1. Cobalt Chloride Upregulates Impaired HIF-1α Expression to Restore Sevoflurane Post-conditioning-Dependent Myocardial Protection in Diabetic Rats
    Jianjiang Wu et al, 2017, Front. Physiol. CrossRef
  2. Prostaglandin E2 reduces swine myocardial ischemia reperfusion injury via increased endothelial nitric oxide synthase and vascular endothelial growth factor expression levels
    Ying Zhou et al, 2017 CrossRef
  3. Deferoxamine-activated hypoxia-inducible factor-1 restores cardioprotective effects of sevoflurane postconditioning in diabetic rats
    P. Xie et al, 2017, Acta Physiol CrossRef
  4. Effect of sevoflurane on the ATPase activity of hippocampal neurons in a rat model of cerebral ischemia-reperfusion injury via the cAMP-PKA signaling pathway
    Tie-Jun Liu et al, 2017, The Kaohsiung Journal of Medical Sciences CrossRef
  5. Trichostatin A attenuates oxidative stress-mediated myocardial injury through the FoxO3a signaling pathway
    Yunhui Guo et al, 2017 CrossRef
  6. Sevoflurane postconditioning protects against myocardial ischemia/reperfusion injury by restoring autophagic flux via an NO-dependent mechanism
    Shi-gang Qiao et al, 2018, Acta Pharmacol Sin CrossRef
  7. Downregulation of the long noncoding RNA MBNL1-AS1 protects sevoflurane-pretreated mice against ischemia-reperfusion injury by targeting KCNMA1
    Xue-Feng Li et al, 2018, Exp Mol Med CrossRef
  8. Downregulation of microRNA‐155 stimulates sevoflurane‐mediated cardioprotection against myocardial ischemia/reperfusion injury by binding to SIRT1 in mice
    Guirong Huang et al, 2019, J Cell Biochem CrossRef
  9. Over-expression of JAZF1 promotes cardiac microvascular endothelial cell proliferation and angiogenesis via activation of the Akt signaling pathway in rats with myocardial ischemia-reperfusion
    Jie Shang et al, 2019, Cell Cycle CrossRef
  10. Sevoflurane postconditioning alleviates hypoxia-reoxygenation injury of cardiomyocytes by promoting mitochondrial autophagy through the HIF-1/BNIP3 signaling pathway
    Long Yang et al, 2019 CrossRef
  11. Mechanism of TLR-4/NF-κB pathway in myocardial ischemia reperfusion injury of mouse
    Hao Chen et al, 2016, Asian Pacific Journal of Tropical Medicine CrossRef
  12. Sevoflurane Alleviates Reperfusion Arrhythmia by Ameliorating TDR and MAPD90 in Isolated Rat Hearts after Ischemia-Reperfusion
    Guilong Wang et al, 2019, Anesthesiology Research and Practice CrossRef
  13. Suppression of microRNA-135b-5p protects against myocardial ischemia/reperfusion injury by activating JAK2/STAT3 signaling pathway in mice during sevoflurane anesthesia
    Xiao-Juan Xie et al, 2017 CrossRef
  14. Calycosin-7-O-β-d-glucoside attenuates myocardial ischemia–reperfusion injury by activating JAK2/STAT3 signaling pathway via the regulation of IL-10 secretion in mice
    Yujie Liu et al, 2019, Mol Cell Biochem CrossRef
  15. Autophagic Network Analysis of the Dual Effect of Sevoflurane on Neurons Associated with GABARAPL1 and 2
    Guolin Lu et al, 2020, BioMed Research International CrossRef
  16. Effects of isoflurane on complex II‑associated mitochondrial respiration and reactive oxygen species production: Roles of nitric oxide and mitochondrial KATP channels
    Junan Wang et al, 2019, Mol Med Report CrossRef
  17. Propofol and sevoflurane combined with remifentanil on the pain index, inflammatory factors and postoperative cognitive function of spine fracture patients
    Yu Zhao et al, 2018, Exp Ther Med CrossRef
  18. Cardioprotective Effect of Anesthetics: Translating Science to Practice
    Sophia Lin et al, 2020, Journal of Cardiothoracic and Vascular Anesthesia CrossRef
  19. Sevoflurane attenuates cardiomyocyte apoptosis by mediating the miR-219a/AIM2/TLR4/MyD88 axis in myocardial ischemia/reperfusion injury in mice
    Yan Li et al, 2020, Cell Cycle CrossRef
  20. Mitochondrial Quality Control in Cardiac-Conditioning Strategies against Ischemia-Reperfusion Injury
    Wylly Ramsés García-Niño et al, 2021, Life CrossRef
  21. Upregulated microRNA-210-3p improves sevoflurane-induced protective effect on ventricular remodeling in rats with myocardial infarction by inhibiting ADCY9
    Yahui Wu et al, 2022, Funct Integr Genomics CrossRef
  22. Depletion of microRNA-92a Enhances the Role of Sevoflurane Treatment in Reducing Myocardial Ischemia–Reperfusion Injury by Upregulating KLF4
    Qianfu Wu et al, 2022, Cardiovasc Drugs Ther CrossRef
  23. Promising Therapeutic Candidate for Myocardial Ischemia/Reperfusion Injury: What Are the Possible Mechanisms and Roles of Phytochemicals?
    Cong Chen et al, 2022, Front. Cardiovasc. Med. CrossRef
  24. Role of sevoflurane in myocardial ischemia-reperfusion injury via the ubiquitin-specific protease 22/lysine-specific demethylase 3A axis
    Shan Song et al, 2022, Bioengineered CrossRef
  25. Induction of JAK2/STAT3 pathway contributes to protective effects of different therapeutics against myocardial ischemia/reperfusion.
    Sina Mahdiani et al, 2022, Biomed Pharmacother CrossRef
  26. Regulation of autophagy of the heart in ischemia and reperfusion
    Sergey V. Popov et al, 2022, Apoptosis CrossRef
  27. Crocin inhibits KBTBD7 to prevent excessive inflammation and cardiac dysfunction following myocardial infarction
    Chunju Yuan et al, 2022, Mol Med Rep CrossRef
  28. Effects of Cilostazol on the Myocardium in an Obese Wistar Rat Model of Ischemia-Reperfusion Injury
    Tolga Demir et al, 2023, CVP CrossRef
  29. Dexmedetomidine combined with propofol attenuates myocardial ischemia/reperfusion injury by activating the AMPK signaling pathway
    Ke Yang et al, 2023, Heliyon CrossRef
  30. Protective effect of sevoflurane on myocardial ischemia-reperfusion injury: a systematic review and meta-analysis
    Amirhossein Nasiri-Valikboni et al, 2024 CrossRef
  31. Sevoflurane Alleviates Myocardial Ischemia/Reperfusion Injury by Targeting the circ_CDR1as/miR‐671‐5p/HMGA1 Axis
    Zhengnan Zhang et al, 2025, J Biochem & Molecular Tox CrossRef