High ROS levels damage the mitochondrial DNA and 
promote its mutation, which affects the epigenetic control 
mechanisms of nuclear DNA, by decreasing the activity of 
some methyltransferases, thus causing DNA hypomethyl-
ation  (45). ROS-induced oxidative stress is associated not 
only with global/genome-wide DNA hypomethylation, but 
also with tumor suppressor gene promoter-specific aberrant 
hypermethylation via the upregulation of the expression of 
DNA methyltransferases (46). CpG clusters are susceptible 
to oxidative DNA damage to cytosine in the Fenton reaction, 
which is the main cause of cytosine-to-thymine transition 

mutations  (47,48). Therefore, the dynamics of DNA meth-
ylation at CpG clusters can drive an increased likelihood of 
genetic mutations. Epigenetic mechanisms and then genetic 
mutations are considered to contribute to the necessary plas-
ticity of endometriotic cells. Recent studies have attempted to 
link genetic modifications with epigenetic or environmental 
risk factors for EAOC (23,49). These results shed light onto 
the mechanisms underlying the associations of environmental 
stimuli and redox imbalance with risk of developing EAOC.

Defective CpG methylation affects several genes 
involved in endometriosis malignant transformation, such as 
Runt-related transcription factor 3 (RUNX3), human mutL 
homolog 1 (hMLH1), E-cadherin (CDH1), Ras-association 
domain family of gene 2 (RASSF2), p16, AT-rich interactive 
domain-containing protein 1A (ARID1A) and phosphatase 
and tensin homolog deleted on chromosome 10 (PTEN) by 
promoter hypermethylation (50). By contrast, steroidogenic 
factor-1 (SF-1), a transcriptional factor essential for estrogen 
biosynthesis, has been shown to be hypomethylated and 
aberrantly expressed  (51). Furthermore, oxidative stress 
(exogenous H2O2) downregulates ARID1A mRNA and protein 
expression (39,52,53). Oxidative stress recruits DNA methyl-
transferase to chromatin (54), and also modifies the expression 
of CpG demethylases, such as ten-eleven translocation (TET) 
and jumonji (JMJ) genes (49). These genes may be involved 
in the development of endometriosis and its malignant 
transformation. The epigenetic switch occurs even in benign 
endometriosis (49).

Similar genetic abnormalities. Furthermore, endometriosis 
and EAOC harbor not only multiple somatic gene mutations, 
but also epigenetic modifications. Herein, we provide overview 
of the possible pathogenesis of malignant transformation of 
endometriosis that have exhibited distinct tumor morpho-
logical and phenotypical features, but have suggested similar 
(epi)genetic abnormalities. EC is distinguished from CCC 
due to different morphologies, but both represent common 
environmental profiles (53) and maintain the similar genomic 
abnormalities with multiple overlaps and share similar molec-
ular signatures (54). Recent microarray, targeted sequencing 
and whole genome studies have identified that somatic 
mutations of AT-rich interaction domain 1A (ARID1A), phos-
phatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit 
alpha (PIK3CA), PTEN, KRAS proto-oncogene, GTPase 
(KRAS), catenin beta  1 (CTNNB1) and mutL homolog  1 
(MLH1) were commonly found across EAOC (55-61). EAOC 
and adjacent endometriotic lesions exhibited common multiple 
cancer driver gene mutations, suggesting that they can share 
extensive genetic similarity, a common genomic origin and a 
common lineage (62-65).

We hypothesized that endometriotic cells would acquire 
(epi)genetic modifications required for survival among the 
harshest and poorest environments. The cells selected for 
oxidative resistance enable clonal expansion/differentiation 
and could survive (66). Indeed, endometriosis is considered 
to be monoclonal in origin and neoplastic in nature  (67). 
Surprisingly, mutations of classical cancer driver genes have 
been observed in 4% of a histopathologically benign OE and 
26% of deep infiltrating endometriosis in cancer driver genes, 
including ARID1A, KRAS, PIK3CA and PPP2R1A (64,65). 
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The existence of somatic driver mutations occurring in the 
epithelial glandular cells but not the stromal cells of the same 
endometriosis lesion (64) implies that endometriotic epithelial 
cells might incur an advantage through selective survival or 
proliferation and that the stromal cells are resistant to environ-
mental hazards.

CCC-specific (epi)genetic profile. Despite a similar genetic 
profile, EAOC tumors present a different biological profile (68). 
Several studies have provided new insight into the signaling 
pathway of genes differentially expressed between EC and 
CCC. The interpretation of differentially expressed genes has 
verified the dysregulated biological functions related to glucose 
utilization, cell cycle regulation and hormone metabolism, that 
plays important role in the development of EAOC (60,68-70). 
Transcription factor hepatocyte nuclear factor-1β (HNF1B) 
was identified as a biomarker of ovarian CCC histology, but not 
EC, with the hypomethylation of the HNF1B promoter influ-
encing the characteristic biology (60,68,70-75). Endometriosis 
is composed of two subgroups: HNF-1β-positive and -nega-
tive cells (71). The expression patterns have been shown to be 
similar in a contiguous transition from endometriotic cells to 
atypical cells to CCC (60). HNF-1β-positive endometriotic 
cells may represent a prototypical lineage of CCC cells. Much 
interest has been focused on HNF-1β, which is commonly 
upregulated in endometriosis and CCC. HNF-1β is associ-
ated with the normal development of the liver, pancreas, gut, 
lungs and kidneys, and its mutations represents the frequent 
occurrence of familial forms of type 2 diabetes  (68). The 
exact biological function of the HNF-1β gene in CCC has 
been widely reported: This gene plays key roles in glycogen 
synthesis, anti-oxidative defense, anti-apoptosis, resistance 
to anticancer agents and cell cycle regulators at G2/M transi-
tion (73,76,77).

First, in the elegant review, Mandai et al provided new 
insight into the biological impact of CCC in a tumor micro-
environment via the upregulation of HNF-1β expression (68). 
HNF-1β upregulates glucose uptake and glycolysis to give rise 
to an increased yield of lactate in CCC, which is known as 
the Warburg metabolic phenotype (68,78). The Warburg effect 
benefits cancer cells to avoid excess ROS generation and thus 
gains increased survival advantage in iron-rich stressful envi-
ronments such as endometriosis. The genes involved in glucose 
homeostasis, including dipeptidyl peptidase 4 (DPP4) (79) 
aldolase B (ALDOB)  (80), glucose transporter-1 (GLUT-1) 
gene and several key enzymes in the glycolytic process (78), 
are downstream targets of HNF1B. HNF-1β thus may be a key 
regulator of glycolysis, gluconeogenesis and glucose homeo-
stasis.

Second, HNF-1β actually reduces and protects cancer 
cells from oxidative stress by markedly changing antioxidant 
activity  (78,81,82). HNF-1β may repair damage caused by 
oxidative stress and can promote survival by upregulating 
antioxidant proteins via binding with antioxidant response 
element (37,68,81,83,84). This gene upregulates the synthesis 
of glutathione (GSH), a powerful antioxidant (85). HNF-1β 
also triggers ROS resistance in CCC cells via rBAT, a cystine 
transporter (68). Thus, HNF-1β reduces oxidative stress and 
confers ROS resistance and a survival advantage in CCC 
cells (37,68).

Finally, it would also be of interest to determine the 
mechanisms underlying the protective effects of HNF-1β on 
cells against any cytotoxicity and genotoxicity caused by ROS 
when CCC cells were exposed to a stressful environment. 
DNA damage occurs continually through various intrinsic and 
extrinsic stressors such as ROS, ultraviolet radiation, smoking 
and errors during replication (86). In endometriosis, environ-
mental hazards, including hemoglobin, heme and iron, induce 
lesions in genomic DNA. The cellular DNA damage response 
(DDR) comprises the coordinated actions of DNA repair and 
checkpoint systems that regulate a spectrum of processes 
before replication, where cell cycle arrest enables DNA repair 
to occur (86). The DDR also promotes cell death when the 
damage is beyond repair. If excessive damage exists, the DDR 
activates cell death and eliminates the damaged cells by apop-
tosis. Two key regulators of the DDR cell cycle checkpoints 
include ataxia telangiectasia mutated (ATM) and ataxia telan-
giectasia mutated and rad3-related (ATR) (86). ATR responds 
to a broad spectrum of DNA damage, including replication-
associated DNA damage, while ATM is activated by DNA 
double-strand breaks (86). A number of studies have vigor-
ously investigated the association between redox imbalance 
and cell cycle signaling pathways in CCC (73,77,83,87-89), 
while no studies have focused on the influence of ROS on 
the pathogenesis of EC, at least to the best of our knowledge. 
Shigetomi et al  investigated the role of HNF-1β in regula-
tion of the cell cycle arrest in response to DNA damage in 
the CCC cell line, TOV21G (87). Flow cytometric analysis of 
cell cycle profiles indicated that HNF-1β inhibited cell cycle 
progression (87). Fig. 1 illustrates the typical flow cytom-
etry histograms of the results. HNF-1β-expressing TOV21G 
cells exhibited a marked increase in the proportion of cells 
in the G2/M phase following exposure to a genotoxic agent, 
bleomycin, for 24 h (62.1 vs. 42.3%) (87). The knockdown of 
endogenous HNF-1β attenuated G2/M phase cell cycle arrest 
and stimulated cell death (28.0 vs. 18.2%) (87). It would also 
be of interest to determine which genes and their signaling 
pathways enhance and accelerate cell cycle arrest at G2/M 
phase. Shigetomi et al  (87) and Ito et al  (89) explored the 
activated and interconnected signaling network of HNF-1β 
to identify novel downstream targets (Fig.  2). HNF-1β 
promotes TOV21G cell survival through Chk1 phosphoryla-
tion (87,89). As previously demonstrated, the inactivation of 
HNF1B with siRNA suppressed Claspin protein expression, 
but failed to inhibit Claspin mRNA expression (89). Claspin 
transmits a replication stress signal from ATR to Chk1 and 
functions as an adaptor protein required for Chk1 activation. 
In CCC cells, HNF-1β, but not ATR, are essential for the 
upregulation of Claspin protein expression, suggesting that 
this gene functions as a Claspin protein post-translational 
modification. Ito et al vigorously identified potential modi-
fiers of Claspin protein relevant to HNF-1β biology (89). To 
date, >450 unique protein modifications have been identified, 
including phosphorylation, acetylation, ubiquitination and 
SUMOylation through post-translational modification (90). 
Phosphorylation is one of the most common and reversible 
intracellular post-translational modifications of serine and 
threonine residues  (91). Acetylation is a modification of 
the lysine residues (92). Ubiquitination is a widely studied 
method of post-translational protein modification (4). Claspin 
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is reportedly regulated by ubiquitin-dependent proteasomal 
degradation, whereas the ubiquitin-specific processing 
protease (USP) 28- and USP29-mediated deubiquitination 
inhibits its degradation (93). Martín et al reported that USP29 
controls the stability of Claspin by deubiquitination  (94). 
However, HNF-1β did not stimulate the upregulation of USP29 
protein in CCC cells. Ito et al identified, for the first time, a 
novel regulator of Claspin, USP28, as a direct downstream 
target of HNF-1 (89). USP28 interacts with Claspin and is able 

to deubiquitinate it. With these results, USP28 is identified as 
a novel player in the HNF-1β-Chk1 pathway and the control 
of DNA replication, via the HNF-1β-USP28-Claspin-Chk1-
CDC25C pathway (89). This pathway contributes to a loss of 
G2/M checkpoint control, which accumulates genomic and 
chromosomal instability and then paves the way for further 
major genetic changes.

Although the impact of HNF-1β on the cell cycle arrest at 
G2/M phase under oxidative stress conditions is recognized 

Figure 1. HNF-1β induces cell cycle arrest at the G2/M phase: Typical flow cytometry histograms (87). HNF-1β+-TOV21G clear cell carcinoma cells were 
transfected with control siRNA or HNF-1β siRNA. Cells were fixed at 24 h following bleomycin treatment and stained with propidium iodide (PI). Each graph 
represents percentages of the cells in the various phases of the cell cycle. HNF-1β, hepatocyte nuclear factor-1β.

Figure 2. HNF-1β-dependent signaling pathway. The HNF-1β-dependent DNA damage checkpoint is essential for the maintenance of genome integrity 
after genotoxic stress, and also for cell survival. In response to genotoxic stress-induced DNA damage, Chk1, a downstream target of ATR, stops cell cycle 
progression at G2/M phase, and allows cells to repair damaged DNA for survival. USP28 mediates a novel pathway of HNF-1β-dependent cell cycle arrest, 
DNA replication and cell survival, via the HNF-1β/USP28/Claspin/Chk1/CDC25C signaling pathway (89). HNF-1β, hepatocyte nuclear factor-1β; USP28, 
ubiquitin specific protease-28.



KOBAYASHI et al:  PATHOGENIC CONCEPTS OF MALIGNANT TRANSFORMATION OF ENDOMETRIOSIS1734

in CCC, the role of HNF-1β in oxidative stress-induced 
endometriosis carcinogenesis remains poorly defined. When 
endometriotic cells are exposed to genotoxic oxidative 
stressors such as hemoglobin, heme or free iron, the HNF-1β 
gene may also be epigenetically hypomethylated and is 
demonstrated as a positive modulator of cell survival, through 
the HNF-1β signaling pathway. This hypothesis needs to be 
verified in future studies.

EC-specific (epi)genetic profile. Endometriosis is an estrogen-
dependent disease. The enzyme aromatase P450 is expressed 
aberrantly in endometriosis and catalyzes the final step of 
estrogen production and upregulates the expression of pros-
taglandin E2 (PGE2) and macrophage migration inhibitory 
factor (MIF), which, in turn, induces the expression of aroma-
tase within endometriotic lesions (55). The effects of estrogen 
on stromal cell PGE2 production may be mediated in a feed-
forward manner. MIF is a cytokine marker of M2 polarization 
of macrophage which facilitates the onset and progression 
of endometriosis. Such an interplay with a positive feedback 
cycle is involved in cell proliferation and apoptotic resistance 
of endometriosis, and then its malignant transformation.

There are two types of estrogen receptors (ESRs), ESR1 
(also known as ERα) and ESR2 (ERβ). The ESR expression 
level has been shown to be higher in EC and high-grade serous 
than in CCC and mucinous carcinoma (95). Among EAOC, 
ESR positivity has been shown to be significantly higher in 
EC (91%), but lower in CCC (8%) (60). ESR gene expression 
is modulated by a number of factors, such as DNA methyla-
tion of the promoter region, histone deacetylation, chromatin 
remodeling, or heme and iron binding (58). The interrelation 
between the ESR expression and these factors is complex, as 
genetic characteristics and environmental factors can mutually 
impact upon each other. The significant up- and downregu-
lation of ESR has been shown to be associated with marked 
epigenomic alterations: ESR2 is the predominant ESR in 
endometriosis due to the hypomethylation of promoter CpG 
islands, whereas ESR1 levels are lower in endometriosis (69). 
EC shares estrogen-dependent oncogenic pathways and 
signaling network. A hyperestrogenic state or the upregulation 
of ESR expression may be shared in common with benign and 
malignant endometriosis, which may denote that endometriosis 
has carcinogenic potential. Furthermore, G-protein-coupled 
estrogen receptor-30 (GPR30) is the novel estrogen-responsive 
receptor G protein-coupled estrogen receptor 1, GPER (96). 
GPR30 expression is higher in EAOC than in benign OE (96). 
The upregulation of ESR expression is associated with a 
better clinical outcome in ovarian cancer (95) and CCC (14), 
suggesting the role of ESR in tumor initiation or the early 
development of primary EC, but not in EC progression.

Taken together, EAOC is a heterogeneous disease, with at 
least two intrinsic subtypes, EC and CCC. Although the role 
of DNA methylation in EAOC development is not yet fully 
understood, its profiling defines cancer subclasses differing 
in clinicopathologic characteristics, molecular profiles and 
survival. Genes with promoter hypermethylation and hypo-
methylation are consistent in cancer function and characteristics 
of concordant methylation. The promoter hypomethylated ESR 
gene is reversely correlated with the promoter hypermethylated 
HNF1B gene in EC (58,60,97). A low expression of ESR (95) 

and high expression of HNF-1β (71) are identified as potential 
biomarkers for CCC.

Other crucial aspects. We discuss the potential involvement 
of microenvironment in endometriosis and its malignant 
transformation. The dysfunctional regulation of immune 
and inflammatory microenvironment, extracellular matrix 
remodeling, or new blood vessel formation is a crucial 
aspect of pathogenesis of endometriosis and its malignant 
transformation. Ovarian cancer is initially associated with 
pelvic inflammatory disease, such as endometriosis, demon-
strating a similarity between the processes of inflammation 
and carcinogenesis. Endometriotic cells adapt to survive in 
the unique microenvironment conditions with high levels 
of iron, inflammatory cytokines and chemokines  (98). 
Microenvironment-cell interplay may modulate the major 
signaling pathways associated with cell cycle regulation, 
growth factor signaling, immune and inflammatory pathways, 
and the extracellular matrix remodeling, which results in 
phenotype transformation (99). Researchers have focused on 
the function of matrix metalloproteinase (MMPs) (100), lysyl 
oxidases (LOXs) and nuclear factor κ-light-chain-enhancer of 
activated B (NF-κB) in the pathophysiology of inflammation 
and EAOC (101). Several studies have identified the NF-κB-
dependent multiple oncogenic pathways in endometriosis (102) 
and highlight its malignant transformation  (103). MMP-2 
promotes angiogenesis during endometriosis progression via 
the cyclooxygenase (COX)-2/PGE2/pAKT axis  (104). The 
upregulation of lysyl oxidase (LOX) expression is involved in 
extracellular membrane degradation, invasive and metastatic 
potential of endometriosis (105). The disruption of epithelial-
stromal communication networks elicits a feed-forward loop 
involving endometriosis to drive inflammation, which may be 
relevant in diseases such as EAOC.

In addition, chemokines are key players in the activation 
and are recruitment of immune cells at sites of inflammation. 
The CXCR4/CXCL12 axis is functional in endometriosis 
and plays a role in a number of diverse cellular functions, 
including immune surveillance, inflammation response, tissue 
homeostasis, and tumor growth and metastasis (106). CXCR4 
expression is upregulated by vascular endothelial growth 
factor (VEGF), and plays an important role in the malignant 
transformation of endometriosis  (107). Furthermore, the 
microvascular endothelium of ectopic endometrial tissue 
originates from circulating endothelial progenitor cells 
mobilized from the bone marrow, which is also controlled by 
the CXCL12/CXCR4 axis (108). The neovascularization of 
endometriotic lesions is not only driven by angiogenesis, but 
also vasculogenesis from circulating endothelial progenitor 
cells  (108). Thus, angiogenesis and vasculogenesis play an 
integral part in the establishment and growth of endometriotic 
lesions and malignant transformation (108,109). Therefore, 
these changes in the microenvironment are necessary to accu-
mulate enough epigenetic, genetic and pathological alterations 
for malignant transformation of endometriosis (110).

Discussion

In the present study, we provide a literature review of various 
lines of evidence supporting the concept of an altered redox 
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environmental model for malignant transformation of endo-
metriosis. Fig. 3 summarizes the current knowledge about the 
role of the shared and independent (epi)genetic background 
between EAOC tumors, and their interaction with environ-
mental stimuli. We initially updated the epigenetic, genetic 
and environmental backgrounds of EAOC and surveyed the 
examples of environmentally induced epigenetic changes. 
Despite the differences in morphology between EC and CCC, 
they share remarkable (epi)genetic similarities and enrichment 
for driver somatic mutations affecting ARID1A, PTEN and 
KRAS genes (55-61). The hemoglobin, heme and free iron 
accumulated during endometriosis development are a prereq-
uisite to modification of genomic DNA for prompt cellular 
responses to oxidative stress (58). An excess of heme iron and 
nonheme iron participates in the Fenton reaction generating 
the toxic hydroxyl radical. Autoxidation of oxyHb to metHb 
always occurs due to abundant heme iron in the contents of 
benign OE. Autoxidation, rather than the Fenton reaction, 
might be the main process accomplishing the oxidative reac-
tion in endometriosis (31). Redox biology is considered to alter 
(epi)genetic events. Environmentally-induced epigenetic alter-
ations may result in a change of the adaptive gene function, 
leading to phenotypic plasticity. Endometriosis is predisposed 
to develop into EAOC through the progressive accumulation 
of epigenetic alterations (3,4,6,9) during obvious redox imbal-
ance (20,23). However, there is only limited knowledge of the 
mechanisms through which environmental factors affect gene 
function.

In addition, a previous approach identified different genetic 
backgrounds between EAOC tumors (60). By comparing the 
gene expression profile, at least two differentially expressed 

genes were identified in EC and CCC. A positive ESR expression 
and negative HNF-1β expression is a frequent finding in EC, but 
not in CCC (58,60). EC may develop in the setting of estrogen-
driven pathway (111). On the other hand, HNF-1β-dependent 
ovarian cancer arising from endometriosis is substantially 
more associated with CCC than with EC (11,60,77,83,87,89). 
Immunohistochemical data have indicated that atypical endo-
metriosis is a precursor lesion molecularly similar to adjacent 
invasive cancer (60). Pre-malignant endometriotic cells exposed 
to mixture of genotoxic oxidative stressors inhibit cell prolif-
eration and promote cell cycle arrest at G2/M phase for DNA 
damage repair through the HNF-1β/USP28/Clasipin/Chk1 
pathway (89). Therefore, HNF-1β induces cell cycle arrest, DNA 
damage and genomic instability, thereby promoting erroneous 
DNA repair and can predispose to CCC. EAOC tumors had 
enrichment of cancer-specific gene signatures corresponding 
with each histological subtype: ESR induces EC cell prolifera-
tion (‘go’) and HNF-1β induces CCC cell cycle arrest (‘stop’). 
This model underscores a subtype-dependent dichotomy 
between ‘go’ and ‘stop’ in EAOC, through potentially better 
ability to adapt in a changing environment (Fig. 3).

In conclusion, a special emphasis is given to current 
pathophysiological concepts of malignant transformation of 
endometriosis, including redox imbalance, environmental 
stimuli-induced (epi)genetic modifications and mutually 
exclusive expression of ESR and HNF-1β genes for a survival 
mechanism in response to several stresses.
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Figure 3. The concept of an altered redox environmental model for malignant transformation of endometriosis. EAOC consists of different histological 
subtypes mainly originating from EC and CCC. First, repeated episodes of hemorrhage occur in endometriosis throughout menstruation. Extracellular free 
hemoglobin produces toxic heme degradation products and is a source of ROS. Hemoglobin, heme and free iron in endometriotic cysts cause redox imbal-
ance. Second, there is a link between environmental stimuli and (epi)genetic modifications. EC is distinguished from CCC due to different morphologies, 
but both represent common environmental profiles and maintain the similar genomic abnormalities with multiple overlaps and share similar molecular 
signatures, including ARID1A, PIK3CA, PTEN, or KRAS. Finally, ESR and HNF-1β proteins are mutually exclusive in EAOC. HNF-1β-positive and 
ESR-negative endometriotic cells may represent a prototypical lineage of CCC cells. The positive ESR expression and negative HNF-1β expression is a 
frequent finding in EC. EAOC tumors had enrichment of cancer-specific gene signatures corresponding with each histological subtype: ESR induces EC 
cell proliferation (‘go’) and HNF-1β induces CCC cell cycle arrest (‘stop’) for a survival mechanism in response to several stresses. EAOC, endometriosis-
associated ovarian cancer; EC, endometrioid carcinoma; CCC, clear cell carcinoma; ARID1A, AT-rich interactive domain-containing protein 1A; PIK3CA, 
phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha; PTEN, phosphatase and tensin homolog deleted on chromosome 10; HNF-1β, 
hepatocyte nuclear factor-1β.
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