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Abstract. Mutations of the ARID1A gene, which encodes 
the basic directional subunit of SWI/SNF chromatin 
remodeling complexes, were detected in the middle of the 
last decade in several cancerous tissue types, highlighting 
its tumour‑suppressive role. Since then, functional studies 
of the homologous protein have indicated that through its 
interactions with nucleosomal DNA, transcription factors and 
nuclear hormone receptors, it plays a key role in regulating 
cellular proliferation, gene expression and the repair of 
genetic material, while the loss of its expression triggers 
carcinogenesis, through mechanisms which have not yet been 
elucidated. This bibliographic review of clinical investigations 
focused on the detection of ARID1A mutations and expression 
levels in malignant tumours, as well as on their association 
with the prognosis of ARID1A‑deficient patients exhibiting 
a high degree of heterogeneity in the corresponding research 
findings. The clarification of the prognostic significance of the 
gene requires further investigation, focusing on cancers and 
patients of common clinicopathological features.
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1. Introduction

The ARID1A gene. The AT‑rich interactive domain‑containing 
protein 1A (ARID1A) gene is located on chromosome 1p36.11, 
a genetic site often found to be deleted in a wide range of 
human cancers (1). It contains 20 exons and encodes two func-
tionally identical 2285 and 2086 amino acid isoforms of the 
ARID1A protein, also known as Brahma‑related associated 
factor 250a (BAF 250a), SWI/SNF‑related matrix‑associated 
actin‑dependent regulators of chromatin factor 1 (SMARCF1) 
or p270 (2,3). ARID1A is a large nucleocytoplasmic protein 
of 250 kDa, expressed in almost all tissues, whose stability 
depends on its cellular location (4‑6). Nuclear ARID1A is 
significantly more unstable than its cytoplasmic counterpart, 
as it degrades rapidly, dependent on the ubiquitin‑proteasome 
system of the nucleus, demonstrating significant fluctuations 
of expression during the cell cycle (4). Normally, the accumu-
lation of the produced protein is detected during the G0‑G1 
phase of the cell cycle, while a strong reduction occurs during 
the G2‑S phase (7).

The first significant evidence showing correlation between 
tumourigenicity and the reduced expression of ARID1A 
protein emerged in the middle of the past decade as the result 
of a cancer profiling array containing complementary cDNA 
from various tumour tissue cells and simultaneous northern, 
Southern and western blot analyses of several human cancer 
cell lines (6). In 2010, two next generation sequencing‑based 
studies of highly aggressive ovarian cancers revealed a high 
frequency of inactivating ARID1A mutations  (8,9), thus 
initiating further investigation and confirmation of its reli-
able (bona fide) tumour suppressor role in a wide range of 
malignancies (10‑13). Nowadays, it is considered that inacti-
vating mutations of the gene affect the biological behaviour 
of tumours; hence, recent clinical studies examine their 
prognostic impact on the clinical outcome of cancer (14).

ARID1A protein and SWI/SNF complexes. ARID1A is a 
member of a large family of proteins that contain a character-
istic ARID domain of approximately 100 amino acids, which 
binds DNA fragments rich in adenine‑thymine (AT) and was 
originally discovered in 1995 in the Drosophila dead ringer 
protein and in the murine B cell‑specific transcription factor 
Bright (5,15‑17). Later, researchers demonstrated the pres-
ence of at least fourteen human homologous proteins, without 
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sequential specificity requirement during DNA binding, 
including the ARID1A and the encoded by the paralog 
gene ARID1B protein, that are mutually exclusive, found in 
cells at a 3.5:1 ratio, basic subunits of the BAF subfamily of 
human switching mate/sucrose non‑fermenting (SWI/SNF), 
ATP‑dependent chromatin remodeling complexes (6,17‑19).

Phylogenet ica l ly conserved SWI /SNF protein 
complexes, whose name derives from the type of yeast 
Saccharomyces  cerevisiae in which they were discov-
ered (20,21), are employed by transcriptional activators of 
the genes in order to reconstruct chromatin and break its 
structural constraints that prevent transcriptional proteins 
from accessing the genome (22‑25). Using the energy released 
from the hydrolysis of ATP, the SWI/SNF mobilize histone 
octamers and interrupt their interactions with nucleosomal 
DNA, releasing the transcribed part of the helix (26‑29), while 
altering the sensitivity of the restructured nucleoprotein to the 
digestive activity of nucleases (30) and enhancing the affini-
ties of the gene promoters with the TATA‑box‑binding‑protein 
(TBP) and the basic translation machinery (31). The role of 
SWI/SNF is considered to be critical for the regulation of gene 
expression, cellular proliferation, apoptosis, differentiation 
and the repair of genetic material (32‑34).

The majority of the one hundred members of the hSWI/SNF 
family, alias BAF or SMARC, depending on the type of cell 
in which they are contained, may consist of combinations of 
8‑15 protein subunits and their isoforms, encoded in total by 
26 genes, whose mutations were found to be involved in 20% 
of all human cancers (19,23,32,35‑38). The main structural 
feature and catalytic trunk of the complexes is the ATPase, 
belonging to the superfamily II of helicases that converts the 
chemical energy of one hydrolysed ATP molecule into mechan-
ical motion of 1 bp step along the DNA double helix (2,24,39). 
Based on the type of helicase, BRM (SMARCA2) or BRG‑1 
(SMARCA4), by 74% identical to each other, hSWI/SNF are 
divided into two corresponding subfamilies: hSWI/SNF‑A 
(BAF) and hSWI/SNF‑B (PBAF) (2,40‑42).

ARID1A is the largest, non‑catalytic BAF subunit, with the 
main property of conferring target specificity on the complex 
and directing the ATPase activity, as the ARID domain binds 
across to at least 50 bp of specific nucleosomal DNA consti-
tuting the origin of chromatin remodeling (21,40,43,44). Its 
guiding effect, according to the prevailing theory, is attributed 
on the one hand to the interactions of the protein with the 
transcription factors, the hormone nuclear receptors and the 
p53, p21 (CDKN1A), SMAD3 proteins, via the C‑terminal 
peptide‑rich binding loci (LXXLL‑leucin rich motifs), while 
on the other hand to the ARID domain‑mediated high affinity 
between chromatin and SWI/SNF (4,36,40,45,46). Recently, 
ARID1A has also been found to be indirectly involved in the 
modification of histones, by binding to histone H2B as E3 
ligase of ubiquitin (23).

Epigenetic regulation of ARID1A expression in physiological 
cell processes. Effective cellular homeostasis, normal 
development and tissue‑specific differentiation in multicellular 
organisms require the translation of the same genotype into 
different phenotypes and depend on the epigenetic regulation 
of gene expression, that determines the cell identity and 
establishes heritable, not associated with the DNA sequence 

expression patterns through a complex system of mechanisms, 
including DNA methylation, histone modifications and 
miRNA inhibition  (47‑49). Although the cell‑specific 
molecular mechanisms mediating transcriptional responses 
to environmental and developmental signals remain poorly 
understood, ARID1A as a cell cycle regulator that affects cell 
growth and differentiation, undergoes spatial and temporal 
epigenetic modifications, depending on the cell type and the 
developmental process (50,51).

Sun et al previously reported that ARID1A protein was 
absent in neonatal mouse liver until the tenth day of life, 
thus allowing rapid cell proliferation, while its expression 
was physiologically downregulated following surgically‑ and 
chemically‑induced injuries in mouse models, promoting 
liver regeneration and ear hole wound healing (52). Similar to 
tissue regeneration, embryonic development requires unique 
gene expression patterns that facilitate the reorganization of 
tissue structural design (53). In fact, the presence of ARID1A 
protein in the nucleus of mouse embryonic stem cells has been 
proven to be essential for their differentiation, pluripotency 
and early germ‑layer formation, by coordinating the expres-
sion of key developmental and pluripotent genes  (54,55). 
Similarly, Han et al demonstrated that the universal expression 
of ARID1A across different lineages of mouse hematopoietic 
stem cells was determinant for their frequency and function, 
regulating the production of mature blood cells, while the gene 
expression was relatively lower in mature myeloid cells (56). 
As regards mouse cardiogenesis and cardiac progenitor 
cell differentiation, distinct gene expression patterns have 
been observed for BAF complex subunits (57). Specifically, 
ARID1A has been shown to be expressed to a great extent in 
the early developing heart, in order to selectively control the 
differentiation of second heart field cardiac progenitor cells 
into beating cardiomyocytes, although it is downregulated 
during the development and initiation of cardiac trabecula-
tion (58). Furthermore, the epigenetic regulation of ARID1A 
in response to DNA damage seems to play a key role in DNA 
repair and genome integrity maintenance. As a matter of fact, 
ARID1A appears accumulated in DNA double‑strand breaks 
sites, recruited through its interactions with the ataxia telangi-
ectasia and RAD3‑related protein (ATR), in order to support 
and diffuse damage signals within mammalian cells, and 
enable the access of the non‑homologous end joining (NHEJ) 
pathway‑related repair proteins to the break sites (59,60).

Abnormal epigenetic regulation of ARID1A expression. 
Wiegand et al detected the loss of ARID1A expression, not 
attributable to gene mutations in 11% of ovarian clear cell 
carcinomas and 9% of endometrioid carcinomas, raising a 
matter of epigenetic silencing (9), which also leads to deviated 
chromatin remodeling, and subsequently to the deregulated 
expression of 99 target genes involved in carcinogenesis (61). 
Considering that almost 40% of the human gene‑promoters 
incorporate regions of several kb, rich in cytosines preceding 
guanines commonly called CpG islands, whose methylation 
carried out by DNA methyltransferases (DNMTs) represses 
transcription  (62,63), it is not surprising that among the 
known epigenetic mechanisms, the altered patterns of DNA 
methylation silencing established tumour suppressor genes 
have been recognised as a consistent molecular characteristic 
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of human tumours since 1991, and are currently regarded as 
the most important epigenetic mark, critically involved in 
tumourigenesis (64‑67).

Aiming to investigate the underlying reasons for the 
ARID1A low mRNA expression in invasive breast cancers, 
Zhang et al demonstrated that it was not associated with genetic 
alterations and reported that 86.45% of low expression patients 
exhibited a >2‑fold aberrant increase in ARID1A promoter 
methylation, often accompanied by repressive histone modifi-
cations, while in 81.8% of patients with a high expression, the 
promoter methylation was found to be decreased 2‑fold (68). 
The key role of DNA hypermethylation in ARID1A protein 
loss during gastric cancer progression was demonstrated by 
the fact that the de‑methylation of gastric cancer cell lines 
restored the expression of ARID1A  (69), while a recent 
study, focusing on decreased ARID1A expression during the 
pathogenesis of endometriosis, revealed that oxidative stress 
stimulates the expression of DNMT1 and causes ARID1A 
downregulation due to promoter hypermethylation (70). In 
the opposite direction, ARID1A promoter was found to be 
unmethylated during the investigation of its methylation status 
in The Cancer Genome Atlas (TCGA) Illumina Infinium 
dataset from 50 representative clear cell renal cell carcinomas 
(ccRCCs), drawing the attention towards other mechanisms of 
epigenetic silencing (71).

Concerning the suppressed ARID1A expression in ccRCC, 
a recent study identified ARID1A as a direct downstream target 
of microRNA (miRNA or miR)‑144‑3p, whose upregulation 
provoked a significant decrease in ARID1A mRNA and protein 
levels (72). miRNAs were identified for the first time in 1993, 
as non‑coding RNA molecules that regulated larval transition 
and neuronal development in Caenorhabditis elegans (73). 
Since then, these small RNAs consisting of approximately 
21‑25‑nucleotides have been known to repress gene expression 
at the post‑transcriptional level through direct interactions 
with specific target mRNAs, to regulate various developmental 
and physiological cellular processes via different expression 
patterns (74) and when abnormally expressed, to function as 
oncogenes or tumour suppressors, depending on the cellular 
circumstance and the function of their target genes (75).

Further studies have highlighted the implications of 
overexpressed miRNAs targeting ARID1A by binding to its 
3' untranslated region (3'UTR). The investigation of the strong 
association between Helicobacter pylori (H. Pylori) infection 
and gastric carcinogenesis indicated that the H. Pylori viru-
lence factor CagA triggers the nuclear factor (NF)‑κΒ pathway 
and stimulates the expression of miR‑223‑3p, which in turn 
functions as an oncomiRNA by downregulating ARID1A (76). 
Two studies have reported the ARID1A‑associated oncogenic 
action of miR‑31. The first one demonstrated that the early 
upregulation of miR‑31 due to EGFR activation in head and 
neck squamous cell carcinoma (HNSCC) caused enhanced 
oncogenicity and stemness by directly targeting ARID1A 
and inhibiting its expression (77), while the second identi-
fied miR‑31 high levels as the cause of ARID1A silencing 
in cervical cancer cell lines and tissues (78). Yang et al also 
studied cervical cancer tissues and detected the presence of 
significantly increased miR‑221 and miR‑222 that simultane-
ously bind to the ARID1A 3'UTR and inhibit its expression, 
thus inducing cancer cell proliferation and invasion (79). Of 

note, the findings of Li et al described an inverse regulatory 
axis of events, suggesting that the loss of the expression of 
ARID1A in pancreatic cancer cells upregulates miR‑503, 
which in turn inhibits cell senescence and promotes mutant 
KRASG12D induced tumourigenesis by targeting another 
cell cycle regulator, the cyclin dependent kinase inhibitor 2A 
(CDKN2‑A) (80).

ARID1A: Mutational profile and tumour suppressing role. A 
total of 97% of inactivating ARID1A somatic mutations that 
lead to the reduction or complete loss of protein expression 
are nonsense, point and insertion or deletion frameshift muta-
tions, distinctive of tumour suppressor genes, that have been 
found to be distributed throughout its length (3,9,12,13). The 
consequential abnormal mRNA often carries premature stop 
codons and is translated into a truncated protein, function-
ally degraded, either due to misfolding or as it is partially 
incomplete, resulting in the disturbance of the normal levels 
of nuclear ARID1A and the destabilization of SWI/SNF 
complexes (46,81‑83). Mutations of tumour suppressor genes 
usually include alterations in both alleles. However, in the 
case of ARID1A, one allele mutation is sufficient to cause the 
loss of ARID1A expression in the majority of heterozygous 
tumours, thus indicating genetic haplodeficiency (3,8,10).

Fig. 1 illustrates the effects of the loss of ARID1A expres-
sion and its impact on carcinogenesis, although the precise 
mechanisms that triggers cancer development have not yet 
been fully elucidated. ARID1A expression disorders disrupt 
the function of SWI/SNF and the chromatin remodeling mech-
anism, causing epigenetic abnormalities in gene expression 
with severe consequent effects in the cell identity and possible 
carcinogenicity (41,84‑86). In addition, functional studies of 
ARID1A have demonstrated that its tumour‑suppressive action 
lies both in the control of cellular proliferation and in main-
taining the integrity of the genetic material, which is why both 
roles of guardian and caretaker of the genome are attributed 
to it (3,13).

As regards the regulation of cell proliferation, experi-
mental studies of a wide range of ovarian, endometrial, breast, 
stomach, liver and other cancer cell lines have demonstrated 
that the loss of ARID1A expression, either due to a mutation 
and epigenetic mechanism, or due to the in vitro silencing of 
the gene promotes tumour expansion, while the experimental 
restoration of the normal levels of the protein suppresses 
cancer cell proliferation (11,13,87‑90), confirming that cell 
cycle inhibition and differentiation requires a high concen-
tration of ARID1A at the G0‑G1 checkpoint (44). According 
to recent research findings, mutant ARID1A diverts cell 
proliferation by triggering the phosphatidylinositol 3‑kinase 
PI3K/serine‑threonine kinase AKT/mammalian target of 
rapamycin mTOR pathway  (91‑93), affects the expression 
of other cell cycle regulators, such as the c‑MYC gene and 
promotes carcinogenicity in synergy with concurrent muta-
tions of other tumour suppressors such as TP53, PTEN and 
SMARCB1 (44,46,94) or oncogenes, such as PIK3CA (95,96).

As a genome caretaker, ARID1A contributes to the preven-
tion of chromosome and gene structural abnormalities through 
its direct interactions as a SWI/SNF subunit with topoisom-
erase IIα, which ensures the effective decatenation of sister 
chromatids during meiotic anaphase, thus preventing potential 
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aneuploidies, polyploidies and sequence mutations (97). The 
contribution of the gene to DNA repair is considered to be 
equally important, as ARID1A is involved in the SWI/SNF 
recruitment of repair proteins, such as BRCA1 at the lesion 
sites (98), while the loss of its expression is significantly asso-
ciated with microsatellite instability (MSI) in endometrial, 
gastric and colorectal cancers (89,91,99,100).

Aims of this bibliographic review. Although the tumour-
suppressive role of ARID1A is now considered to be 
unquestionable, the investigation of the mutant gene's diagnostic 
significance and prognostic role in the outcome of various 
malignancies, has yielded controversial results. It is indicative 
that the loss of protein expression occurs in 6.5% of patients with 
squamous cervical cancer and is associated with significantly 
reduced overall survival (101,102), while it has no effect on the 
prognosis of patients with ovarian clear cell carcinoma, in which 
the gene mutation frequency reaches 55% (103,104). However, 
three recent meta‑analyses of published studies on gastroin-
testinal (81,105), gynaecological and urological cancers (11) 
present a general tendency to increased cancer‑associated 
mortality in ARID1A protein‑negative patients, in comparison 
to those who are positive, expressing the protein at normal levels. 
In particular, Luchini et al associated the loss of ARID1A with 
increased cancer‑specific mortality following the meta‑analysis 
of pooling data from three studies, one on gynaecological and 
two on urological cancers, while the gathered data from seven 
studies, five on gynaecological and two on urological cancers 
revealed no significant difference in cancer recurrence between 
ARID1A negative and positive patients (11).

Given that abnormalities in ARID1A expression affect 
both tumourigenesis and disease prognosis differently, this 
study has been based on the review of relevant research 
articles published in peer‑reviewed journals, regardless of 
geographical origins. The aim was thus to record the inci-
dence of inactivated ARID1A in human malignant tumours, 
to examine its diagnostic significance and to determine its 
prognostic value in the outcome of cancer, following a brief 
description of the most typical methods applied to detect 
protein expression abnormalities and gene mutations.

2. Summary of the materials and methods used for analysis 
in previous studies

Analytical samples. The samples mainly analysed by 
researchers were derived from contemporaneous or archived 
primary tumour resections, originating from cancer patients 
regardless of sex, nationality and age, whereas adjacent 
healthy tissue samples were used as negative controls. Basic 
prerequisites for inclusion were the identification of the 
histopathological type, the grading and the staging of the 
tumours, according to the World Health Organization clas-
sification (WHO), the TNM Staging System of the American 
Joint Committee on Cancer (AJCC) and the International 
Federation of Gynecology and Obstetrics (FIGO) guidelines 
in cases of gynaecological cancers, while the pre‑excision 
subjection to chemotherapy or preoperative radiotherapy was 
the most frequently used exclusion criterion (106‑113).

Depending on the method selected for the detection 
of ARID1A mutations and for the examination of protein 

Figure 1. Loss of ARID1A expression and its impact on carcinogenesis. ARID1A inactivating mutations or epigenetic silencing cause expression disorders 
that suspend the tumour‑suppressive role of the gene and trigger carcinogenesis via different mechanisms. The most prominent are the deviant chromatin 
remodeling due to disrupted SWI/SNF function or deficient ubiquitination of the histone H2B that divert gene transcription and lead to aberrant gene expres-
sion, the uncontrolled cell proliferation as a result of cell cycle deregulation, apoptosis evasion and abnormal expression of other cell cycle regulators, and the 
enhanced mutagenesis due to defective DNA repair. ARID1A, AT‑rich interactive domain‑containing protein 1A.
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expression in the cell nuclei, the majority of the samples were 
fresh‑frozen tissues and formalin‑fixed, paraffin‑embedded 
histological preparations  (88,111,114,115), while in some 
cases as subject of the study were selected cancer cell lines 
of various tissues (41,46,90,116). Exceptionally, the ARID1A 
expression levels in glioma patients were determined in blood 
serum due to the intracranial tumour (117).

Survival data. In order to investigate the prognostic role of 
the gene, the survival data of respective patients in previous 
studies were collected after clinical follow‑up for an average 
of a five‑year period (102,107,117). Among the time param-
eters analysed were overall survival (OS), progression‑free 
survival (PFS) and cancer recurrence, corresponding to the 
time interval from the date of diagnosis or ablation until up to 
documented death, to the noticeable worsening of the disease 
and to recurrent cancer diagnosis (46,111,112,115,118).

Immunohistochemistry (IHC). The most commonly used meth-
odology for controlling nuclear ARID1A expression in cancer 
tissues was found to be IHC, which was carried out by the depa-
raffinisation and rehydration of whole tissue sections or specific 
microarrays, 4‑5‑µm‑thick (82,88,107,109,110,115,119). Usually, 
the preparations were initially immersed in antigen retrieval 
solution to amplify the imminent immune complex and after the 
endogenous peroxidase and the non‑specific background were 
blocked, the tissues were incubated with primary, monoclonal 
mouse anti‑ARID1A antibody or polyclonal rabbit anti‑ARID1A, 
followed by secondary antibody labelled with horseradish 
peroxidase (46,82,108,110-112,119). The immunoreactive signal 
was most frequently amplified with diaminobenzidine followed 
by competitive nuclear haematoxylin staining, while the 
evaluation and yield of the tissue immunoreactivity score were 
based on the percentage extent of the immunohistochemical 
expression and the intensity of staining of the ARID1A‑positive 
nuclei (41,108,110,115).

ARID1A reverse transcription‑quantitative PCR (RT‑qPCR) 
and western blot analysis. Along with the immunohisto-
chemical method, the expression levels of ARID1A messenger 
RNA (mRNA) were also examined by RT‑qPCR, following 
the isolation of total RNA from fresh tissues, most commonly 
using ΤRIzol reagent and following purification with the 
RNeasy mini kit (82,88,111,118). RNA was processed with the 
TaqMan Reverse Transcription Reagents kit and RT‑qPCR of 
the complementary DNA (cDNA) was performed on a 7900H 
Fast Real Time PCR System with a forward 5'→3' primer 
(CCC​CTC​AAT​GAC​CTC​CAG​TA) and a reverse 3'→5' primer 
(ATC​CCT​GAT​GTG​CTC​ACT​CC) (88,107).

Equally common, for the validation of the IHC and 
RT‑qPCR analyses, western blot analysis has been used to 
detect potential aberrations in ARID1A expression levels 
in cells, following extraction and measurement of cellular 
proteins by using the T‑PER reagent and the BCA Assay kit, 
respectively  (46,88,107,116,118). Subsequently, in previous 
studies, polyacrylamide gel electrophoresis was performed 
in order to separate the proteins and transfer them to a nitro-
cellulose membrane where the immunoblotting was carried 
out using a primary anti‑ARID1A antibody and a secondary 
horseradish peroxidase‑labelled antibody (46,118).

Sporadically and due to specific research requirements, 
additional laboratory methods have been used, such as 
high‑performance liquid chromatography (HPLC)  (117), 
cDNA microarrays  (41), northern and Southern blot 
analyses (6).

Next‑generation sequencing: The most sophisticated and 
specific approach. The genetic analyser Illumina Genome 
Analyzer II has been widely used in order to detect and 
accurately determine the profile of ARID1A mutations in 
cancer genomes by applying various NGS methods. Such 
methods are RNA sequencing (9), whole exome sequencing 
(WES) (120‑122) and exome sequencing of specific genes 
(targeted NGS) (8,106,107,114).

Most commonly, following homogenisation and the lysis 
of fresh tissue, genomic gDNA has been isolated using the 
Qiagen Blood and Cell Culture Mini kit and following qualita-
tive examination by electrophoresis, it has been quantitated 
photometrically  (9,114,118). Using the DNA Sample Prep 
Reagent Set 1 kit, the enzymatic fragmentation of gDNA, 
multiplex PCR with T4 or Taq DNA polymerase and ligation 
of initiating (adapters) and sample‑identifiability (barcodes) 
sequences at the ends of single‑stranded fragments have 
been typically conducted by thermal cycling, in order to 
finalize the library according to the Illumina protocol and 
capture the coding sequences with the Human SureSelect 
All Exon kit (8,107,114,122‑124). The programs ExonPrimer 
and Primer3Plus have been utilised for the design of primers, 
whereas the PCR products have been purified with the 
ExoSAP‑IT PCR Purification kit (114).

To complete the sequencing of the DNA libraries, new 
synthesis cycles have been performed by the addition of four 
reverse endings nucleotides (A, T, G and C) labelled with 
different fluorescent dyes, whose detection from the optical 
system of Illumina Genome Analyzer II gave imaging data 
in the form of chromatograms, subsequently processed by 
algorithms programs and compared to reference genomes 
(Genome Browsers) (107,114,118,120,123,124).

Statistical analyses. Differences in the levels of ARID1A 
protein and mRNA expression between cancer tissues and 
normal controls have been analysed by paired‑samples 
Students' t‑tests, whereas for the association between 
ARIDIA expression and the clinicopathological character-
istics of tumours, depending on the type of findings, various 
methods have been applied, such as the χ2 test, Fisher's 
exact test, and non‑parametric McNemar, Wilcoxon and 
Kruskal‑Wallis techniques (82,88,111,112,117). The associa-
tions between continuous variables have been evaluated by a 
Spearman's correlation coefficient (82). Statistically signifi-
cant differences were considered data presenting a value of 
P<0.05 (88,112,115,119). As regards the findings of the NGS 
methods, the Benjamini‑Hochberg multiple test correction 
method was used to estimate the false discovery rate adaptive 
P‑values (106,120,122).

Survival data analyses have been performed using 
Kaplan‑Meier survival curves, evaluated against the log‑rank 
test, while the Cox proportional hazard model was used for 
the correlation between expression, survival and clinicopatho-
logical characteristics (102,107,110,115,118,119).
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3. Summary of the findings of previous studies regarding 
ARID1A in cancer

Ovarian cancers. Genomic sequencing and the investiga-
tion of ARID1A immunoreactivity in the most common 
ovarian tumour subtype, which is ovarian clear cell 
carcinoma (OCCC), revealed ARID1A mutations and 

loss of protein expression that ranged between 46‑57 
and 41‑62%, respectively with the exception of sporadic 
deviations (8,9,96,103,104,113,119,125‑133). Mutations in 
the specific genomic area of interest have also been identi-
fied in 30 and 21% of endometriosis‑associated ovarian 
cancers (EnAOCs)  (9,113), while protein loss ranges 
between 31‑55% (9,103,126,127,131,134). Zero percentages 

Table I. Loss of ARID1A protein expression and gene mutation frequencies in histological subtypes of invasive epithelial ovarian 
cancers including OCCC, EnAOC, SAC, HG‑SAC, LG‑SAC, MAC, ASQ, ASA and OAPSMT.

Author/(Refs.)	 Cancer subtype	 Protein loss (%)	 Mutation (%)

Wiegand et al (9)	 OCCC	 55/132 (42)	 55/119 (46)
	 EnAOC	 39/125 (31)	   10/33 (30)
	 HG‑SAC	 12/198 (6)	   0/76 (0)
Jones et al (8)	 OCCC	 N/A	   24/42 (57)
Maeda et al (128)	 OCCC	 88/149 (59)	     9/12 (75)
Guan et al (87)	 HG‑SAC	 0/221 (0)	   0/32 (0)
	 LG‑SAC	   0/15 (0)	   0/19 (0)
	 MAC	   0/36 (0)	     0/5 (0)
Ayhan et al (103)	 OCCC	   18/24 (75)	 N/A
	 EnAOC	   11/20 (55)	 N/A
Katagiri et al (132)	 OCCC	     9/60 (15)	 N/A
	 HG‑SAC	   0/17 (0)	 N/A
Lowery et al (127)	 OCCC	   34/82 (41)	 N/A
	 EnAOC	 62/130 (48)	 N/A
Samartzis et al (133)	 OCCC	     5/23 (22)	 N/A
	 EnAOC	   13/28 (46)	 N/A
	 SAC	     7/63 (11)	 N/A
	 MAC	     4/15 (27)	 N/A
Wu et al (135)	 OAPSMT	     8/24 (33)	 N/A
Xiao et al (96)	 OCCC	   15/26 (58)	 N/A
Yamamoto et al (130)	 OCCC	   40/90 (44)	 N/A
Yamamoto et al (104)	 OCCC	   23/42 (55)	 N/A
Lai et al (126)	 OCCC	   20/40 (50)	 N/A
	 EnAOC	   13/33 (39)	 N/A
	 SAC	       2/4 (50)	 N/A
	 ASQ	         1/1 (100)	 N/A
	 ASA	         1/1 (100)	 N/A
Huang et al (125)	 OCCC	   35/68 (51)	 N/A
McConechy et al (134)	 LG‑EnAOC	 N/A	     9/30 (30)
	 HG‑EnAOC	 N/A	     0/3 (0)
Wiegand et al (113)	 OCCC	 N/A	   17/31 (55)
	 EnAOC	 N/A	     5/24 (21)
	 SAC	 N/A	   0/35 (0)
Wu et al (129)	 OCCC	 115/191 (50)	 N/A
Itamochi et al (119)	 OCCC	 44/112 (39)	 N/A
	 HG‑SAC	 8/108 (7)	 N/A
Murakami et al (131)	 OCCC	 23/39 (56)	   24/39 (62)

ARID1A, AT‑rich interactive domain‑containing protein 1A; OCCC, ovarian clear cell carcinoma; EnAOC, endometriosis associated ovarian 
carcinoma; SAC, serum adenocarcinoma; HG‑SAC, high‑grade serum adenocarcinoma; LG‑SAC, low‑grade serum adenocarcinoma; MAC, 
mucinous adenocarcinoma; ASQ, adenosquamous carcinoma; ASA, adenosarcoma; OAPSMT, ovarian atypical proliferating seromucinous 
tumours; N/A, not applicable due to the selected study method.
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of mutations and expression loss have been detected in 
high‑grade serum adenocarcinoma (HG‑SAC) and low‑grade 
serum adenocarcinoma (LG‑SAC)  (9,87,132), whereas 
in the rare cases of adenosquamous carcinoma (ASQ), 
adenosarcoma (ASA) and ovarian atypical proliferative sero-
mucinous tumours (OAPSMT), high frequencies of ARID1A 
mutations have been attributed to the limited number of 
samples  (126,135). As regards mucinous adenocarcinoma 
(MAC), two immunoreactivity studies have revealed the loss 
of ARID1A expression in 0 and 27% of samples respectively, 
while the sequence analysis detected 0% mutations (87,131). 
The analytical findings obtained from the studies of all 
ovarian cancer subtypes are presented in Table Ι.

Four studies on the effects of the mutant gene on the 
prognosis of ovarian cancer found no significant differences in 
tumour progression, clinical status and OS between ARID1A 
protein‑positive and ‑negative patients (127,128,130,136). By 
contrast, Ayhan et al associated the loss of ARID1A expres-
sion with cancer stages I and II and Itamochi et al with a 
significant reduction of OS of patients at these specific cancer 
stages (103,119). Parallel studies have reported a simultaneous 
overstimulation of the PI3K/AKT/mTOR signalling pathway, 
strong resistance to chemotherapy, reduced PFS, as well as an 
unaffected OS of the ARID1A protein‑negative patients at III 
and IV cancer stages (104,125,132,137).

Endometrial and cervical cancers. Three studies reported 
ARID1A mutation frequencies of 40‑55 and 10% in the 

endometrial endometrioid carcinoma (EEC) and endometrial 
serous carcinoma (ESC) subtypes of endometrial cancer, 
respectively (87,138,139), whereas the loss of protein expression 
ranged between 20‑26% in endometrial clear cell carcinoma 
(ECCC) (140‑143), 19‑34% in EEC (87,142‑144), 0‑18% in 
ESC (87,142,143) and 14% in endometrial carcinosarcoma 
(ECS) (143). Two immunohistochemical studies on cervical 
cancer subtypes demonstrated loss of ARID1A protein in 24‑31 
and 6.5‑16% of cervical adenocarcinoma (CAC) and cervical 
squamous cell carcinoma (CSQC), respectively (101,102). The 
analytical findings obtained from the studies of endometrial 
and cervical cancer subtypes are presented in Table II.

Two studies have reported the loss of ARID1A immu-
noreactivity exclusively in stages III and IV of EEC without 
an impact on OS or PFS survival  (140,141). By contrast, 
two parallel studies revealed reduced PFS due to resistance 
to chemotherapy and high metastasis of EEC ARID1A 
protein‑negative tumours at the early stages (102,142). As for 
the investigation of the prognostic value of the gene in the 
outcome of cervical cancer, only one of the two relevant studies 
revealed a significant reduction in the OS of ARID1A‑deficient 
patients (101,102).

Breast cancers. Studies on ARID1A mutations frequency and 
the loss of protein expression in unspecified breast cancer 
subtypes have yielded widely variable results ranging between 
4‑37%  (10,90,145) and 1‑65%  (41,87,90,108,143,146‑148) 
(Table  III), while the findings of three survival analyses 

Table II. Loss of ARID1A protein expression and gene mutation frequencies in endometrial cancer subtypes including EEC, 
ESC, ECCC and ECS, and in cervical cancer subtypes including the most common CSQC and the rare CAC.

Authors/(Refs.)	 Cancer subtype	 Protein loss (%)	 Mutation (%)

Guan et al (87)	 EEC	 15/58 (26)	 10/25 (40)
	 ESC	 0/17 (0)	 N/A
Wiegand et al (143)	 EEC	 73/214 (34)	 N/A
	 ESC	 17/95 (18)	 N/A
	 ECCC	 6/23 (26)	 N/A
	 ECS	 18/127 (14)	 N/A
Fadare et al (140) 	 ECCC	 5/22 (23)	 N/A
Katagiri et al (102)	 CAC	 14/45 (31)	 N/A
	 CSQC	 3/46 (6.5)	 N/A
Liang et al (139) 	 EEC	 N/A	 82/186 (44)
Cho et al (101) 	 CAC	 6/25 (24)	 N/A
	 CSQC	 19/116 (16) 	 N/A
Fadare et al (141) 	 ECCC	 10/50 (20)	 N/A
Kandoth et al (138) 	 EEC	 N/A	 73/186 (55)
	 ESC	 N/A	 4/42 (10)
Rahman et al (144) 	 EEC	 27/111 (24)	 N/A
Werner et al (142)	 EEC	 84/436 (19)	 N/A
	 ESC	 1/44 (3)	 N/A
	 ECCC	 4/19 (21)	 N/A

ARID1A, AT‑rich interactive domain‑containing protein 1A; EEC, endometrial endometrioid carcinoma; ESC, endometrial serous carcinoma; 
ECCC, endometrial clear cell carcinoma; ECS, endometrial carcinosarcoma; CSQC, cervical squamous cell carcinoma; CAC, cervical adeno-
carcinoma; N/A, not applicable due to the selected study method.
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converged with each other, pointing out the significantly 
reduced OS and PFS survival of ARID1A protein‑negative 
patients (41,108,147).

The investigation of the correlation between ARID1A 
expression and breast cancer clinicopathologic parameters 
have led to different conclusions as well. Cornen et al associ-
ated the low ARID1A expression with an advanced clinical 
stage and high‑grade invasive tumours, ER and PR negativity, 
HER2 positivity and poor‑prognosis molecular subtypes (145). 
Ünçel et al confirmed that the loss of ARID1A was strongly 
associated with ER/PR negativity and tumour aggressive-
ness, but also reported that no significant association was 
found between ARID1A expression and molecular subtypes 
of breast cancer  (148). Another study linked the reduced 
expression of ARID1A with ER/PR/HER2 triple‑negative 
tumours, TP53 mutation and a higher Ki‑67 labelling index, 
resulting in tumours of a larger size and higher stage (146), 
while the contradictory findings of Cho et al associated a low 
expression of ARID1A with lymph node metastasis and an 
advanced pathological stage, but also with a low histological 
grade, a low Ki‑67 labelling index and a negative p53 expres-
sion, features broadly recognized as indicators of auspicious 
prognosis (108). Takao et al reported that the partial loss of 
ARID1A expression was associated with a poor prognosis 
and a worse PFS of patients with invasive ductal carcinoma, 
whilst the severe protein loss did not affect the prognosis (41). 
Notably, the following comprehensive gene expression 
analysis of cultured cancer breast cells revealed that the down-
regulation of ARID1A mRNA by 20% caused an increased 
expression of the breast cancer‑promoting gene, RAB11FIP1, 
while the >50% deficiency led to decreased RAB11FIP1 
protein levels (41). It is worth mentioning that although 5‑10% 
of breast cancer worldwide is attributed to pathogenic variants 
of the breast cancer driver genes, BRCA1/2 (149,150), to date, 
no association has been reported between ARID1A expression 
and the BRCA status.

Gastric cancers. The genomic analyses of gastric cancers 
have reported ARID1A mutations ranging between 

8‑29% (10,100,151), while the loss of protein expression has 
been found in 11‑51% of tumours, often associated with MSI 
and Epstein‑Barr infection (46,69,87,89,100,111,115,143,15
2‑155) (Table IV). Two studies have reported that the loss 
of expression of ARID1A was unrelated to gastric cancer 
clinical characteristics (115,154). On the contrary, Yan et al 
associated the reduced ARID1A expression with CDH1 
silencing and subsequent decreased E‑cadherin levels that 
enhance gastric cancer migration and invasion, leading to 
local lymph node metastasis and tumour infiltration (46). 
Another study associated the loss of ARID1A expression 
with higher T stage infiltration, but not with distant or lymph 
node metastasis (111), while the findings of Kim et al associ-
ated the loss of ARID1A with poorly differentiated subtypes 
located in the upper third of the stomach, showing frequent 
vascular invasion (89).

The strong positive association of ARID1A deficiency 
with EBV positivity, high MSI and the loss of mismatch 
repair (MMR) protein expression has been consistently repor
ted (69,89,100,115,151‑153). In particular, Wang et al detected 
inactivating ARID1A mutations and protein loss in 83% of 
gastric cancers with MSI and in 73% of those carrying EBV 
infection  (100), while two studies reported that ARID1A 
deficiency was significantly more frequent in EBV‑positive 
and MLH1‑negative gastric carcinomas, suggesting that the 
EBV‑associated promoter hypermethylation downregulates 
the expression of both genome guardians (69,152). Of note, 
among the two MMR genes, Kim et al confirmed a positive 
correlation between ARID1A and MLH1 decreased levels 
in gastric tumours, but found no association with MLH2 
expression  (89). Zang  et  al detected ARID1A mutations 
in 8% of tumours characterised by concurrent MSI and 
PIK3CA mutations (151), while no significant association 

Table III. Loss of ARID1A protein expression and gene muta-
tion frequencies in breast cancer.

Authors/(Refs.)	 Protein loss (%)	 Mutation (%)

Guan et al (87)	     1/91 (1)	 N/A
Wiegand et al (143)	 11/315 (3)	 N/A
Cornen et al (145)	 N/A	 95/256 (37)
Jones et al (10)	 N/A	 4/114 (4)
Mamo et al (90) 	 151/236 (64)	   11/82 (13)
Zhang et al (146)	   63/112 (56)	 N/A
Zhao et al (147)	 324/496 (65)	 N/A
Cho et al (108)	    150/476 (31.5)	 N/A
Takao et al (41)	   63/127 (50)	 N/A
Ünçel et al (148)	   123/92 (42)	 N/A

ARID1A, AT‑rich interactive domain‑containing protein 1A; N/A, 
not applicable due to the selected study method.

Table IV. Loss of ARID1A protein expression and gene muta-
tion frequencies in gastric cancer.

Authors/(Refs.)	 Protein loss (%)	 Mutation (%)

Guan et al (87)	 5/45 (11)	 N/A
Wang et al (100)	 38/109 (35)	 32/109 (29)
Wiegand et al (143)	 26/180 (14)	 N/A
Abe et al (152)	 95/857 (11)	 N/A
Jones et al (10) 	 N/A	 10/100 (10)
Wang et al (111) 	 115/224 (51)	 N/A
Zang et al (151)	 N/A	 9/110 (8)
Wiegand et al (115) 	 39/173 (22.5)	 N/A
2 cohorts	 16/80 (20)	 N/A
Yan et al (46)	 44/183 (24)	 N/A
Ibarrola‑Villava et al (154) 	 14/33 (42)	 N/A
Kim et al (89) 	 62/191 (32.5)	 N/A
Han et al (153)	 88/417 (21)	 N/A
Kim et al (155) 	 52/350 (15)	 N/A
Aso et al (69)	 103/516 (20)	 N/A

ARID1A, AT‑rich interactive domain‑containing protein 1A; N/A, 
not applicable due to the selected study method.
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was reported between the loss of ARID1A expression and 
HER2 amplification (115). The negative association between 
ARID1A and TP53 mutations has been reported in four 
studies, highlighting the mutual exclusivity of the two tumour 
suppressors (69,100,115,153).

Two studies associated the decreased expression of 
ARID1A and genetic alterations with a significantly improved 

OS and prognosis (100,154), contrary to the findings of five 
studies that reported a high tumour differentiation and a 
significantly reduced PFS of ARID1A protein‑negative 
patients (46,111,152,153,155).

Liver, pancreatic, gallbladder, intestinal, oesophageal, 
thyroid and lung cancers. Table V lists the results of genomic 

Table V. Loss of ARID1A protein expression and gene mutation frequencies in liver, pancreatic, gallbladder, intestinal, oesopha-
geal, thyroid and lung cancers.

Cancer type	 Authors/(Refs.)	 Protein loss (%)	 Mutation (%)

Liver	 Guan et al (87)	 0/41 (0)	 N/A
	 Fujimoto et al (157)	 N/A	   15/147 (10)
	 Guichard et al (158)	 20/125 (16)	   20/125 (16)
	 He et al (88)	 41/64 (64)	 N/A
Pancreas	 Guan et al (87)	 4/48 (8)	 N/A
	 Wiegand et al (143)	 5/85 (6)	 N/A
	 Jones et al (10)	 N/A	 10/119 (8)
	 Zhang et al (116)	 10/73 (7)	 N/A
Gallbladder	 Guan et al (87)	 2/27 (7)	 N/A
	 Jiao et al (121)	 N/A	       9/64 (14)
	 Ahn et al (106)	 N/A	   25/183 (14)
Colorectal	 Guan et al (87)	 2/49 (4)	 N/A
	 Wiegand et al (143)	 2/250 (1)	 N/A
	 Jones et al (10)	 N/A	   12/119 (10)
	 Cajuso et al (114)	 N/A	     18/46 (39)
	 Wei et al (112)	 54/209 (25.8)	 N/A
	 Sen et al (161)	 24/164 (14.6) 	 N/A
	 Lee et al (160)	 12/196 (6)	 N/A
Ampulla of vater	 Nastase et al (118)	 N/A	        4/49 (8.2)
Duodenum	 Nastase et al (118)	 N/A	         2/6 (33)
Oesophagus	 Streppel et al (159)	 12/98 (12)	       3/20 (15)
	 Drage et al (109)	 12/120 (10)	 N/A
Thyroid	 Wiegand et al (143)	 5/35 (14)	 N/A
Lung	 Imielinski et al (156)	 N/A	 15/183 (8)

ARID1A, AT‑rich interactive domain‑containing protein 1A; N/A, not applicable due to the selected study method.

Table VI. Loss of ARID1A protein expression and gene mutation frequencies in bladder, renal and prostate cancers.

Cancer type	 Authors/(Refs.)	 Protein loss (%)	 Mutation (%)

Bladder	 Gui et al (120) 	 N/A	 13/97 (13)
	 Balbás‑Martínez et al (107) 	 N/A	   6/52 (12)
	 Guo et al (162) 	 N/A	 15/99 (15)
	 Faraj et al (110) 	 16/122 (13)	 N/A
Renal	 Guan et al (87)	   0/73 (0)	 N/A
	 Wiegand et al (143)	   1/58 (2)	 N/A
	 Lichner et al (82) 	   53/79 (67)	 N/A
Prostate	 Jones et al (10)	   2/23 (8)	 N/A

ARID1A, AT‑rich interactive domain‑containing protein 1A; N/A, not applicable due to the selected study method.
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and immunohistochemical analyses of liver, pancreatic, 
gallbladder, intestinal, oesophageal, thyroid and lung cancer 
tissues. Among all, the highest frequency of ARID1A muta-
tions of 39% was found in colorectal tumours (114) and the 
lowest of 8% in cancers of the pancreas, the duodenum and the 
lung (10,118,156). Although protein loss was detected mostly at 
a low rate 0‑16% of malignancies (87,109,116,143,157‑161), two 
studies reported the loss of ARID1A immunoreactivity in 64% 
of liver tumours (88) and in 25.8% of colorectal cancers (112).

As regards colorectal cancer, Wei et al reported that the 
loss of ARID1A expression was significantly associated with 
a late TNM stage, distant metastasis and poor pathological 
differentiation, but did not seem to affect the tumour T stage, 
size or location (112), in partial accordance with the findings 
of Lee et al that associated the loss of ARID1A expression 
with expanding tumour borders, but negative lymphatic 
invasion (160). In parallel, two studies reported the positive 
association between ARID1A mutations and MSI colorectal 
cancers (10,114), while Cajuso et al, based on a limited number 
of study samples, questioned the relevance of mutual exclu-
siveness between ARID1A and TP53 mutations in colorectal 
cancer (114). Of note, the molecular analyses of two KRAS 
wild‑type and two KRASG13D colorectal cancer cell lines, 
subjected to CRISPR/Cas9‑mediated ARID1A deletion, led 
Sen et al to the conclusion that KRAS mutated colorectal 
cancer cells are particularly dependent on ARID1A presence, 
as their proliferation proved to be severely impaired by its 
absence, due to the decreased activity of specific enhancers 
bound by ARID1A and the AP1 transcription factors, that 
subsequently caused the down regulation of 48 genes (161).

Survival analyses have not detected a statistically signifi-
cant difference in OS between ARID1A protein‑positive and 
‑negative patients with oesophageal, pancreatic and colorectal 
cancers (109,112,116). On the contrary, in the case of hepato-
cellular carcinoma, the loss of expression has been shown to 
be associated with a poor prognosis and high metastaticity of 
the tumour (88), whereas in the case of cancer of the ampulla 
of Vater, it was found that the mutation of the gene is associ-
ated with an increased overall survival (118).

Bladder, renal and prostate cancers. Three sequencing 
analyses of bladder cancer genomes have revealed a mean 
ARID1A mutation frequency of 13.5% (107,120,162), while 
IHC analyses have detected the loss of protein expression 
in 0, 2 and 67% of renal malignancies (82,87,143), in 13% 

of bladder tumours (110) and in 8% of prostate cancers (10) 
(Table VI). Two survival studies have found that ARID1A 
mutation is associated with the reduced OS and PFS of bladder 
and kidney cancer patients (82,107), while Faraj et al reported 
that ARID1A protein loss was associated with the first stage of 
bladder cancer and positively affected prognosis (110).

Nervous and lymphatic system cancers. ARID1A muta-
tions detected in myeloblastoma, neuroblastoma, Burkitt 
lymphoma and Waldenstrӧm macroglobulinemia genomes 
ranged between 2‑17%  (10,122,163,164), while the loss of 
protein expression was found in 75% of the glioma serum 
samples (117) (Table VII). The parallel investigation of the 
effect of the inactivated gene on the prognosis of patients with 
neuroblastoma and glioma revealed a significant reduction in 
the OS of ARID1A protein‑negative patients (117,122).

4. Discussion

The dynamic remodeling of chromatin is a key mechanism for 
proper cellular function, as it enables the transcription, replica-
tion and repair of genetic material, regulates gene expression, 
while at the same time prevents chromosome breakage and 
supports the exact DNA distribution during cell divisions, 
thus ensuring the preservation of the cellular phenotype 
across generations (165). In order to respond to environmental 
stimuli and developmental signals that require the activation 
or suppression of particular genes, chromatin's structure is 
appropriately remodeled by the SWI/SNF protein complexes, 
which bind to the onset loci of the upcoming transcriptional 
activity under the guidance of the ARID1A subunit and rear-
range the array of nucleosomes along the double stranded 
helix length (32,37). The mutation of the ARID1A gene diverts 
the remodeling mechanism and besides its epigenetic implica-
tions, results involved in carcinogenesis in many other ways 
that have not been fully elucidated yet (4).

Laboratory studies investigating the frequency of ARID1A 
mutations and the loss of homologous protein expression 
have been conducted worldwide over the past decade and 
have spread to almost the entire spectrum of human cancers. 
Most of these have focused on the association between 
oncogenesis and gene inactivation in gynaecological and 
gastrointestinal cancers, revealing a substantive association, 
while concrete‑positive indications have been reported by 
the majority of malignant neoplasms studies consolidating its 

Table VII. Loss of ARID1A protein expression and gene mutation frequencies in nervous (myeloblastoma, neuroblastoma, 
glioma) and lymphatic (macroglobulinemia Waldenstrӧm, Burkitt lymphoma) system cancers.

Cancer type	 Authors/(Refs.)	 Protein loss (%)	 Mutation (%)

Myeloblastoma	 Jones et al (10)	 N/A	 3/125 (2)
Neuroblastoma	 Sausen et al (122) 	 N/A	   4/71 (6)
Glioma	 Tan et al (117) 	 62/83 (75)	 N/A
Macroglobulinemia Waldenstrӧm	 Treon et al (163)	 N/A	    5/30 (17)
Burkitt lymphoma	 Giulino‑Roth et al (164) 	 N/A	    5/29 (17)

ARID1A, AT‑rich interactive domain‑containing protein 1A; N/A, not applicable due to the selected study method.
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tumour‑suppressive role. However, the contemporary scientific 
community has not precisely defined yet the diagnostic signifi-
cance and the clinical implications of the mutant ARID1A, as 
the findings of genomic and immunohistochemical analyses 
show a high degree of heterogeneity among the various cancer 
tissues, whereas wide ranges of variations are observed even 
between cancers of the same type and subtype (13).

Highest mutation frequencies, often >50%, have been 
recorded in ovarian, endometrial and breast cancer tissues, 
attributable to the hormone‑dependent nature of these specific 
malignancies and the interactions of the gene with nuclear 
hormone receptors during transcriptional regulation  (12). 
Mutation frequencies ranging between 8‑39% have been 
detected in gastrointestinal cancers (10,100,114,118,151), while 
<10% rates have been detected in lung, prostate, pancreatic 
and intracranial tumours (10,122,156). The findings of three 
immunohistochemistry‑based studies of the same ovarian 
tumour subtype OCCC, reporting the loss of ARID1A 
expression in 75, 22 and 15% of the samples (103,131,132), 
are indicative of the wide heterogeneity between the results 
of various studies, although the reliability of the IHC method 
is unquestionable. In fact, a study based on the concurrent 
comparative analyses of ARID1A mutational status and 
immunoreactivity reported the concordance of results in 91% 
of the OCCC ovarian cancers examined, demonstrating 100% 
sensitivity and 66% specificity of the IHC method (128).

The findings of the relatively limited number of survival anal-
yses conducted to investigate the prognostic value of the ARID1A 
gene in the outcome of cancer treatment appear to be controversial 
as well. Actually, relevant studies have reported adverse, beneficial 
or absolutely no effect of protein loss on the biological behaviour 
and metastaticity of tumours, the outcome of chemotherapy, the 
recurrence of cancer, the PFS and the OS of cancer patients, thus 
clarifying that the abnormal expression of ARID1A affects the 
prognosis in different ways, mainly depending on the type, stage 
and grade of the tumour (107,110,117,136).

Among the factors that have been found to influence the 
prognosis of specific malignancies, the existence of concomitant 
PIK3CA, TP53, EZH2 and KRAS mutations has been proven 
to be of great significance and has led to the deterioration of 
ARID1A‑deficient gynaecological cancers, while in gastric 
malignancies the synergy of ARID1A protein loss with the 
expression of E‑cadherin, MSI and the simultaneous pres-
ence of Epstein‑Barr virus was detected in highly aggressive 
tumours (46,89,100,152,153). In addition to the clinicopathological 
characteristics of the tumours, the heterogeneity of the research 
findings is attributed to other factors as well, such as the occasion-
ally limited number of samples, the use of different antibodies 
in the immunoassays conducted, the general characteristics, the 
clinical condition and the racial origin of the patients (12,81).

5. Conclusion and future therapeutic perspectives

The enlightenment of the diagnostic significance and the prog-
nostic role of the ARID1A gene in cancer entails the exclusion 
of the specific parameters, which embroil the research findings, 
hence requires new highly specialized research approaches 
to tumours and patients with common clinicopathological 
and anthropological characteristics  (11). The identification 
of the association between the mutational status of the gene, 

the stages and the grading of malignant tumours can lead on 
the one hand to the development of an early diagnosis method-
ology and on the other hand to the identification and distinction 
between low and high risk patients in order to be subjected to a 
more personalized and targeted therapeutic intervention, thus 
avoiding the effects of over‑treatment (11,12,113).

Undoubtedly, the full decoding of the ARID1A tumour 
suppressor mechanism and the development of targeted gene 
therapy are part of the future field of investigation. Moreover, 
in exploiting the proven interaction of the gene with the 
PI3K/AKT/mTOR intracellular signalling pathway, whose 
diversion disrupts cell proliferation and leads to carcinogen-
esis, contemporary experimental studies have attempted to 
develop novel chemotherapeutic regimens for the treatment 
of ARID1A protein‑negative tumours, including inhibitors 
of the kinases PI3K and AKT, among which buparlisib and 
the combination of MK‑2206/perifosine were the most effec-
tive (92,93), in contrast to cytostatic cisplatin which proved 
to be ineffective in suppressing ARID1A negative, ovarian 
cancer cell lines (14).

Parallel therapeutic approaches are currently focused on 
the epigenetic aberrations and the deficient DNA damage 
responses caused by the loss of ARID1A expression, aiming 
to identify a potential ARID1A‑synthetic lethality target. 
Recently, Bitler et al reported that the pharmacological inhibi-
tion of the histone deacetylase 6 (HDAC6) in mouse models 
of ARID1A‑mutated ovarian tumours suspended the tumour 
expansion and improved the survival of the treated mice (166), 
while another study reported the synthetic lethality between 
EZH2 methyltransferase inhibition and ARID1A‑mutated 
ovarian cancer cell lines (167). According to the in vitro and 
in vivo findings of Shen et al, PARP inhibitors, already known 
to be selectively lethal to cells carrying BRCA1 or BRCA2 
mutations, two proteins involved in the DNA damage signal-
ling pathway similarly to ARID1A, represent a potential 
therapeutic strategy for ARID1A mutant tumours as well (60).
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