1. Targeting Sirt1, AMPK, Nrf2, CK2, and Soluble Guanylate Cyclase with Nutraceuticals: A Practical Strategy for Preserving Bone Mass
    Mark F. McCarty et al, 2022, International Journal of Molecular Sciences CrossRef
  2. Plasma Fluorescent Oxidation Products and Bone Mineral Density Among Male Veterans: A Cross-Sectional Study
    Xue Shen et al, 2022, Journal of Clinical Densitometry CrossRef
  3. Tomatidine suppresses osteoclastogenesis and mitigates estrogen deficiency‐induced bone mass loss by modulating TRAF6‐mediated signaling
    Bin Hu et al, 2019, The FASEB Journal CrossRef
  4. n-3 polyunsaturated fatty acids stimulate osteoclastogenesis through PPARγ-mediated enhancement of c-Fos expression, and suppress osteoclastogenesis through PPARγ-dependent inhibition of NFkB activation
    Atsuko Nakanishi et al, 2015, The Journal of Nutritional Biochemistry CrossRef
  5. NOX1/2 activation in human gingival fibroblasts by Fusobacterium nucleatum facilitates attachment of Porphyromonas gingivalis
    Sun Hee Ahn et al, 2016, Archives of Microbiology CrossRef
  6. Taurine Chloramine Inhibits Osteoclastic Differentiation and Osteoclast Marker Expression in RAW 264.7 Cells
    In Soon Kang et al, 2019, Taurine 11 CrossRef
  7. NADPH Oxidases Are Essential for Macrophage Differentiation
    Qing Xu et al, 2016, Journal of Biological Chemistry CrossRef
  8. Treatment With the CSF1R Antagonist GW2580, Sensitizes Microglia to Reactive Oxygen Species
    Katiria Soto-Diaz et al, 2021, Frontiers in Immunology CrossRef
  9. Poly(ADP-ribose) in the bone: From oxidative stress signal to structural element
    Csaba Hegedűs et al, 2015, Free Radical Biology and Medicine CrossRef
  10. NADPH oxidases in bone and cartilage homeostasis and disease: A promising therapeutic target
    Adam M. Wegner et al, 2020, Journal of Orthopaedic Research CrossRef
  11. Role of periodontal ligament fibroblasts in osteoclastogenesis: a review
    D. Sokos et al, 2015, Journal of Periodontal Research CrossRef
  12. Protection Against Arthritis by the Parasitic Worm Product ES-62, and Its Drug-Like Small Molecule Analogues, Is Associated With Inhibition of Osteoclastogenesis
    James Doonan et al, 2018, Frontiers in Immunology CrossRef
  13. The mycotoxin alternariol induces DNA damage and modify macrophage phenotype and inflammatory responses
    A. Solhaug et al, 2015, Toxicology Letters CrossRef
  14. Keratinocytes-derived exosomal miRNA regulates osteoclast differentiation in middle ear cholesteatoma
    NingYue Gong et al, 2020, Biochemical and Biophysical Research Communications CrossRef
  15. The effect of Hyperhomocysteinemia on the Osteoclasts activity in Male New Zealand White Rabbits
    AL-qanbar Mohammed Majid et al, 2022, Research Journal of Pharmacy and Technology CrossRef
  16. The underestimated role of the microphthalmia-associated transcription factor (MiTF) in normal and pathological haematopoiesis
    Alessia Oppezzo et al, 2021, Cell & Bioscience CrossRef
  17. NADPH oxidases in bone homeostasis and osteoporosis
    Katrin Schröder, 2019, Free Radical Biology and Medicine CrossRef
  18. NADPH oxidases in bone homeostasis and osteoporosis
    Katrin Schröder, 2015, Cellular and Molecular Life Sciences CrossRef
  19. Niobium carbide (MXene) reduces UHMWPE particle-induced osteolysis
    Kuo-Yang Sun et al, 2022, Bioactive Materials CrossRef
  20. Negative Regulation of Osteoclast Commitment by Intracellular Protein Phosphatase Magnesium‐Dependent 1A
    Oh Chan Kwon et al, 2020, Arthritis & Rheumatology CrossRef
  21. Modulation of human osteoclastogenesis and osteoblastogenesis by lycopene
    João Costa-Rodrigues et al, 2018, The Journal of Nutritional Biochemistry CrossRef
  22. NADPH oxidase gp91phox contributes to RANKL-induced osteoclast differentiation by upregulating NFATc1
    In Soon Kang et al, 2016, Scientific Reports CrossRef
  23. Mulberry water extract regulates the osteoblast/osteoclast balance in an ovariectomic rat model
    Hsing-Yu Jao et al, 2016, Food & Function CrossRef
  24. Prostaglandin D2 induces apoptosis of human osteoclasts through ERK1/2 and Akt signaling pathways
    Li Yue et al, 2014, Bone CrossRef
  25. Caveolin‐1 serves as a negative effector in senescent human gingival fibroblasts during Fusobacterium nucleatum infection
    S.H. Ahn et al, 2017, Molecular Oral Microbiology CrossRef