1. null
    V.F. Oliver et al, 2016 CrossRef
  2. The Role of MicroRNAs in Diabetic Complications—Special Emphasis on Wound Healing
    João Moura et al, 2014, Genes CrossRef
  3. Knockdown of survivin results in inhibition of epithelial to mesenchymal transition in retinal pigment epithelial cells by attenuating the TGFβ pathway
    Peng Zhang et al, 2018, Biochemical and Biophysical Research Communications CrossRef
  4. Rg1 inhibits high glucose-induced mesenchymal activation and fibrosis via regulating miR-2113/RP11-982M15.8/Zeb1 pathway
    Li-Ping Xue et al, 2018, Biochemical and Biophysical Research Communications CrossRef
  5. A therapeutic approach towards microRNA29 family in vascular diabetic complications: A boon or curse?
    Aishwarya P. Dasare et al, 2019, J Diabetes Metab Disord CrossRef
  6. Long Non-Coding RNA MALAT1 Mediates Transforming Growth Factor Beta1-Induced Epithelial-Mesenchymal Transition of Retinal Pigment Epithelial Cells.
    Shuai Yang et al, 2016, PLoS One CrossRef
  7. MicroRNA-182 Suppresses HGF/SF-Induced Increases in Retinal Pigment Epithelial Cell Proliferation and Migration through Targeting c-Met
    Lihua Wang et al, 2016, PLoS ONE CrossRef
  8. null
    Willem A. Dik et al, 2020 CrossRef
  9. Inflammatory mediators of proliferative vitreoretinopathy: hypothesis and review
    Ying Dai et al, 2020, Int Ophthalmol CrossRef
  10. Dichloroacetate prevents TGFβ-induced epithelial-mesenchymal transition of retinal pigment epithelial cells
    Dhaval Shukal et al, 2020, Experimental Eye Research CrossRef
  11. Autophagy regulates TGF-β2-induced epithelial-mesenchymal transition in human retinal pigment epithelium cells
    Jing Wu et al, 2017, Mol Med Report CrossRef
  12. Exosomes mediate an epithelial-mesenchymal transition cascade in retinal pigment epithelial cells: Implications for proliferative vitreoretinopathy.
    Yao Zhang et al, 2020, J Cell Mol Med CrossRef
  13. Interphotoreceptor Retinoid-Binding Protein (IRBP) in Retinal Health and Disease
    Shaoxue Zeng et al, 2020, Front. Cell. Neurosci. CrossRef
  14. Transcriptome Landscape of Epithelial to Mesenchymal Transition of Human Stem Cell–Derived RPE
    Srinivasa R. Sripathi et al, 2021, Invest. Ophthalmol. Vis. Sci. CrossRef
  15. MiR-195 inhibits the ubiquitination and degradation of YY1 by Smurf2, and induces EMT and cell permeability of retinal pigment epithelial cells.
    Shu-Hua Fu et al, 2021, Cell Death Dis CrossRef
  16. Small Noncoding RNA in Regulation of Differentiation of Retinal Pigment Epithelium
    A. V. Kuznetsova et al, 2021, Russ J Dev Biol CrossRef
  17. Blocking connexin43 hemichannels prevents TGF‐β2 upregulation and epithelial–mesenchymal transition in retinal pigment epithelial cells
    Heather Lyon et al, 2021, Cell Biol Int CrossRef
  18. Micro (mi) RNA and Diabetic Retinopathy
    null Sadashiv et al, 2022, Ind J Clin Biochem CrossRef
  19. MicroRNA-4516 suppresses proliferative vitreoretinopathy development via negatively regulating OTX1
    Shu-I Pao et al, 2022, PLoS ONE CrossRef
  20. CircRNA SCMH1 regulates the miR-200a-3p/ZEB1 signaling axis to promote diabetes-induced retinal epithelial-mesenchymal transition
    Ye He et al, 2022, Experimental Eye Research CrossRef
  21. Differential expression of aqueous humor microRNAs in central retinal vein occlusion and its association with matrix metalloproteinases: a pilot study
    Eun Hee Hong et al, 2022, Sci Rep CrossRef
  22. Epithelial-Mesenchymal Transition: Molecular Mechanisms of Retinal Pigment Epithelial Cell Activation
    A. V. Kuznetsova, 2022, Russ J Dev Biol CrossRef
  23. Molecular pathogenesis of subretinal fibrosis in neovascular AMD focusing on epithelial-mesenchymal transformation of retinal pigment epithelium
    Dandan Liu et al, 2023, Neurobiology of Disease CrossRef
  24. SB431542 partially inhibits high glucose-induced EMT by restoring mitochondrial homeostasis in RPE cells
    Jingjing Cao et al, 2024, Cell Commun Signal CrossRef
  25. null
    Willem A. Dik et al, 2024 CrossRef