1. Low-Dose Cadmium Upregulates VEGF Expression in Lung Adenocarcinoma Cells
    Fuhong Liu et al, 2015, IJERPH CrossRef
  2. Dihydroartemisinin inhibits endothelial cell proliferation through the suppression of the ERK signaling pathway
    FENGYUN DONG et al, 2015 CrossRef
  3. Updates on artemisinin: an insight to mode of actions and strategies for enhanced global production
    Neha Pandey et al, 2016, Protoplasma CrossRef
  4. Allicin induces apoptosis of the MGC-803 human gastric carcinoma cell line through the p38 mitogen-activated protein kinase/caspase-3 signaling pathway.
    Xuecheng Zhang et al, 2015, Mol Med Rep CrossRef
  5. Cadmium induces vascular permeability via activation of the p38 MAPK pathway.
    Fengyun Dong et al, 2014, Biochem. Biophys. Res. Commun. CrossRef
  6. Implication of artemisinin nematocidal activity on experimental trichinellosis: In vitro and in vivo studies
    Dina M. Abou Rayia et al, 2017, Parasitology International CrossRef
  7. Anti-angiogenic properties of artemisinin derivatives (Review)
    Tianshu Wei et al, 2017 CrossRef
  8. Dihydroartemisinin transiently activates the JNK/SAPK signaling pathway in endothelial cells
    Fengyun Dong et al, 2016 CrossRef
  9. Dihydroartemisinin induces endothelial cell anoikis through the activation of the JNK signaling pathway
    Jiao Zhang et al, 2016 CrossRef
  10. Artemisinin and Its Derivatives as a Repurposing Anticancer Agent: What Else Do We Need to Do?
    Zhe Li et al, 2016, Molecules CrossRef
  11. CEACAM1 resists hypoxia-induced inhibition of tube formation of human dermal lymphatic endothelial cells
    Qi Xie et al, 2018, Cellular Signalling CrossRef
  12. null
    Appiya Santharam Madanraj et al, 2017 CrossRef
  13. Dihydroartemisinin ameliorates balloon injury-induced neointimal formation in rats
    Yang He et al, 2018, J Cell Physiol CrossRef
  14. Dihydroartemisinin inhibits endothelial cell tube formation by suppression of the STAT3 signaling pathway
    Peng Gao et al, 2019, Life Sciences CrossRef
  15. Dihydroartemisinin alleviates high glucose-induced vascular smooth muscle cells proliferation and inflammation by depressing the miR-376b-3p/KLF15 pathway.
    Bingqi Yang et al, 2020, Biochem Biophys Res Commun CrossRef
  16. Artemisinin and artemisinin derivatives as anti-fibrotic therapeutics.
    David Dolivo et al, 2021, Acta Pharm Sin B CrossRef
  17. null
    Sanjay Kumar Rai et al, 2021 CrossRef
  18. Dihydroartemisinin inhibits the expression of von Willebrand factor by downregulation of transcription factor ERG in endothelial cells.
    Fengyun Dong et al, 2021, Fundam Clin Pharmacol CrossRef
  19. Dihydroartemisinin ameliorates balloon injury-induced neointimal formation through suppressing autophagy in vascular smooth muscle cells
    Xiaoyuan Wang et al, 2021 CrossRef
  20. Dihydroartemisinin Inhibits Laser-Induced Choroidal Neovascularization in a Mouse Model of Neovascular AMD
    Xun Li et al, 2022, Front. Pharmacol. CrossRef
  21. Dihydroartemisinin ameliorates chronic nonbacterial prostatitis and epithelial cellular inflammation by blocking the E2F7/HIF1α pathway
    Yan Zhou et al, 2022, Inflamm. Res. CrossRef
  22. Cadmium exposure enhances VE‑cadherin expression in endothelial cells via suppression of ROCK signaling
    Xiaorui Li et al, 2022, Exp Ther Med CrossRef
  23. MicroRNAs: Novel players in the diagnosis and treatment of cancer cachexia (Review)
    Xin Li et al, 2022, Exp Ther Med CrossRef
  24. Drug Repurposing Strategies for Non-cancer to Cancer Therapeutics
    Shipra Singhal et al, 2022, ACAMC CrossRef
  25. Berberine Inhibits Endothelial Cell Proliferation via Repressing ERK1/2 Pathway
    Xiaoqing Wen et al, 2023, Natural Product Communications CrossRef
  26. An Overview of Dihydroartemisinin as a Promising Lead Compound for Development of Anticancer Agents
    Olagoke Zacchaeus Olatunde et al, 2023, MRMC CrossRef
  27. Dihydroartemisinin ameliorates skeletal muscle atrophy in the lung cancer cachexia mouse model
    Xin Li et al, 2024 CrossRef