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Abstract. The aim of the present study was to investigate the 
effects of microRNA (miR)‑29b‑3p gene promoter methylation 
on angiogenesis, invasion, and migration in human pancreatic 
cancer. Prediction of promoter methylation of miR‑29b‑3p was 
performed through the MethPrimer tool. Then the methylation 
levels of miR‑29b‑3p in human pancreatic cancer tissues and 
cell lines were detected by pyrosequencing, and the relative 
expression of miR‑29b‑3p was assessed in pancreatic cancer 
tissues by qPCR. The results were analyzed by linear regres-
sion. Western blot analysis was used to detect expression 
of DNA methyltransferases (DNMTs) in pancreatic cancer 
tissues and adjacent tissues. The Transwell assay was used to 
detect the ability of cell migration and invasion. Cells were 
co‑cultured with human umbilical vein endothelial cells 
(HUVECs) to detect the ability of angiogenesis. The results 
revealed that DNMT1 expression in pancreatic cancer tissues 
was higher than that in adjacent tissues. Further results showed 
that expression of miR‑29b was negatively correlated with 
the methylation level of the miR‑29b promoter. Bxpc3 and 
Capan‑2 cells had higher methylation levels, and the expression 
level of miR‑29b‑3p in Bxpc3 and Capan‑2 cells was found 
to be lower than that of other cell lines. Expression of zonula 
occludens‑1 (ZO‑1) and occludin was significantly increased, 
and the migration of cancer cells was decreased after cells 
were treated with siRNA DNMT1. Further results showed that 
miR‑29b reversed the promotive effect of DNMT1 overexpres-
sion on tumor cell malignant properties. Methylation of the 
miR‑29b‑3p promoter contributes to angiogenesis, invasion, 
and migration in pancreatic cancer. This study indicated that 
the alteration of methylation of mR‑19b may be a potential 
approach for inhibiting the progression of pancreatic cancer.

Introduction

Pancreatic cancer is a highly malignant tumor of the diges-
tive tract and the fourth leading cause of cancer‑related death 
worldwide (1,2), In recent years, its morbidity and mortality 
have exhibited an upward trend worldwide, due to difficulties 
in detection and lack of effective treatment, with a ≤5% 5‑year 
survival rate (2). In order to effectively diagnose, prevent, and 
treat this disease, further study of the molecular mechanism of 
pancreatic cancer is needed.

DNA methylation is a form of epigenetic modification and 
an important mechanism of gene expression regulation (3,4). 
The occurrence and development of tumors are closely 
related to DNA methylation abnormalities, which are mainly 
manifested as a decrease in the overall genomic methylation 
level in tumor cells and an increase in the methylation level 
of the promoter region of specific genes  (5‑8). Previous 
studies have shown that methylation abnormalities in multiple 
promoter regions are closely related to the development of 
pancreatic cancer (5,6). 

As a member of the DNA methyltransferases (DNMTs), 
DNMT1 plays an important role in mediating gene expression 
and chromatin structure, by preserving existing DNA meth-
ylation during DNA replication (7). DNMT1 was found to be 
upregulated in various types of cancer, including pancreatic 
cancer  (8). A study of pancreatic cancer demonstrated 
that lower expression of DNMT1 reversed the resistance 
to 5‑azadeoxycytidine  (9). In addition, siRNA targeting 
DNMT1 led to a reduction in cell viability and induced cell 
apoptosis in pancreatic cancer cells  (10). Abnormal DNA 
methylation in tumors includes overall hypomethylation of 
the genome and hypermethylation of certain gene promoter 
regions. Abnormally elevated methylation of the promoter 
region may lead to transcriptional silencing of important 
regulatory genes such as cell cycle regulatory genes, 
tumor‑suppressor genes, and apoptotic genes, resulting in 
decreased expression or loss of expression of related genes, 
and thereby promoting tumor formation  (11). This hyper-
methylation is another mechanism leading to the inactivation 
of tumor‑suppressor genes.

MicroRNAs (miRNAs) are a class of small non‑coding 
RNAs with about 21‑25  nucleotides, which can regulate 
the expression of post‑transcriptional target genes  (12,13). 
A large number of researches also confirmed that miRNAs 
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have the dual role of oncogene or tumor suppressor gene, and 
its expression changes are closely related to tumor forma-
tion (14‑16). miR‑29b‑3p is a member of the miR‑29 family 
and is closely related to the behavior of various tumors (17‑21). 
In this study, we investigated the effects of the miR‑29b‑3p 
promoter methylation status on angiogenesis, invasion, and 
migration of pancreatic cancer cells. This study provides 
information concerning the role of the methylation of miR‑29b 
in pancreatic cancer, and this may be a target for pancreatic 
cancer therapy.

Materials and methods

Patients and tissue collection. A total of 18 pairs of tissues 
from pancreatic cancer patients (mean age, 68.65±14.23 years 
ranging from 39 to 91; 8 female patients and 10 male patients) 
were collected at the Yantai Yuhuangding Hospital of Qingdao 
University from March to November 2019. Patients who had 
received chemotherapy or radiotherapy were excluded in 
this study. The tissues were collected and transferred into 
liquid nitrogen and then were stored at ‑80˚C. This study was 
approved by the Ethics Committee of the Yantai Yuhuangding 
Hospital of Qingdao University, and the ethics approval 
number is QDU‑201902‑3. All patients have provided written 
informed consent to participate in the study.

Antibodies, reagents, plasmids, miRNA, and siRNA. Antibodies 
against DNMT1 (dilution 1:1,000, cat. no. ab13537), DNMT2 
(dilution 1:1,000, cat. no.  ab272620), DNMT3a (dilution 
1:1,000, cat. no. ab228691), DNMT3b (dilution 1:1,000, cat. 
no. ab122932), zonula occludens‑1 (ZO‑1) (dilution 1:1,000, cat. 
no. ab191143), occludin (dilution 1:1,000, cat. no. ab242202), 
claudin‑5 (dilution 1:1,000, cat. no. ab15106), GAPDH (dilu-
tion 1:1,000, cat. no. ab9485) were from Abcam. HRP‑labeled 
secondary antibodies (dilution 1:10,000, cat. no. sc‑2370 or 
sc‑2371) were from Santa Cruz Biotechnology, Inc. Fetal 
bovine serum (FBS, Gibco; Thermo Fisher Scientific, Inc.), 
Dulbecco's modified Eagle's medium (DMEM, Sigma; Merck 
KGaA, cat. no. 5796), Lipofectamine 3000 (Invitrogen; Thermo 
Fisher Scientific, Inc.), and NuPAGE 4‑12% Bis‑Tris Gels were 
purchased from Thermo Fisher Scientific, Inc. Hydroquinone 
and sodium bisulfite were obtained from Sigma‑Aldrich (Merck 
KGaA). Wizard DNA purification resin was obtained from 
Promega Corp. The CpGenome DNA Modification Kit was 
purchased from Intergen. The Vector and pcDNA3.1‑DNMT1 
were all designed and purchased from Invitrogen; Thermo 
Fisher Scientific, Inc. miR‑29b‑3p mimic, negative control 
mimics and all siRNA oligonucleotides were synthesized by 
GenePharma. All mimics and plasmids were transfected into 
cells using Lipofectamine 3000 (Invitrogen; Thermo Fisher 
Scientific, Inc). At 48‑h post transfection, the transfected cells 
were collected for the next analysis.

Cell culture. Normal human pancreatic duct epithelial cells 
(HPDE6‑C7) and 5 pancreatic cancer cell lines (BxPC3, 
PANC1, CFPAC, Capan‑2, and AsPC‑3) were purchased 
from Clontech. HUVECs were obtained from the American 
Type Culture Collection (ATCC). All cells were maintained 
and propagated in DMEM with 10% FBS and 1% penicillin 
streptomycin in 5% CO2 at 37˚C. 

Western blotting. Cytoplasmic and nuclear protein fractions 
were extracted with the NE‑PER Reagent Kit (Pierce; Thermo 
Fisher Scientific, Inc.) according to the manufacturer's 
instructions. Cell or tumor tissue lysates were separated by 
NuPAGE 4‑12% Bis‑Tris Gels, under 60 V electrophoresis for 
30 min, followed by 120 V electrophoresis for 120 min. After 
electrophoresis, proteins were transferred to PVDF membranes 
(Millipore), under 300 mA for 30 min. The membrane was 
then blocked with 5% defatted milk powder for 60 min at room 
temperature. Mouse anti‑human antibodies against DNMT1, 
DNMT2, DNMT3a, DNMT3b, ZO‑1, occludin, claudin‑5 and 
GAPDH (all diluted at 1:1,000, Santa Cruz Biotechnology, Inc.) 
were added at 4˚C room temperature incubation overnight. The 
membrane was then washed with phosphate‑buffered solution 
Tween (PBST) for 30 min, followed by incubation with 
horseradish peroxidase (HRP)‑conjugated secondary antibody 
for 60 min (dilution, 1:5,000, Santa Cruz Biotechnology, Inc.). 
After the membrane was washed three times with PBST, 
chemiluminescence detection reagent was used to develop the 
film. Gel image system was used to analyzed the band density 
(Bio‑Rad Laboratories, Inc.).

Methylation‑specific PCR. Genomic DNA was treated 
with bisulfite, and all cytosines that were not methylated 
were converted to uracil, while methylated cytosines were 
unchanged. Subsequently, the primers were designed for 
PCR at both ends of the CPG island to purify the target 
product. Primer pairs for PCR amplification were purchased 
from Thermo Fisher Scientific, Inc. After TA cloning, each 
clone was selected for positive clone sequencing, and finally 
the sequence was compared with the original sequence, the 
methylation site and number were counted, and the degree of 
methylation was analyzed.

Transient expression of DNMT1 in Bxpc3 and Capan‑2 cells. 
The empty plasmid vector pcDNA3.1 (Invitrogen; Thermo 
Fisher Scientific, Inc.) or the plasmid vector containing 
DNMT1 cDNA was transfected into Bxpc3 and Capan‑2 cells 
using Lipofectamine 3000 for subsequent experiments. 

Transient t ransfect ion for f unct ional analysis of 
miR‑29b‑3p and DNMT1. The cells were seeded in 6‑well 
plates at 1x 105 cells/well followed by culturing for 24 h 
and then transfected with 30 nM of the miR‑29b‑3p mimic 
and the negative control mimics (NC) (GenePharma) using 
Lipofectamine 3000. The miR‑29b‑3p mimic and negative 
control mimic sequences were designed and synthesized 
by Gene pharma. The DNMT1 gene was knocked down 
by DNMT1 interfering small RNA (siRNA) obtained from 
Generay and transfected into the Bxpc3 and Capan‑2 cells 
by Lipofectamine 3000. The siRNA target sequence was as 
follows: DNMT1, 5'‑TGT​TAA​GCT​GTC​TCT​TTC​CAA‑3' 
and negative control, 5'‑TAG​ATA​CTA​TGA​ATT​CGT​CCA​
A‑3'. Medium was replaced with fresh medium after trans-
fection for 6 h, and the cells were cultured for another 48 h 
before further analysis.

Quantitative real‑time PCR (qPCR). The total RNA was isolated 
from cells using TRIzol reagent (Thermo Fisher Scientific, 
Inc.) according to the manufacturer's instructions. RNA (1 µg) 
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was converted into cDNA using the RevertAid™ First Strand 
cDNA Synthesis Kit (Fermentas; Thermo Fisher Scientific, 
Inc.). After 10‑fold dilution, 4 µl of cDNA was subjected to 
PCR amplification using SYBR Premix Ex Taq™ II (Takara) 
according to the manufacturer's protocol in a StepOnePlus™ 
Real‑Time PCR System (ABI; Thermo Fisher Scientific, Inc.). 
The following thermocycling conditions were used for qPCR: 
95˚C for 10 sec, then 40 cycles with 95˚C for 5 sec, 60˚C for 
34 sec. β‑actin served as the internal control. The primer 
sequences were as follows: DNMT1 forward, 5'‑CCT​AGC​CCC​
AGG​ATT​ACA​AGG‑3' and reverse, 5'‑ACT​CAT​CCG​ATT​
TGG​CTC​TTT​C‑3'; miR‑29b‑3p forward, 5'‑ACA​CTC​CAG​
CTG​GGT​AGC​ACC​ATT​TGA​AAT​CA‑3', reverse, 5'‑CTC​
AAC​TGG​TGT​CGT​GGA‑3' and reverse transcription, 5'‑CTC​
AAC​TGG​TGT​CGT​GGA​GTC​GGC​AAT​TCA​GTT​GAG​AAC​
ACT​GA‑3'; β‑actin forward, 5'‑TGT​TCG​TCA​TGG​GTG​TGA​
AC‑3' and reverse, 5'‑ATGGCATGGACTGTGGTCAT‑3'; U6 
forward, 5'‑CTC​GCT​TCG​GCA​GCA​CA‑3' and U6 reverse, 
5'‑AAC​GCT​TCA​CGA​ATT​TGC​GT‑3'. β‑actin and U6 were 
used as internal references for measuring relative expression 
of DNMT1 and miR‑29b‑3p, respectively. The expressions of 
genes were quantified using the 2‑∆∆Cq method (22).

Cell migration and invasion assays (Transwell). Uncoated 
or Matrigel‑coated chambers Transwells (BD Biosciences) 
containing 8‑µm pores were used for the assays. Cells 
(200 µl) (1x105 cells/ml) were seeded into the upper chamber 
in serum‑free DMEM medium. A total of 600  µl condi-
tioned DMEM media from target cells containing 10% FBS 
was added to the lower chamber. Cells were fixed in 100% 
methanol 72 h later and stained with a 1:5 dilution of Giemsa 
(Sigma‑Aldrich; Merck KGaA) for 40 min at room tempera-
ture. Cells remaining on the upper side of the filter were 
removed with a cotton swab. The filters were then mounted 
onto slides and images were captured under a microscope 
(Wetzlar, Germany, cat. no. DMI 1, Leica) at x200 magnifica-
tion. From these images, the number of migratory or invasive 
cells was counted.

In vitro angiogenesis experiment of target cells co‑cultured 
with HUVECs. The target cells (1x105 cells/ml) were inocu-
lated in a cell culture flask at the same density. After 6 h of 
culture, the culture medium was discarded and replaced with 
DMEM. After further culturing for 8 h, the culture solution 
was collected and centrifuged at 1,000 x g for 10 min to collect 
the cell supernatant culture solution. Then 50 µl of Matrigel 
was added to each well of a 96‑well plate and incubated for 
1 h at 37˚C. HUVECs were then added to the upper layer of 
Matrigel at 5x103 cells per well, and then incubated with the 
collected tumor cell culture supernatant. After 12‑18 h, the 
formation of blood vessel‑like structures of the HUVECs was 
observed and photographed under a fluorescence microscope 
(Keyence, cat. no. BZ‑9000).

Statistics. All the quantitative data are represented as 
mean ± SEM of at least three independent experiments. The 
difference between two groups was evaluated with the 2‑tailed 
Student's t‑test. One‑way ANOVA and Tukey post hoc test 
were used to evaluate differences of multiple comparisons. 
All statistical analyses were conducted using GraphPad Prism 

software (version 7; GraphPad Software, Inc.). Differences 
were considered significant at P<0.05.

Results

The miR‑29b‑3p gene promoter region methylation levels are 
increased, the DNMT1 expression levels are increased, and 
miR‑29b‑3p expression levels are decreased in pancreatic 
cancer. We identified one CpG‑rich region for each genomic 
locus of the miR‑29b‑3p promoter using MethPrimer 
(http://www.urogene.org/cgi‑bin/methprimer/methprimer.cgi) 
and designed primer sets to analyze the CpG‑rich regions. 
Based on a database comparison, we predicted that the 
methylation level of the miR‑29b‑3p gene promoter region 
(‑3,000 bp) is increased in pancreatic cancer tissues (Fig. S1). 

In the present study, we detected expression of DNMTs 
in pancreatic cancer tissues and adjacent tissues by western 
blot analysis. It was found that the expression level of DNMT1 
in pancreatic cancer tissues was markedly higher than that 
in the adjacent tissues (Fig. 1A). DNMT1 expression was 
significant downregulated in adjacent tissues compared with 
tumor tissues, and this was used for later experiments. qPCR 
was used to detect expression of miR‑29b‑3p in the pancreatic 
cancer tissues, and the methylation levels of promoter regions 
were detected by pyrosequencing in pancreatic cancer tissues 
and adjacent tissues. It was found that the expression level of 
miR‑29b‑3p was decreased and this was negatively correlated 
with the methylation level of the miR‑29b‑3p promoter. 
(R2=0.2162, 1/slope=37.96) (Fig. 1B).

Six pancreatic cancer cell lines: HPDE6‑C, BxPC3, 
PANC1, CFPAC, Capan‑2, and AsPC‑1 were cultured, and 
qPCR was used to detect the miR‑29b‑3p expression levels. 
The expression level of miR‑29b‑3p in BxPC3 and Capan‑2 
was found to be significantly lower than that of the other 
cell lines (P<0.01) (Fig. 1C). The methylation level of the 
miR‑29b‑3p gene promoter in these six pancreatic cancer cells 
was detected by BSP sequencing. It was found that BxPC3 and 
Capan‑2 had more methylation sites and higher methylation 
levels (Fig. 1D).

Interference with expression of DNMT1 in Bxpc3 and 
Capan‑2 cells in order to detect angiogenesis, invasion, and 
migration of pancreatic cancer cells. siRNA was utilized to 
interfere with DNMT1 in Bxpc3 and Capan‑2 cells. qPCR 
revealed that the expression level of the miR‑29b‑3p gene 
in the siRNA DNMT1 group was significantly increased 
(P<0.001 and P<0.01) (Fig. 2A). Western blot analysis revealed 
that expression of DNMT1 was decreased in the DNMT1 
siRNA‑transfected Bxpc3 and Capan‑2 cells relative to that in 
the NC transfected Bxpc3 and Capan‑2 cells, indicating that 
the interference effect was obvious (Fig. 2B).

Transwell assay showed that the migration and invasion 
abilities of pancreatic cancer cells in the siRNA DNMT1 
group in Bxpc3 and Capan‑2 cells were weakened, and the 
difference was statistically significant (P<0.01) (Fig. 2C). 
Co‑culture with HUVECs revealed that the angiogenic 
ability of the HUVECs was markedly attenuated after siRNA 
interference of DNMT1 expression (Fig. 2D). Western blot-
ting found that the expression levels of ZO‑1 and occludin 
were increased, and claudin‑5 expression was decreased in 
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the DNMT1 siRNA‑transfected Bxpc3 and Capan‑2 cells 
compared to that in the NC‑transfected Bxpc3 and Capan‑2 
cells (Fig. 2E). 

DNMT1‑overexpressing Bxpc3 and Capan‑2 cells were 
cultured, and miR‑29b‑3p mimic transfection was utilized 
in order to detect angiogenesis, invasion, and migration of 
pancreatic cancer cells. Results of the qPCR found that DNMT1 
expression was significantly increased (P<0.001), miR‑29b‑3p 
expression was significantly decreased (P<0.05, P<0.001) 
in the DNMT1‑overexpressed group compared with vector 
group; while the expression of DNMT1 was not significantly 
different in the DNMT1+miR‑29b‑3p group from that in the 
DNMT1 group, the expression of miR‑29b‑3p was significantly 
increased in DNMT1 and miR‑29b‑3p co‑transfection group 
relative to that in DNMT1‑overexpressed group (P<0.001) 
(Fig. 3A). Western blotting showed that DNMT1 expression 
in the DNMT1 group was higher than that in the NC group 
and the blank group, and the DNMT1+miR‑29b‑3p group had 
lower DNMT1 expression than the DNMT1 group (Fig. 3B). 
The results indicated that overexpression and interference 
were effective.

Transwell assay showed that the migration and invasive 
abilities of Bxpc3 and Capan‑2 cells were significantly 
enhanced in the DNMT1 group vs. that in the vector group, 
while the enhancement of migration and invasion capaci-
ties mediated by DNMT1 overexpression were significantly 

weakened by miR‑29b‑3p in Capan‑2 and BxPC3 cells 
(P<0.01) (Fig. 3C). Co‑culture with HUVECs showed that 
the angiogenic ability of the HUVECs was enhanced in the 
DNMT1 group compared with that in the vector group, which 
also could be attenuated by miR‑29b‑3p addition in Capan‑2 
and BxPC3 cells (Fig. 3D). Western blotting analysis also 
discovered that ZO‑1 and occludin expressions were markedly 
reduced, and claudin‑5 expression was dramatically elevated 
in the DNMT1 overexpression group relative to that in the 
vector group, while the addition of miR‑29b‑3p then could 
prominently reverse the expression changes of ZO‑1, occludin 
and claudin‑5 in Bxpc3 and Capan‑2 cells (Fig. 3E).

Discussion

DNA methylation in mammals means that methyl (‑CH3) 
is covalently bound to the carbon atom of the cytosine (C) 
base of the DNA molecule under the catalysis of DNA meth-
yltransferases (DNMTs) (23,24). This usually occurs at the 
5‑position carbon atom of cytosine, forming 5‑methylcytosine 
(5Mc), which is an epigenetic covalent modification process 
and the main way to inhibit gene expression and loss of 
function (24,25).

Promoter methylation is involved in the early stage of 
cancer, and the degree of methylation increases with the 
increase in structural anomalies (26). Abnormal methylation 
of specific genes can be used as an indicator to judge the 

Figure 1. miR‑29b‑3p is negatively correlated with the methylation level of DNMT1 in pancreatic cancer. (A) Expression levels of DNMTs in pancreatic cancer 
tissues. (B) Correlation analysis of miR‑29b‑3p and the methylation level of DNMT1 in pancreatic cancer (R2=0.2162). (C) The expression level of miR‑29b‑3p 
in normal human pancreatic duct epithelial cells (HPDE6‑C7) and 5 pancreatic cancer cell lines (BxPC3, PANC1, CFPAC, Capan‑2, and AsPC‑3) (*P<0.05, 
**P<0.01 vs. HPDE6‑C7 cells). (D) The methylation level of the miR‑29b‑3p gene promoter in pancreatic cancer cells. T, tumor tissues; N, non‑tumor tissues; 
DNMTs, DNA methyltransferases.
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progression of pancreatic tumors  (27). Numerous studies 
have shown that multiple gene methylation abnormalities 
are often detected in pancreatic cancer (28‑31). It was also 
found that in precancerous lesions of pancreatic cancer, the 
methylation of the NPTX2 promoter increases with the degree 
of abnormal proliferation, suggesting that NPTX2 promoter 
regional hypermethylation is associated with early tumori-
genesis in pancreatic cancer (32,33). One study also found 
that pENK is highly methylated in pancreatic cancer tissue 
samples and pancreatic juice in pancreatic cancer patients, 

and its methylation to some extent promotes the formation of 
pancreatic cancer (34). In the present study, we found that the 
methylation of the miR‑29 promoter was involved with malig-
nant activities of pancreatic cancer cell lines. Overexpression 
of DNMT1 resulted in lower expression of miR‑29, which led 
to cell migration, invasion, and angiogenesis.

MicroRNAs (miRNAs) are a family of non‑coding 
RNAs that are very conservative and are approximately 15 
to 25 nt in length. In tumor research, according to the target 
gene of its downstream action, there are two major types of 

Figure 2. Knockdown of DNMT1 suppresses the methylation of miR‑29b‑3p and affects Capan‑2 and BxPC3 cell migration and invasion. (A) Expression level 
of miR‑29b‑3p gene in cells transfected with DNMT1 siRNA. (B) Expression of DNMT1 in cells transfected with DNMT1 siRNA. (C) Migration and invasion 
of pancreatic cancer cells transfected with DNMT1 siRNA. (D) Angiogenic ability of HUVECs after siRNA interference of DNMT1. (E) Expression of ZO‑1, 
claudin‑5, and occludin in cells transfected with DNMT1 siRNA. **P<0.01, vs. NC group. n=3. HUVECs, human umbilical vein endothelial cells; DNMT1, 
DNA methyltransferase 1; ZO‑1, zonula occludens‑1.
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mircoRNAs, which are similar to the properties of oncogenes 
or tumor‑suppressor genes (35). DNA aberrant methylation 
causes epigenetic silencing of some microRNAs and plays an 
important role in tumorigenesis and development (36). The 
human microRNA‑29 (miRNA‑29, miR‑29) family is a group 
of small RNAs with the same seed sequence ‘AGCACCA’, 
including miR‑29a, miR‑29b, and miR‑29c. There are 
miR‑29 expression disorders in various tumor tissues, which 
are involved in expression of genes involved in tumor cell 
metabolism, proliferation, differentiation, and apoptosis 
through post‑transcriptional regulation, and have the dual role 
of oncogene or tumor‑suppressor gene (37). miR‑29b‑3p is a 
member of the miR‑29 family and is involved in the develop-
ment of pancreatic cancer (38,39), colorectal cancer (40), lung 

cancer (41), bladder cancer (19), and multiple myeloma (42). 
The relationship between miR‑29b‑3p promoter methylation 
and pancreatic cancer has not yet been reported. In the present 
study, we investigated the methylation of the miR‑29b‑3p 
promoter in pancreatic cancer and its expression level, and 
explored the effect of miR‑29b‑3p promoter methylation on 
angiogenesis, invasion, and migration of pancreatic cancer, 
thus providing a new theoretical basis for the treatment of 
pancreatic cancer.

It was found that the methylation level of the miR‑29b‑3p 
promoter region in pancreatic cancer tissues was signifi-
cantly higher than that in adjacent tissues. In addition, the 
expression level of miR‑29b‑3p was significantly decreased, 
which was negatively correlated with the methylation 

Figure 3. Methylation of the miR‑29b‑3p promoter contributes to angiogenesis, invasion, and migration in pancreatic cancer. (A) Expression of DNMT1 and 
miR‑29b‑3p in cells transfected with the DNMT1 expression plasmid and co‑transfected with the DNMT1 expression plasmid and miR‑29b‑3p mimics in 
BxPC3 and Capan‑2 cells. (B) Expression of DNMT1 in cells transfected with the DNMT1 expression plasmid and co‑transfected with the DNMT1 expression 
plasmid and miR‑29b‑3p mimics. (C) The migration and invasive ability of pancreatic cancer cells in cells transfected with the DNMT1 expression plasmid and 
co‑transfected with the DNMT1 expression plasmid and miR‑29b‑3p mimics. (D) The angiogenic ability of HUVECs co‑cultured with pancreatic cancer cells 
transfected with the DNMT1 expression plasmid and co‑transfected with the DNMT1 expression plasmid and miR‑29b‑3p mimics. (E) Expression of ZO‑1, 
claudin‑5, and occludin in cells transfected with the DNMT1 expression plasmid and co‑transfected with the DNMT1 expression plasmid and miR‑29b‑3p 
mimics. HUVECs, human umbilical vein endothelial cells; DNMT1, DNA methyltransferase 1; ZO‑1, zonula occludens‑1. *P<0.05, **P<0.01, ***P<0.001 vs. the 
Vector group; #P<0.05, ###P<0.001 vs. the DNMT1 group; ns, not significant.
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level of its promoter. CpG methyltransferases (DNMTs) 
play a key role in DNA methylation, including DNMT1, 
DNMT2 DNMT3a, and DNMT3b. DNMT1 is the most 
important catalytic enzyme in the DNMT family. DNMT1 
is associated with abnormal methylation of DNA and both 
are closely related to the occurrence and development of 
tumors (43,44). The expression level of the DNMT1 protein 
in pancreatic cancer tissues was higher than that in adjacent 
tissues, suggesting that DNMT1 promotes promoter region 
methylation of the miR‑29b‑3p gene. siRNA was used to 
interfere with DNMT1 in Bxpc3 and Capan‑2 cell lines, and 
expression of miR‑29b‑3p was significantly increased. We 
cultured DNMT1‑overexpressing Bxpc3 and Capan‑2, and 
expression of miR‑29b‑3p was significantly decreased. The 
above experiments proved that the methylation degree of the 
miR‑29b‑3p gene in pancreatic cancer leads to a change in 
its gene expression level, and the hypermethylation of the 
miR‑29b‑3p gene leads to its low expression.

Angiogenesis is the budding and subsequent stabilization 
of existing vascular wall cells (45). In 1973, FoIkman first 
discovered that tumor cells induce angiogenesis and rapid 
growth, and since then, more and more attention has been 
paid to solid tumor angiogenesis (46). The vascular endo-
thelial growth factor (VEGF), insulin‑like growth factor 1 
(IGF1), and other factors can play a role in promoting tumor 
angiogenesis, which is the basis of malignant tumor growth 
and metastasis (47‑49). Zhang et al (50) found that exogenous 
low expression of miR‑29a/c can increase expression and 
release of VEGF in gastric cancer cells, and promote the 
growth of vascular endothelial cells. Melo and Kalluri (51) 
found that miR‑29b can inhibit the signaling molecules 
involved in angiogenesis and the extracellular matrix, such 
as VEGF, MMP9, ANGPTL4, and lysyloxidase (LOX), 
thereby inhibiting tumor angiogenesis and metastasis. This 
study investigated the role of miR‑29b‑3p in angiogenesis in 
pancreatic cancer cells, and found that miR‑29b‑3p inhibits 
angiogenesis and pancreatic cancer cell migration and 
invasion, and after inhibition of miR‑29b‑3p, the migration 
and invasive ability of pancreatic cancer cells increased. In 
this study, we aimed to investigate the role of DNMT1 and 
miR‑29b‑3p in pancreatic cancer, on cell migration, invasion 
and angiogenesis. However, the effect of DNMT1/miR‑29b‑3p 
on cell apoptosis and cycle was not investigated in the present 
study. Based on previous research, DNMT1 siRNA induces a 
significant cell viability decrease, leads to a G2‑phase block 
and cell apoptosis in pancreatic cancer (10,52), indicating 
that this axis may promote cell survival. Further study will 
focus on this aspect.

In conclusion, methylation of the miR‑29b‑3p promoter 
contributes to angiogenesis, invasion, and migration in 
pancreatic cancer. Its molecular mechanisms of regulating 
tumorigenesis and development need to be further studied.
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