1. Downregulation of LAPTM5 suppresses cell proliferation and viability inducing cell cycle arrest at G0/G1 phase of bladder cancer cells.
    Liang Chen et al, 2017, Int J Oncol CrossRef
  2. Chemical Compositions and Antiproliferative Effect of Citrus sinensis and Citrus aurantium Flowers in The West Anatolian Ecological Conditions
    Emre Sevindik et al, 2018, Journal of Essential Oil Bearing Plants CrossRef
  3. Potential Anti-Inflammatory and Anti-Cancer Properties of Farnesol
    Young Jung et al, 2018, Molecules CrossRef
  4. Toxicological and pharmacologic effects of farnesol (C15H26O): A descriptive systematic review
    Gyllyandeson de Araújo Delmondes et al, 2019, Food and Chemical Toxicology CrossRef
  5. Chapter 15. Neuroendocrine and Molecular Aspects of the Physiology and Pathology of the Prostate
    Maria Elena Hernández et al, 2017 CrossRef
  6. Farnesol abrogates epithelial to mesenchymal transition process through regulating Akt/mTOR pathway
    Jong Hyun Lee et al, 2019, Pharmacological Research CrossRef
  7. Farnesol, a Quorum-Sensing Molecule of Candida albicans Triggers the Release of Neutrophil Extracellular Traps
    Marcin Zawrotniak et al, 2019, Cells CrossRef
  8. Pharmacological applications of farnesol (C15H26O): a patent review
    Gyllyandeson De Araújo Delmondes et al, 2020, Expert Opinion on Therapeutic Patents CrossRef
  9. Pharmacological Properties of Essential Oil Constituents and their Mechanisms of Action
    Bibi Sharmeen Jugreet et al, 2020 CrossRef
  10. Farnesol: An approach on biofilms and nanotechnology
    Adelaide Fernandes Costa et al, 2021 CrossRef
  11. The Novel Curcumin Derivative 1g Induces Mitochondrial and ER-Stress-Dependent Apoptosis in Colon Cancer Cells by Induction of ROS Production
    Hao Wang et al, 2021, Front. Oncol. CrossRef
  12. The investigation of in vitro effects of farnesol at different cancer cell lines
    Betül Yilmaz Öztürk et al, 2022, Microscopy Res & Technique CrossRef
  13. Synthesis of Zinc Oxide (ZnO)-Titanium Dioxide (TiO2)-Chitosan-Farnesol Nanocomposites and Assessment of Their Anticancer Potential in Human Leukemic MOLT-4 Cell Line
    Abozer Y. Elderdery et al, 2022, Bioinorganic Chemistry and Applications CrossRef
  14. Synergy with Farnesol Rejuvenates Colistin Activity against Colistin-Resistant Gram-Negative Bacteria in Vitro and in Vivo
    Yijia Han et al, 2023, International Journal of Antimicrobial Agents CrossRef
  15. Chitosan biopolymer functionalized with graphene oxide and titanium dioxide with Escin metallic nanocomposites for anticancer potential against colon cancer
    Ibrahim Abdel Aziz Ibrahim et al, 2023, International Journal of Biological Macromolecules CrossRef
  16. Anticancer Potential of Farnesol Against Human Osteosarcoma Saos-2 Cells and Human Colorectal Carcinoma HCT-116 Cells
    Zakir Hussain Fathima Hinaz et al, 2023 CrossRef
  17. An insilico approach to investigate the possible prostate cancer protective role of peoniflorin
    Riswina Nissar et al, 2023, Materials Today: Proceedings CrossRef
  18. Tuning the Potency of Farnesol-Modified Polyethylenimine with Polyanionic Trans-Booster to Enhance DNA Delivery
    Amarnath Praphakar Rajendran et al, 2024, ACS Biomater. Sci. Eng. CrossRef
  19. Essential Oils: Chemistry and Pharmacological Activities—Part II
    Damião Pergentino de Sousa et al, 2024, Biomedicines CrossRef
  20. Unravelling therapeutic potential and nano formulation approaches of farnesol, a bioactive sesquiterpene
    Tabasum Ali et al, 2024, ADV TRADIT MED (ADTM) CrossRef
  21. Green Synthesis of Chitosan-coated Tin Dioxide Nanoparticles Using Moringa oleifera Flower Extract Against Breast Cancer via the Caspase-dependent Apoptotic Pathway
    Ahmad Alsulimani et al, 2024, Pharmacognosy Magazine CrossRef
  22. Molecular docking and dynamics simulation of farnesol as a potential anticancer agent targeting mTOR pathway
    Tabasum Ali et al, 2024, In Silico Pharmacol. CrossRef