Figure S1. Flowchart for the literature search and selection.

Figure S2. Forest plot showing the comparison of allele C vs. allele T for all studies. The squares and horizontal lines correspond to the study-specific OR and 95% CI. The area of the squares reflects the weight (inverse of the variance). The diamond represents the summary OR and 95% CI. OR, odds ratio; df, degrees of freedom; CVE, cardio-cerebrovascular events.

Figure S3. Forest plot showing the comparison of CC vs. TT for all studies. The squares and horizontal lines correspond to the study-specific OR and 95% CI. The area of the squares reflects the weight (inverse of the variance). The diamond represents the summary OR and 95% CI. OR, odds ratio; df, degrees of freedom; CVE, cardio-cerebrovascular events.

Figure S4. Forest plot showing the comparison of CT vs. TT for all studies. The squares and horizontal lines correspond to the study-specific OR and 95% CI. The area of the squares reflects the weight (inverse of the variance). The diamond represents the summary OR and 95% CI. OR, odds ratio; df, degrees of freedom; CVE, cardio-cerebrovascular events.

Figure S5. Forest plot showing the comparison of (CC + CT) vs. TT for all studies. The squares and horizontal lines correspond to the study-specific OR and 95% CI. The area of the squares reflects the weight (inverse of the variance). The diamond represents the summary OR and 95% CI. OR, odds ratio; df, degrees of freedom; CVE, cardio-cerebrovascular events.

Figure S6. Forest plot showing the comparison of CC vs. (CT + TT) for all studies. The squares and horizontal lines correspond to the study-specific OR and 95% CI. The area of the squares reflects the weight (inverse of the variance). The diamond represents the summary OR and 95% CI. OR, odds ratio; df, degrees of freedom; CVE, cardio-cerebrovascular events.

Figure S7. Forest plot showing the comparison of CT vs. (TT + CC) for all studies. The squares and horizontal lines correspond to the study-specific OR and 95% CI. The area of the squares reflects the weight (inverse of the variance). The diamond represents the summary OR and 95% CI. OR, odds ratio; df, degrees of freedom; CVE, cardio-cerebrovascular events.

Figure S8. Forest plot showing the comparison of C vs. T for studies with Hardy-Weinberg equilibrium. The squares and horizontal lines correspond to the study-specific OR and 95% CI. The area of the squares reflects the weight (inverse of the variance). The diamond represents the summary OR and 95% CI. OR, odds ratio; df, degrees of freedom; CVE, cardio-cerebrovascular events.

Figure S9. Forest plot showing the comparison of CC vs. TT for studies with Hardy-Weinberg equilibrium. The squares and horizontal lines correspond to the study-specific OR and 95% CI. The area of the squares reflects the weight (inverse of the variance). The diamond represents the summary OR and 95% CI. OR, odds ratio; df, degrees of freedom; CVE, cardio-cerebrovascular events.

Figure S10. Forest plot showing the comparison of CT vs. TT for studies with Hardy-Weinberg equilibrium. The squares and horizontal lines correspond to the study-specific OR and 95% CI. The area of the squares reflects the weight (inverse of the variance). The diamond represents the summary OR and 95% CI. OR, odds ratio; df, degrees of freedom; CVE, cardio-cerebrovascular events.

Figure S11. Forest plot showing the comparison of $(C C+C T)$ vs. TT for studies with Hardy-Weinberg equilibrium. The squares and horizontal lines correspond to the study-specific OR and 95% CI. The area of the squares reflects the weight (inverse of the variance). The diamond represents the summary OR and 95% CI. OR, odds ratio; df, degrees of freedom; CVE, cardiocerebrovascular events.

Exposed group Control group						Odds ratio		OR	95\%-CI	Weight
All CVE										
Rubattu 2004	65	130	141	312				1.21	[0.81; 1.83]	2214.6\%
Barbato 2012	321	430	683	967			\pm	1.22	[0.95; 1.58]	5342.0\%
Francia 2013	47	92	121	244				1.06	[0.66; 1.72]	1630.3\%
Rubattu 2016	65	103	193	276				0.74	[0.46; 1.18]	1656.3\%
Pastori 2021	19	128	78	429				0.78	[0.45; 1.35]	1267.1\%
Common effect model		883		2228			-	1.07	[0.90; 1.27]	--
Heterogeneity: $I^{2}=21 \%, \tau^{2}=0.0131, p=0.28$										
Atrial fibrillation										
Francia 2013	47	92	121	244				1.06	[0.66; 1.72]	1630.3\%
Cerebrovascular event										
Rubattu 2004	65	130	141	312			1	1.21	[0.81; 1.83]	2214.6\%
Coronary heart disease										
Barbato 2012	321	430	683	967			1	1.22	[0.95; 1.58]	5342.0\%
Myocardial infarction										
Rubattu 2016	65	103	193	276		1		0.74	[0.46; 1.18]	1656.3\%
Heterogeneity: $J^{2}=9 \%, \tau^{2}=0.0014, p=0.36$										
Test for subgroup differenc	es: $\chi_{4}^{2}=$	72, df	$=4(p=0$.45)	0.5					

Figure S12. Forest plot showing the comparison of CC vs. $(\mathrm{CT}+\mathrm{TT})$ for studies with Hardy-Weinberg equilibrium. The squares and horizontal lines correspond to the study-specific OR and 95% CI. The area of the squares reflects the weight (inverse of the variance). The diamond represents the summary OR and 95% CI. OR, odds ratio; df, degrees of freedom; CVE, cardiocerebrovascular events.

Figure S13. Forest plot showing the comparison of CT vs. (CT + TT) for studies with Hardy-Weinberg equilibrium. The squares and horizontal lines correspond to the study-specific OR and 95% CI. The area of the squares reflects the weight (inverse of the variance). The diamond represents the summary OR and 95% CI. OR, odds ratio; df, degrees of freedom; CVE, cardiocerebrovascular events.

Figure S14. Egger's publication bias plot and P-value for the comparison of (CC + CT) vs. TT. Each data-point represents a separate study for the indicated association.

Figure S 15 . Sensitivity analysis for testing the stability of the overall estimate in the recessive model for studies. OR, odds ratio.

OR	95\%-CI	P-value	Tau2	Tau	I2
1.56	$[1.03 ; 2.38]$	0.04	0.1498	0.3871	68%
1.20	$[0.89 ; 1.62]$	0.23	0.0619	0.2488	46%
1.40	$[0.96 ; 2.04]$	0.08	0.1453	0.3812	64%
1.58	$[1.02 ; 2.46]$	0.04	0.1500	0.3873	44%
1.40	$[0.91 ; 2.16]$	0.12	0.1834	0.4283	67%
1.41	$[0.94 ; 2.09]$	0.09	0.1595	0.3993	69%
1.40	$[0.87 ; 2.26]$	0.16	0.2099	0.4582	55%
1.44	$[0.96 ; 2.16]$	0.08	0.1675	0.4093	69%
1.32	$[0.90 ; 1.93]$	0.16	0.1338	0.3657	63%
$\mathbf{1 . 4 0}$	$[\mathbf{0 . 9 6 ; ~ 2 . 0 4]}$	$\mathbf{0 . 0 8}$	$\mathbf{0 . 1 4 5 3}$	$\mathbf{0 . 3 8 1 2}$	$\mathbf{6 4 \%}$

Figure S16. Sensitivity analysis for testing the stability of the overall estimate in the homozygote model for studies with Hardy-Weinberg equilibrium. OR, odds ratio.

Figure S17. Sensitivity analysis for testing the stability of the overall estimate in the recessive model for studies with Hardy-Weinberg equilibrium. OR, odds ratio.

Figure S18. Forest plot for the subgroup analysis for NOS score in the recessive model regarding composite cardio-cerebrovascular event outcome. The squares and horizontal lines correspond to the study-specific OR and 95% CI. The area of the squares reflects the weight (inverse of the variance). The diamond represents the summary OR and 95% CI. OR, odds ratio; df, degrees of freedom; NOS, Newcastle-Ottawa scale.

Figure S19. Forest plot for the subgroup analysis for year of publication in the recessive model regarding composite cardio-cerebrovascular event outcome. The squares and horizontal lines correspond to the study-specific OR and 95% CI. The area of the squares reflects the weight (inverse of the variance). The diamond represents the summary OR and 95% CI. OR, odds ratio; df, degrees of freedom.

Figure S20. Forest plot for the subgroup analysis for year in the recessive model regarding study region. The squares and horizontal lines correspond to the study-specific OR and $95 \% \mathrm{CI}$. The area of the squares reflects the weight (inverse of the variance). The diamond represents the summary OR and 95% CI. OR, odds ratio; df, degrees of freedom.

Figure S21. Forest plot for the subgroup analysis for sample size in the recessive model regarding composite cardio-cerebrovascular event outcome. The squares and horizontal lines correspond to the study-specific OR and 95% CI. The area of the squares reflects the weight (inverse of the variance). The diamond represents the summary OR and 95% CI. OR, odds ratio; df, degrees of freedom.

Figure S22. Forest plot for the subgroup analysis for underlying disease in the recessive model regarding composite cardio-cerebrovascular event outcome. The squares and horizontal lines correspond to the study-specific OR and 95% CI. The area of the squares reflects the weight (inverse of the variance). The diamond represents the summary OR and 95% CI. OR, odds ratio; df, degrees of freedom.

