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Abstract. Ovarian cancer is a prevalent gynecological 
malignancy associated with a high mortality rate and a 
low 5‑year survival rate. Typically, >70% of patients 
present with an advanced stage of the disease, resulting 
in a high number of ovarian cancer‑associated deaths 
worldwide. Over the past decade, adoptive cellular immu‑
notherapy has been investigated in clinical trials, and the 
results have led to the increased use in cancer treatment. 
Natural killer (NK) cells are cytotoxic lymphoid cells that 
recognize and lyse transformed cells, thereby impeding 
tumor growth. Thus, NK cells exhibit potential as a form 
of immunotherapy in the treatment of cancer. However, 
some patients with ovarian cancer treated with NK cells 
have experienced unsatisfactory outcomes. Therefore, 
further optimization of NK cells is required to increase 
the number of patients achieving long‑term remission. In 
the present review article, studies focusing on improving 
NK cell function were systematically summarized, and 
innovative strategies that augment the anticancer proper‑
ties of NK cells were proposed.
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1. Introduction 

Ovarian cancer is the leading cause of mortality among 
females diagnosed with gynecological cancer, ranking as the 
fifth	most	common	cause	of	death	 in	females	overall.	The	
majority of cases are detected at advanced stages of disease, 
resulting in unfavorable disease outcomes. Among all gyneco‑
logical cancers, ovarian cancer exhibits the highest mortality 
rate, with a 5‑year survival rate of <50% (1,2). The latest statis‑
tical study indicated that the number of patients with cancer 
in China exceeds 57,000, and ~27,000 new cancer‑associated 
deaths (3). By 2023, ovarian cancer is projected to be ranked 
as	the	fifth	leading	cause	of	cancer‑related	mortality	among	
females in the United States, accounting for 5% (equivalent 
to a total of 13,270) of all female cancer fatalities (4). In addi‑
tion, results of a statistical analysis demonstrated that ~40,000 
ovarian cancer‑related deaths occur in females worldwide 
each year (5). Therefore, the development of novel innovative 
therapeutic strategies is required for the treatment of ovarian 
cancer.

Over the last two decades, adoptive immune cell therapies 
have been used in the clinical treatment of cancer. NK cells 
are cytotoxic lymphocytes of the innate immune system that 
eliminate cancerous cells. The application of immunotherapy 
mediated by NK cells has emerged as a safe and effective 
therapeutic approach for cancers (6). Thus, research has 
focused on the use of NK cells in immunotherapy. However, 
based	on	observed	clinical	treatment	outcomes,	further	refine‑
ment of NK therapy is required. The development of therapies 
targeting NK cells generally focuses on two main aspects: 
i) Optimizing the quality of therapeutic NK cells through 
culture prescription optimization and enhancing NK cell cyto‑
toxicity, and ii) gene editing.
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The present review article highlighted the diverse 
approaches to enhancing NK cell properties and augmenting 
the	corresponding	antitumor	efficacy.	Strategies	for	enhancing	
the functionality of NK cells include cytokine‑based culture 
prescriptions, immune‑checkpoint inhibitors and gene editing 
techniques. In conclusion, further investigations and clinical 
evaluations are required to optimize the use of NK cells in 
cancer immunotherapy.

2. Additives induce the antitumor activity of NK cells

Results of previous studies demonstrated that NK cells may 
inhibit numerous types of tumors. To further enhance the 
antitumor	efficacy	of	therapeutic	NK	cells,	the	corresponding	
cytotoxicity and persistence must be optimized in vivo. The 
use of cytokine‑based agents and other drugs may provide a 
more stringent method for augmenting the cytotoxicity and 
longevity of NK cells.

Adding cytokines. Interleukin (IL)‑2 has emerged as a pivotal 
catalyst in cancer immunotherapy, facilitating the expansion 
of	purified	NK	cells	(7)	and	activated	NK	cells	(8).	Results	
of a previous study revealed that interleukin‑2 (IL‑2) effec‑
tively augments the cytotoxicity of NK cells in the peripheral 
blood (9). Long‑term culture with IL‑2 results in a high 
number of functional NK cells through upregulation of 
NKp30	and	DNAM‑1	receptors	on	the	cell	(10).	Furthermore,	
IL‑2	treatment	resulted	in	a	significant	expansion	of	NK	cells	
and the complete regression of ovarian tumors in mice (11). 
Collectively, these studies highlighted the pivotal role of IL‑2 
in promoting the expansion of NK cells and enhancing their 
cytotoxic response against tumors.

Interleukin 15 (IL‑15), a cytokine belonging to the common 
γ‑chain	family,	exerts	regulatory	control	over	various	aspects	
of NK cell‑mediated immunity (12). Hoogstad‑van et al (13) 
reported that the generation of NK cells in the presence of 
IL‑15	may	exert	efficient	cytotoxicity	and	interferon‑γ	(IFNγ)	
secretion towards ovarian cancer cells. In addition, NK cells 
actively	migrate,	infiltrate	and	execute	tumor	cell	apoptosis	
within a three‑dimensional multicellular ovarian cancer 
spheroid,	thereby	significantly	inhibiting	the	progression	of	
ovarian carcinoma in vivo	(13).	Moreover,	IL‑15	also	enhances	
the survival of NK cells through sequestering the pro‑apop‑
totic transcription factor FOXO3 in the cytoplasm (14). 
Incubation of NK cells with IL‑12, IL‑15 and IL‑18 generates 
cytokine‑induced memory‑like NK cells. Treatment with 
IL‑12, IL‑15 and IL‑18 promotes activation and proliferation 
of	NK	cells,	while	enhancing	IFNγ	production	and	the	potent	
NK cell‑induced inhibition of ovarian cancer (15).

Moreover,	the	functionality	of	NK	cells	against	ovarian	
cancer cells was significantly enhanced following treat‑
ment with IL‑15 super‑agonist complexes, such as N‑803 or 
ALT‑803, which effectively promoted the proliferation of NK 
cells,	and	augmented	the	secretion	of	IFNγ,	CXCL10,	CD107a	
and	TNFα	(16‑18).	These	findings	demonstrated	that	IL‑15	or	
IL‑15 super‑agonist complexes may enhance the functionality 
of NK cells against ovarian cancer (Fig. 1).

Adding molecule compounds. Results of previous studies 
demonstrated that certain small molecule compounds exhibit 

potential in enhancing the antitumor properties of NK cells. 
For example, cam1615B7H3 effectively promoted NK cell 
expansion, enhanced the antitumor activity against B7‑H3+ 
carcinomas and inhibited the growth of aggressive ovarian 
cancer in vivo (19). The oncolytic therapy with HSV‑1716 may 
enhance the antitumor immune response through promoting 
the recruitment of NK cells, and upregulating the expression 
of	IFNγ,	MIG	and	IP‑10	within	tumors	(20).	The	expression	of	
CD69	and	NKG2D,	as	well	as	the	secretion	of	IFNγ,	perforin	
and granzyme B may be modulated by Vitamin C to enhance 
the	properties	of	NK	cells	(21).	Moreover,	the	streptococcal	
preparation, OK432, enhances the cytotoxic activity of NK 
cells against ovarian tumors (22). Treatment with the combina‑
tion of CpG oligodeoxynucleotides and LL‑37 enhanced the 
proliferation and activation of NK cells (23).

In addition to the aforementioned natural compounds, 
Choi et al (24) reported that NK cells chemically primed 
with 25 kDa branched polyethylenimine (25Kb PEI) exhibit 
increased expression of activating, adhesion and chemokine 
receptors. Chemically primed NK cells also promote perforin 
accumulation, and the subsequent migration and antitumor 
activity is enhanced (24). SN‑38 or metformin activates NK cells 
to	infiltrate	the	tumor	microenvironment	(TME),	and	secrete	
IFNγ	and	granzyme	B,	resulting	in	the	elimination	of	cancer	
cells	(25).	Moreover,	results	of	a	previous	study	demonstrated	
that cimetidine enhanced the activity of NK cells in patients. 
The augmentation of NK cell function following cimetidine 
treatment was more pronounced in patients with a large residual 
tumor, compared with those without any remaining tumor (26).

In conclusion, molecular compounds play a pivotal role in 
augmenting the antitumor properties of NK cells, and exhibit 
potential as novel strategies for enhancing cancer immuno‑
therapies (Fig. 2).

Adding natural extracts. Natural plant extracts exhibit poten‑
tial in the treatment of cancer. Results of a previous study 

Figure 1. Regulation of the antitumor properties of NK cells via representa‑
tive	cytokines.	This	figure	was	created	in	Biorender.com.	NK,	natural	killer.	
IL, interleukin; IFN, interferon.
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demonstrated	that	Ashwagandha	significantly	augments	the	
population of NK cells both in stromal and intra‑tumoral 
compartments. In addition, Ashwagandha enhances the anti‑
tumor activity of NK cells in patients with ovarian cancer (27). 
Moreover,	the	leaf	extracts	of	L. indica and its phytoconstit‑
uent methyl gallate exhibited an augmented cytotoxic effect 
on ovarian tumor cells through enhancing the activity of NK 
cells (28). These studies may provide a basis for further clinical 
investigations aimed at assessing the impact of natural extracts 
on the immune function of NK cells in patients with cancer.

Optimizing the cell source. The proportion of functional NK 
cells	was	significantly	reduced	in	patients	with	cancer	(29).	
Thus, optimizing the source of NK cells is a pivotal determi‑
nant for the success or failure of NK cell therapy.

In patients with ovarian cancer, the cytotoxicity of NK 
cells in tumor‑infiltrating lymphocytes was significantly 
lower, compared with peripheral blood mononuclear cells 
(PBMCs)	or	ascitic	fluid	(30).	NK	cells	derived	from	PBMCs	
that are expanded using a feeder cell‑free expansion system 
are referred to as eNKs, and these migrate to the tumor site 
while	 retaining	cytotoxicity.	Moreover,	eNKs	demonstrate	
robust proliferation capabilities, ensuring sustained high cell 
counts in cutaneous xenograft mice models. eNKs effectively 
suppress tumor growth in diverse ovarian cancer xenograft 
mouse models and mitigate ascites formation in peritoneal 
tumor models of ovarian cancer (31). Nham et al (32) used 
an artificial APC‑based ex vivo expansion technique to 
produce cytotoxic, expanded NK cells from OCPs ascites‑NK 
cells derived from patients with ovarian cancer. These NK 
cells exhibited increased expression of NKG2D, NKp30 and 
NKp44, produced increased amounts of antitumor cytokines 
in the presence of OC cells, and mediated direct tumor cyto‑
toxicity against OC cells (32).

Moreover,	Hermanson	et al (33) revealed that induced 
pluripotent stem cell (iPSC)‑derived NK cells demonstrate 
comparable	 anti‑ovarian	 cancer	 efficacy	 to	 PBMC‑NK	
cells, highlighting their potential as a valuable resource for 
ovarian cancer immunotherapy. Generating large quantities of 

well‑characterized iPSC‑derived NK cells that can be stored 
in biobanks may be useful in the treatment of a large group 
of patients (33). NKG, a novel human NK cell line, exhibited 
robust expression of an array of adhesive molecules, activating 
receptors, and cytolysis‑related receptors and molecules. 
Irradiated NKG cells demonstrated potent cytotoxicity against 
ovarian cancer cells in vitro. In addition, these cells effectively 
suppressed human ovarian cancer growth while exhibiting a 
suitable	safety	profile	in vivo; however, they did not exhibit 
increased proliferation (34).

These	findings	demonstrated	the	potential	of	NK	cells	in	
the treatment of ovarian cancers when derived from various 
sources (Fig. 3).

3. Improving the anticancer efficacy of NK cells using 
genetic editing

Due to the optimal recognition of cancer cells, NK cells serve 
as potent effector cells for adoptive cellular therapy in patients 
with cancer. However, the clinical application of NK cells 
has	been	significantly	limited	by	factors	such	as	the	TME.	
Genetically engineered NK cells effectively address these 
limitations and further augment the antitumor properties of 
NK	cells.	The	adoptive	transfer	of	genetically	modified	NK	
cells for the treatment of ovarian cancer is an emerging and 
rapidly	advancing	field	that	has	demonstrated	a	high	level	of	
potential.

Chimeric antigen receptor (CAR)‑NK cells. CARs markedly 
enhance	the	antitumor	efficacy	of	immune	effector	cells.	As	
CAR‑engineered T (CAR‑T) cells have demonstrated a high 
level of effectiveness in cancer treatment, research has focused 
on developing CAR‑NK cells for solid tumor therapy, and 
diverse CAR constructs are being devised to augment NK 
cell‑mediated cytotoxicity (Fig. 4).

CD44 is a widely expressed marker on ovarian cancer 
cells that is associated with properties of ovarian cancer 
stem cells and intraperitoneal tumor spread. CD44 demon‑
strated potent and specific cytotoxic activity against both 
CD44‑positive ovarian cancer cell lines and primary ovarian 

Figure	2.	Molecule	compounds	improve	the	antitumor	properties	of	NK	cells.	
This	figure	was	created	in	Biorender.com.	NK,	natural	killer.

Figure 3. NK cells derived from diverse origins inhibit cancer cells. This 
figure	was	created	in	Biorender.com.	NK,	natural	killer;	PBMC,	peripheral	
blood mononuclear cells.
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cancer cells, when targeted by anti‑CD44‑CAR‑NK. Notably, 
the concurrent administration of anti‑CD44‑CAR‑NK and 
cisplatin exhibited enhanced antitumor efficacy compared 
with	sequential	treatment	(35).	Moreover,	a	third‑generation	
anti‑CD133‑CAR‑NK	exhibited	specific	cytotoxicity	against	
CD133‑positive ovarian cancer cell lines and primary ovarian 
cancer cells. The targeted elimination of ovarian cancer 
stem cells by anti‑CD133‑CAR‑NK exhibits potential for 
future clinical trials (36). Furthermore, anti‑CD24‑CAR‑NK 
demonstrated potent cytotoxicity against CD24‑positive 
ovarian	cancer	cell	lines,	and	high	levels	of	efficacy	against	
patient‑derived primary ovarian cancer cells (37).

Mesothelin	 (MSLN)	 is	 overexpressed	 in	 ovarian	
cancer, and therefore exhibits potential as a target for 
immunotherapy.	MSLN‑CAR‑NK	cells	 exhibited	 specific	
cytotoxicity	 against	MSLN‑positive	 ovarian	 cancer	 cells,	
accompanied	 by	 enhanced	 cytokine	 secretion.	Moreover, 
in vivo studies demonstrated the effective eradication of 
ovarian	cancer	 cells	by	MSLN‑CAR‑NK	cells,	 leading	 to	
significantly	prolonged	survival	of	tumor‑bearing	mice	(38).	
Folate	 receptor	 alpha	 (αFR)	 is	 overexpressed	 in	 90%	 of	
ovarian	cancers.	Anti‑αFR‑CAR‑NK	cells	exhibit	specific	
cytotoxicity	 against	 αFR‑positive	 ovarian	 cancer	 cells.	
NK	 cells	 expressing	 αFR‑28BBζ	 demonstrate	 enhanced	
antigen‑specific	cytotoxicity,	proliferation,	degranulation	and	
cytokine secretion, and reduced antigen‑induced apoptosis. 
Moreover,	 anti‑αFR	CAR‑NK	 cells	 effectively	 eradicate	
ovarian cancer cells in vivo, and significantly prolong the 
survival of tumor‑bearing mice (39). The immune checkpoint 
protein, human leukocyte antigen G (HLA‑G), is expressed in 
the majority of tumor cells as a mechanism to evade immune 
surveillance. Results of a previous in vitro study demonstrated 
that anti‑HLA‑G‑CAR‑NK cells exhibit potent cytolytic 
activity	against	ovarian	cancer	cells	and	significantly	suppress	
xenograft tumor growth, leading to prolonged survival (40).

iPSC is a high‑quality source of engineered NK cells. 
Li et al (41)	constructed	anti‑hMesothelin‑CAR‑iPSC‑NK	
cells, which contain the transmembrane domain of NKG2D, the 
2B4	co‑stimulatory	domain	and	the	CD3ζ	signaling	domain	to	
mediate	strong	antigen‑specific	NK	cell	signaling.	These	cells	

significantly	prevented	ovarian	cancer	growth	and	prolonged	
the survival of mice with low levels of toxicity (41). In addi‑
tion, anti‑glypican (GPC3)‑3‑CAR‑iPSC‑NK cells exhibited 
consistent effector functions against GPC3‑expressing tumor 
cells,	in	terms	of	cytotoxicity	and	IFN‑γ	production.	Notably,	
these	cells	significantly	prolonged	the	survival	of	mice	bearing	
GPC3‑positive ovarian‑tumors (42).

Ng et al  (43) constructed anti‑NKG2D ligand 
(NKG2DL)‑CAR‑NK cells that expressed chemokine receptor 
CXCR1. Enhanced CXCR1 expression in NK cells promoted 
tumor	trafficking	and	exhibited	significantly	augmented	anti‑
tumor responses in a murine model of ovarian cancer (43).

Collectively,	these	findings	demonstrated	that	the	genetic	
engineering of NK cells may lead to the increased targeting of 
diverse	antigens,	enhance	proliferation,	augment	tumor	infil‑
tration and selectively eliminate malignant cells. These results 
provide	a	method	for	improving	the	therapeutic	efficacy	of	NK	
cells against ovarian cancer, and provide a theoretical basis for 
future clinical investigations.

Requisite regulation of specific target genes. The antitumor 
properties of NK cells are regulated by multiple genes derived 
from both NK cells and tumor cells. Targeted regulation of 
these genes markedly enhances the antitumor properties of 
NK cells and sensitizes tumor cells to NK cell treatment.

CA125, a fragment of mucin 16 shed from ovarian cancer 
tumors,	exerts	significant	protective	effects	on	ovarian	tumors	
through evading recognition by NK cells, inhibiting the activa‑
tion and cytotoxicity of NK cells, and further impairing the 
corresponding antitumor activity. Therefore, targeted knock‑
down of mucin 16 may restore the antitumor function of NK 
cells (44,45). In addition, the downregulation of IDO and PP4 
significantly	enhanced	the	infiltrative	capacity	and	cytotoxicity	
of NK cells, thereby augmenting the anti‑ovarian cancer prop‑
erties (46,47). Inhibition of CD9, TIGIT, GSK3, PI3K/AKT 
signaling and HLA‑G expression restored the cytotoxicity of 
NK cells against ovarian cancer (48‑52). Notably, increasing the 
expression of NKG2DL, ULBP1, inhibited DOT1L‑mediated 
ovarian cancer eradication, and increased the antitumor func‑
tionality of NK cells (53). Knockdown of SESN2 and SESN3 

Figure 4. A schematic representation of CAR‑NK cells. (A) Distinct targets of CAR‑NK cells. (B) CAR‑NK cells recognize antigens on the surface of ovarian 
cancer	cells	and	effectively	trigger	the	inhibition	of	cancer	cells.	This	figure	was	created	in	Biorender.com.	CAR,	chimeric	antigen	receptor;	NK,	natural	killer;	
HLA‑G,	human	leukocyte	antigen	G;	GPC3,	glypican‑3;	NKG2DL,	NKG2D	ligand;	MSLN,	mesothelin;	αFR,	folate	receptor	alpha.
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restored the tumoricidal effects of NK cells both in vitro and 
in vivo (54). These genes may exhibit potential as novel thera‑
peutic targets in NK cell immunotherapy.

MicroRNAs	(miRNAs)	exhibit	potential	as	therapeutic	
tools for restoring cellular functions. As potent genetic 
regulators, miRNAs effectively modulate cellular path‑
ways through direct interactions with target genes (55). 
Deng et al (56) reported that miR‑29c enhanced the 
antitumor efficacy of NK cells through directly targeting 
B7‑H3, and mitigating NK‑cell exhaustion. Conversely, 
t reatment with miR‑92 and miR‑140‑3p resulted in 
enhanced tumor growth through suppression of NK cell 
cytotoxicity towards ovarian cancer cells (57,58). These 
findings elucidated the regulatory role of miRNAs in 
modulating NK cell activity, and highlighted potential 
strategies to reactivate NK cells for ovarian cancer immu‑
notherapy.

Dou et al (59) genetically engineered ovarian cancer 
cells	 to	 secrete	 IL‑21	 and	GM‑CSF,	which	 enhanced	NK	
cell	cytotoxicity	and	elicited	antitumor	immunity.	Moreover,	
interferon‑stimulated gene 15 suppressed ovarian cancer 
progression	 through	activation	of	NK	cells	 (60).	DNAM‑1	
signaling is essential for NK cells to recognize and target 
tumor cells (61). Notably, CD24+ ovarian cancer cell lines are 
more susceptible to NK cell lysis (62). The aforementioned 
findings	suggested	that	modulation	of	specific	genes	effec‑
tively impedes the progression of ovarian cancer through 
the activation of NK cells, thereby highlighting the potential 
therapeutic value of targeting these genes for the treatment of 
ovarian cancer (Fig. 5).

4. Improving the anticancer efficacy of NK cells using 
combination therapy

Combination	therapy	has	the	potential	to	overcome	deficien‑
cies in NK cells, increase the corresponding tumor properties, 
reverse immunosuppression, and enhance cancer cell suscepti‑
bility to NK cell‑mediated cytotoxicity.

Oncolytic virus (OV). OVs elicit robust innate and adaptive 
immune responses, including contact‑dependent activation of 
NK cells and augmentation of their cytotoxicity against adeno‑
virus‑infected ovarian cancer cells (63). Parapoxvirus ovis 
(Orf virus, OrfV) demonstrated significant efficacy as a 
monotherapy in an advanced‑stage murine model of epithelial 
ovarian cancer. The therapeutic intervention of OrfV relied 
on the activation of NK cells, highlighting its potential as an 
immunotherapeutic agent for the treatment of advanced‑stage 
ovarian cancer (64). These findings provided a theoretical 
basis for the potential clinical application of OVs in patients 
diagnosed with ovarian cancer (Fig. 6A).

Monoclonal antibodies (mAbs). The cytotoxicity of NK 
cells may be enhanced following the addition of therapeutic 
mAbs that mediate antibody‑dependent cellular cytotoxicity 
(ADCC). Zhu et al (65) revealed that when combined with 
anti‑HER2 mAb, hnCD16‑iNK cells demonstrate enhanced 
survival outcomes in an ovarian cancer xenograft model. 
Ovarian cancer cells pretreated with anti‑EGFR TKIs 
demonstrated increased sensitivity towards NK cell‑mediated 
ADCC (66). In addition, the potency of ADCC was further 

Figure 5. Targeted gene regulation enhances the antitumor activity of NK cells. (A) Targeted genes derived from ovarian cancer cells. (B) Targeted genes 
derived from NK cells. Upregulated genes in the upper half of the circle enhance the antitumor activity of NK cells. Downregulated genes in the lower half 
of	the	circle	improve	the	antitumor	property	of	NK	cells.	This	figure	was	created	in	Biorender.com.	NK,	natural	killer;	miR,	microRNA;	HLA‑G,	human	
leukocyte antigen G; IL, interleukin; ISG15, interferon‑stimulated gene 15.
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enhanced following the pre‑stimulation of NK cells with 
monocytes and the immunostimulatory mycobacterial protein, 
PstS‑1	(67).	The	combined	treatment	with	anti‑PD‑L1	signifi‑
cantly	enhanced	the	antitumor	efficacy	of	NK	cells	(68).	These	
findings	suggested	that	targeted	antibody	therapy	may	confer	
benefits	against	ovarian	cells	by	augmenting	the	functional	
capacity of supplementary cytolytic NK cells (Fig. 6B).

Small interfering (si)RNA. siRNA is derived from the mecha‑
nism of post‑transcriptional gene silencing, and it exhibits high 
specificity	and	efficacy	in	suppressing	disease‑associated	genes.	
HER‑2	siRNA‑treated	tumor	cells	were	efficiently	lysed	by	NK	
cells in vitro,	leading	to	a	significant	inhibition	of	xenografted	
tumor growth. A combination of HER‑2 siRNA with NK cell 
therapy may exhibit potential in the biological treatment of 
ovarian cancer with high HER‑2 expression (Fig. 6B) (69).

Chemotherapeutic drugs. The combination of NK cell adop‑
tive transfer and tumor‑sensitizing chemotherapy may exhibit 
potential in the treatment of ovarian cancer. In combina‑
tion, NK cells and gemcitabine exhibited an additive effect 
in suppressing tumor growth in mice with ovarian cancer. 
Enhanced cytotoxicity against ovarian cancer is achieved 
through a synergistic combination of NK cells and gemcitabine, 
both in vitro and in vivo (70). Oxaliplatin, an immunogenic 
cell death inducer, increased the cytolysis of ovarian cancer 
cells mediated by NK cells (71). A combination of cisplatin 
and NK cell‑mediated immunotherapy may overcome the 
immunoresistance of chemoresistant ovarian cancers (72). 
Results of a recent study demonstrated that SN‑38 and 5‑FU 
acted synergistically to inhibit ovarian cancer cells, and 
promote the sensitivity of cancer stem cells to NK cells (73). 
Collectively,	these	findings	presented	the	potent	efficacy	of	

chemotherapeutic agents in conjunction with NK cells against 
therapy‑resistant ovarian cancer cells, thereby establishing the 
viability of novel combination therapeutic strategies in the 
treatment of ovarian cancer (Fig. 6B).

5. Exosomes (EXOs) derived from NK cells

EXOs are membranous vesicles derived from cells that play a 
crucial	role	in	intercellular	material	transportation.	Moreover,	
they exhibit potential as drug carriers for targeted delivery to 
specific	cell	types	or	tissues.	In	addition,	immune	cell‑derived	
EXOs possess immunomodulatory properties (74). NK‑EXOs 
exhibit potent antitumor activity against ovarian cancer. 
Moreover,	NK‑EXOs	serve	as	effective	carriers	for	cisplatin	
delivery, thereby enhancing the cytotoxic effects in drug‑resis‑
tant ovarian cancer cells, and reversing the immunosuppressive 
state of NK cells (75). Collectively, these results highlighted 
the potential of NK‑EXOs in the clinical treatment of ovarian 
cancer, while also establishing a basis for further investigations 
into the effects of NK‑EXOs in other solid tumors (Fig. 6C).

6. Conclusions

Ovarian cancer is a prevalent malignancy affecting females, 
and a lack of effective treatment options contributes to a 5‑year 
survival rate of ~45% (76). NK cells possess distinct cytotoxic 
properties against cancer cells, highlighting their potential in 
the treatment of ovarian cancer. However, the limited clinical 
efficacy	of	NK	cells	poses	a	challenge	to	 their	application	
in treating ovarian cancer. In the present review, innovative 
strategies that aim to enhance the cytotoxicity of NK cells 
against ovarian cancer cells were summarized, including the 
utilization of additives, gene editing techniques and combina‑
tion therapies.

At present, novel strategies are employed to enhance the 
antitumor properties of NK cells. However, limitations remain, 
and	it	is	crucial	to	develop	specific	approaches	for	expanding	
functional NK cells, achieve accurate delivery of siRNA into 
targeted cells, and mitigate the side effects associated with 
combined therapy. Notably, NK cell therapy exhibits potential 
in the treatment of ovarian cancer. Thus, further investigations 
into the widespread application of NK cell adoptive transfer 
are required for the treatment of various solid tumors.
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