1. Anti‐hypersensitive effect of angiotensin (1‐7) on streptozotocin‐induced diabetic neuropathic pain in mice
    Yoshiki Ogata et al, 2019, European Journal of Pain CrossRef
  2. Activation of the Protective Arm of the Renin Angiotensin System in Demyelinating Disease
    Roslynn E. Stone et al, 2020, Journal of Neuroimmune Pharmacology CrossRef
  3. Significance of angiotensin 1–7 coupling with MAS1 receptor and other GPCRs to the renin‐angiotensin system: IUPHAR Review 22
    Sadashiva S Karnik et al, 2017, British Journal of Pharmacology CrossRef
  4. PNA6, a Lactosyl Analogue of Angiotensin-(1-7), Reverses Pain Induced in Murine Models of Inflammation, Chemotherapy-Induced Peripheral Neuropathy, and Metastatic Bone Disease
    Maha I. Sulaiman et al, 2023, International Journal of Molecular Sciences CrossRef
  5. The Angiotensin-(1-7)/Mas Axis Counteracts Angiotensin II-Dependent and -Independent Pro-inflammatory Signaling in Human Vascular Smooth Muscle Cells
    Laura A. Villalobos et al, 2016, Frontiers in Pharmacology CrossRef
  6. Involvement of MrgprC in Electroacupuncture Analgesia for Attenuating CFA-Induced Thermal Hyperalgesia by Suppressing the TRPV1 Pathway
    Ying-jun Liu et al, 2018, Evidence-Based Complementary and Alternative Medicine CrossRef
  7. Differential role of specific cardiovascular neuropeptides in pain regulation: Relevance to cardiovascular diseases
    Ewa Szczepanska-Sadowska et al, 2020, Neuropeptides CrossRef
  8. Inhibitory effect of angiotensin (1-7) on angiotensin III-induced nociceptive behaviour in mice
    Wataru Nemoto et al, 2017, Neuropeptides CrossRef
  9. Potential Implications of Angiotensin-converting Enzyme 2 Blockades on Neuroinflammation in SARS-CoV-2 Infection
    Deepraj Paul et al, 2022, Current Drug Targets CrossRef
  10. Shedding Light on the Pharmacological Interactions between μ-Opioid Analgesics and Angiotensin Receptor Modulators: A New Option for Treating Chronic Pain
    Kornél Király et al, 2021, Molecules CrossRef
  11. Angiotensin-(1-7)/Mas receptor as an antinociceptive agent in cancer-induced bone pain
    Brittany L. Forte et al, 2016, Pain CrossRef
  12. Angiotensin 1-7 and Inflammation
    Izabela Galvão et al, 2019, Angiotensin-(1-7) CrossRef
  13. Angiotensin (1–7) Attenuates the Nociceptive Behavior Induced by Substance P and NMDA via Spinal MAS1
    Ryota Yamagata et al, 2021, Biological and Pharmaceutical Bulletin CrossRef
  14. The therapeutic potential of renin angiotensin aldosterone system (RAAS) in chronic pain: from preclinical studies to clinical trials
    Flavien Bessaguet et al, 2016, Expert Review of Neurotherapeutics CrossRef
  15. Participation of angiotensin-(1-7) in exercise-induced analgesia in rats with neuropathic pain
    Omar Echeverría-Rodríguez et al, 2021, Peptides CrossRef
  16. Angiotensin-Related Peptides and Their Role in Pain Regulation
    Wataru Nemoto et al, 2023, Biology CrossRef
  17. Respiratory issues in patients with multiple sclerosis as a risk factor during SARS-CoV-2 infection: a potential role for exercise
    Omid Razi et al, 2023, Molecular and Cellular Biochemistry CrossRef
  18. Human dorsal-root-ganglion perfusion measured in-vivo by MRI
    Tim Godel et al, 2016, NeuroImage CrossRef
  19. Multiple Aspects of Inappropriate Action of Renin–Angiotensin, Vasopressin, and Oxytocin Systems in Neuropsychiatric and Neurodegenerative Diseases
    Ewa Szczepanska-Sadowska et al, 2022, Journal of Clinical Medicine CrossRef
  20. Demystifying the dual role of the angiotensin system in neuropathic pain
    Sahibpreet Kaur et al, 2022, Neuropeptides CrossRef
  21. Tanshinone IIA contributes to the pathogenesis of endometriosis via renin angiotensin system by regulating the dorsal root ganglion axon sprouting
    Zhen-zhen Chen et al, 2020, Life Sciences CrossRef