1. Integrative genomic analyses of secreted protein acidic and rich in cysteine and its role in cancer prediction
    BO WANG et al, 2014 CrossRef
  2. Phospholipid Phosphatase 4 promotes proliferation and tumorigenesis, and activates Ca2+-permeable Cationic Channel in lung carcinoma cells
    Xin Zhang et al, 2017, Mol Cancer CrossRef
  3. Analysis of circulating microRNAs during adjuvant chemotherapy in patients with luminal A breast cancer
    EBRU ESIN YORUKER et al, 2015 CrossRef
  4. Role and mechanism of the alkylglycerone phosphate synthase in suppressing the invasion potential of human glioma and hepatic carcinoma cells in vitro
    YU ZHU et al, 2014 CrossRef
  5. miR-150 inhibits proliferation and tumorigenicity via retarding G1/S phase transition in nasopharyngeal carcinoma
    Xiangyong Li et al, 2017 CrossRef
  6. Carnosol controls the human glioblastoma stemness features through the epithelial-mesenchymal transition modulation and the induction of cancer stem cell apoptosis
    Chiara Giacomelli et al, 2017, Sci Rep CrossRef
  7. Maintenance of stemness by miR-589-5p in hepatocellular carcinoma cells promotes chemoresistance via STAT3 signaling
    Jianting Long et al, 2017, Cancer Letters CrossRef
  8. Downregulation of miR-141-3p promotes bone metastasis via activating NF-κB signaling in prostate cancer
    Shuai Huang et al, 2017, J Exp Clin Cancer Res CrossRef
  9. A truncated p53 in human lung cancer cells as a critical determinant of proliferation and invasiveness
    Weiying Li et al, 2017, Tumour Biol. CrossRef
  10. Curcumin Inhibits Invasiveness and Epithelial-Mesenchymal Transition in Oral Squamous Cell Carcinoma Through Reducing Matrix Metalloproteinase 2, 9 and Modulating p53-E-Cadherin Pathway
    Alan Yueh-Luen Lee et al, 2015, Integr Cancer Ther CrossRef
  11. MicroRNAs targeting prostate cancer stem cells
    Yu-Xiang Fang et al, 2015, Exp Biol Med (Maywood) CrossRef
  12. miR-217 targeting DKK1 promotes cancer stem cell properties via activation of the Wnt signaling pathway in hepatocellular carcinoma
    Chunlin Jiang et al, 2017 CrossRef
  13. TFAP2C promotes stemness and chemotherapeutic resistance in colorectal cancer via inactivating hippo signaling pathway
    Xu Wang et al, 2018, J Exp Clin Cancer Res CrossRef
  14. miR-1266 Contributes to Pancreatic Cancer Progression and Chemoresistance by the STAT3 and NF-κB Signaling Pathways
    Xin Zhang et al, 2018, Molecular Therapy - Nucleic Acids CrossRef
  15. Dendrosomal nanocurcumin and exogenous p53 can act synergistically to elicit anticancer effects on breast cancer cells
    Narges Baghi et al, 2018, Gene CrossRef
  16. Biomarker microRNAs for prostate cancer metastasis: screened with a network vulnerability analysis model
    Yuxin Lin et al, 2018, J Transl Med CrossRef
  17. Exogenous IL-6 induces mRNA splice variant MBD2_v2 to promote stemness in TP53 wild-type, African American PCa cells
    Emily A. Teslow et al, 2018, Mol Oncol CrossRef
  18. Transcriptional downregulation of miR-133b by REST promotes prostate cancer metastasis to bone via activating TGF-β signaling
    Shuai Huang et al, 2018, Cell Death Dis CrossRef
  19. Downregulation of miR-133a-3p promotes prostate cancer bone metastasis via activating PI3K/AKT signaling.
    Yubo Tang et al, 2018, J Exp Clin Cancer Res CrossRef
  20. microRNA-145 Mediates the Inhibitory Effect of Adipose Tissue-Derived Stromal Cells on Prostate Cancer
    Kiyoshi Takahara et al, 2016, Stem Cells and Development CrossRef
  21. Chalcone Derivatives 4′-Amino-1-Naphthyl-Chalcone (D14) and 4′-Amino-4-Methyl-1-Naphthyl-Chalcone (D15) Suppress Migration and Invasion of Osteosarcoma Cells Mediated by p53 Regulating EMT-Related Genes
    Viviane Seba et al, 2018, IJMS CrossRef
  22. Tumor suppressor microRNAs: A novel non-coding alliance against cancer
    Giovanni Blandino et al, 2014 CrossRef
  23. miR-372 and miR-373 enhance the stemness of colorectal cancer cells by repressing differentiation signaling pathways
    Lu-Qin Wang et al, 2018, Mol Oncol CrossRef
  24. Profiling and bioinformatics analyses of differential circular RNA expression in prostate cancer cells
    Chunlei Zhang et al, 2018, Future Science OA CrossRef
  25. Regulatory mechanisms of miR-145 expression and the importance of its function in cancer metastasis
    Tahereh Zeinali et al, 2019, Biomedicine & Pharmacotherapy CrossRef
  26. The Biological Roles of MicroRNAs in Cancer Stem Cells
    Bin Bao et al, 2014 CrossRef
  27. ZNF280A Promotes Proliferation and Tumorigenicity via Inactivating the Hippo-Signaling Pathway in Colorectal Cancer
    Xu Wang et al, 2019, Molecular Therapy - Oncolytics CrossRef
  28. miR-582-3p and miR-582-5p Suppress Prostate Cancer Metastasis to Bone by Repressing TGF-β Signaling
    Shuai Huang et al, 2019, Molecular Therapy - Nucleic Acids CrossRef
  29. LncRNA FOXD2-AS1 Functions as a Competing Endogenous RNA to Regulate TERT Expression by Sponging miR-7-5p in Thyroid Cancer.
    Xiaoli Liu et al, 2019, Front Endocrinol (Lausanne) CrossRef
  30. The TGF-β signalling negative regulator PICK1 represses prostate cancer metastasis to bone
    Yuhu Dai et al, 2017, Br J Cancer CrossRef
  31. The roles of microRNAs in the progression of castration-resistant prostate cancer.
    Satoko Kojima et al, 2017, J. Hum. Genet. CrossRef
  32. Silencing LGR6 Attenuates Stemness and Chemoresistance via Inhibiting Wnt/β-Catenin Signaling in Ovarian Cancer
    Xiaohong Ruan et al, 2019, Molecular Therapy - Oncolytics CrossRef
  33. Impact of novel miR-145-3p regulatory networks on survival in patients with castration-resistant prostate cancer
    Yusuke Goto et al, 2017, Br J Cancer CrossRef
  34. Non-coding RNAs in Prostate Cancer: From Discovery to Clinical Applications
    Yvonne Ceder, 2016 CrossRef
  35. Knockdown of XB130 restrains cancer stem cell-like phenotype through inhibition of Wnt/β-Catenin signaling in breast cancer
    Tian Xie et al, 2019, Mol Carcinog CrossRef
  36. Expression of E-cadherin, Twist, and p53 and their prognostic value in patients with oral squamous cell carcinoma
    Chi-Chen Fan et al, 2013, J Cancer Res Clin Oncol CrossRef
  37. MiRNA regulation of TRAIL expression exerts selective cytotoxicity to prostate carcinoma cells
    Wei Huo et al, 2014, Mol Cell Biochem CrossRef
  38. MicroRNAs: master regulators of drug resistance, stemness, and metastasis
    Umar Raza et al, 2014, J Mol Med CrossRef
  39. miR-145 suppresses thyroid cancer growth and metastasis and targets AKT3.
    Myriem Boufraqech et al, 2014, Endocr. Relat. Cancer CrossRef
  40. MicroRNA-145: a potent tumour suppressor that regulates multiple cellular pathways
    Shi-Yun Cui et al, 2014, J. Cell. Mol. Med. CrossRef
  41. Role of microRNAs in maintaining cancer stem cells
    Michela Garofalo et al, 2015, Advanced Drug Delivery Reviews CrossRef
  42. The role of miRNAs in bone metastasis and their significance in the detection of bone metastasis: a review of the published data
    Qian Huang et al, 2015, Future Oncology CrossRef
  43. The impact of low-dose carcinogens and environmental disruptors on tissue invasion and metastasis
    Josiah Ochieng et al, 2015, CARCIN CrossRef
  44. Implications of miR cluster 143/145 as universal anti-oncomiRs and their dysregulation during tumorigenesis
    Ani V. Das et al, 2015, Cancer Cell Int CrossRef
  45. MicroRNA-503 represses epithelial–mesenchymal transition and inhibits metastasis of osteosarcoma by targeting c-myb
    Xinzhen Guo et al, 2016, Tumor Biol. CrossRef
  46. Krüppel-like factor 4 (KLF4): What we currently know
    Amr M. Ghaleb et al, 2017, Gene CrossRef
  47. Oncogenic miR-210-3p promotes prostate cancer cell EMT and bone metastasis via NF-κB signaling pathway.
    Dong Ren et al, 2017, Mol Cancer CrossRef
  48. miR-500a-3p promotes cancer stem cells properties via STAT3 pathway in human hepatocellular carcinoma
    Chunlin Jiang et al, 2017, J Exp Clin Cancer Res CrossRef
  49. miR-204-5p Represses Bone Metastasis via Inactivating NF-κB Signaling in Prostate Cancer
    Qingde Wa et al, 2019, Molecular Therapy - Nucleic Acids CrossRef
  50. miR‐181b/Oncostatin m axis inhibits prostate cancer bone metastasis via modulating osteoclast differentiation
    Ziwei Han et al, 2019, J Cell Biochem CrossRef
  51. miR-424-5p Promotes Anoikis Resistance and Lung Metastasis by Inactivating Hippo Signaling in Thyroid Cancer.
    Xiaoli Liu et al, 2019, Mol Ther Oncolytics CrossRef
  52. SMAD3/SP1 complex-mediated constitutive active loop between lncRNA PCAT7 and TGF-β signaling promotes prostate cancer bone metastasis.
    Chuandong Lang et al, 2020, Mol Oncol CrossRef
  53. ZEB1: A Critical Regulator of Cell Plasticity, DNA Damage Response, and Therapy Resistance
    Stanislav Drápela et al, 2020, Front. Mol. Biosci. CrossRef
  54. Ectopic Expression of miR-532-3p Suppresses Bone Metastasis of Prostate Cancer Cells via Inactivating NF-κB Signaling
    Qingde Wa et al, 2020, Molecular Therapy - Oncolytics CrossRef
  55. Maintenance of cancer stemness by miR-196b-5p contributes to chemoresistance of colorectal cancer cells via activating STAT3 signaling pathway
    Dong Ren et al, 2017, Oncotarget CrossRef
  56. Epithelial-mesenchymal transition in prostate cancer: an overview
    Micaela Montanari et al, 2017, Oncotarget CrossRef
  57. Dual effects of constitutively active androgen receptor and full-length androgen receptor for N-cadherin regulation in prostate cancer
    Félicie Cottard et al, 2017, Oncotarget CrossRef
  58. MicroRNAs and epithelial-mesenchymal transition in prostate cancer
    Kirandeep Sekhon et al, 2016, Oncotarget CrossRef
  59. Myc-dependent purine biosynthesis affects nucleolar stress and therapy response in prostate cancer
    Stefan J. Barfeld et al, 2015, Oncotarget CrossRef
  60. Ras and Wnt Interaction Contribute in Prostate Cancer Bone Metastasis
    Shian-Ren Lin et al, 2020, Molecules CrossRef
  61. MiRNA‐145‐5p prevents differentiation of oligodendrocyte progenitor cells by regulating expression of myelin gene regulatory factor
    Samantha F. Kornfeld et al, 2020, J Cell Physiol CrossRef
  62. Mouse bone marrow mesenchymal stem cells with distinct p53 statuses display differential characteristics
    Bo Wang et al, 2020, Mol Med Report CrossRef
  63. Downregulation of miR-374b-5p promotes chemotherapeutic resistance in pancreatic cancer by upregulating multiple anti-apoptotic proteins.
    Di Sun et al, 2018, Int J Oncol CrossRef
  64. miR‑149‑5p promotes chemotherapeutic resistance in ovarian cancer via the inactivation of the Hippo signaling pathway.
    Manman Xu et al, 0 CrossRef
  65. Role of microRNA‑150‑5p/SRCIN1 axis in the progression of breast cancer
    Qingfu Lu et al, 2019, Exp Ther Med CrossRef
  66. Molecular mechanisms and clinical management of cancer bone metastasis.
    Manni Wang et al, 2020, Bone Res CrossRef
  67. CPEB1 orchestrates a fine-tuning of miR-145-5p tumor-suppressive activity on TWIST1 translation in prostate cancer cells
    Fatemeh Rajabi et al, 2020, Oncotarget CrossRef
  68. EMT, cancer stem cells and autophagy; The three main axes of metastasis.
    Ghader Babaei et al, 2021, Biomed Pharmacother CrossRef
  69. CHP2 Promotes Cell Proliferation in Breast Cancer via Suppression of FOXO3a.
    Xiaohui Zhao et al, 2018, Mol Cancer Res CrossRef
  70. miR145 Targets the SOX9/ADAM17 Axis to Inhibit Tumor-Initiating Cells and IL-6–Mediated Paracrine Effects in Head and Neck Cancer
    Cheng-Chia Yu et al, 2013, Cancer Res CrossRef
  71. The Prognostic Value and Regulatory Mechanisms of microRNA-145 in Various Tumors: A Systematic Review and Meta-analysis of 50 Studies
    Liangliang Xu et al, 2019, Cancer Epidemiol Biomarkers Prev CrossRef
  72. Cancer Stemness: p53 at the Wheel
    Dishari Ghatak et al, 2021, Front. Oncol. CrossRef
  73. MiRNA-145-5p expression and prospective molecular mechanisms in the metastasis of prostate cancer.
    Gang Chen, 0 CrossRef
  74. Rotavirus Induces Epithelial–Mesenchymal Transition Markers by Transcriptional Suppression of miRNA-29b
    Urbi Mukhopadhyay et al, 2021, Front. Microbiol. CrossRef
  75. miR‐145 modulates epithelial‐mesenchymal transition and invasion by targeting ZEB2 in non–small cell lung cancer cell lines
    Qun Liu et al, 2019, J Cell Biochem CrossRef
  76. The miRNAs involved in prostate cancer chemotherapy response as chemoresistance and chemosensitivity predictors
    Maria Konoshenko et al, 2021, Andrology CrossRef
  77. Role of Metastasis-Related microRNAs in Prostate Cancer Progression and Treatment
    Su Jung Oh-Hohenhorst et al, 2021, Cancers CrossRef
  78. Crosslink between p53 and metastasis: focus on epithelial–mesenchymal transition, cancer stem cell, angiogenesis, autophagy, and anoikis
    Ghader Babaei et al, 2021, Mol Biol Rep CrossRef
  79. Decreased miR-218–5p Levels as a Serum Biomarker in Bone Metastasis of Prostate Cancer
    Peng Peng et al, 2019, Oncol Res Treat CrossRef
  80. Deletion of Wild-type p53 Facilitates Bone Metastatic Function by Blocking the AIP4 Mediated Ligand-Induced Degradation of CXCR4
    Qiji Li et al, 2022, Front. Pharmacol. CrossRef
  81. The role of microRNAs in prostate cancer migration, invasion, and metastasis
    Shirin Golabi Aghdam et al, 2019, Journal Cellular Physiology CrossRef
  82. Ubiquitination and deubiquitination in the regulation of epithelial-mesenchymal transition in cancer: Shifting gears at the molecular level
    Bhaskar Basu et al, 2022, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research CrossRef
  83. SNAIL driven by a feed forward loop motif promotes TGFβ induced epithelial to mesenchymal transition
    Gottumukkala Sai Bhavani et al, 2022, Biomed. Phys. Eng. Express CrossRef
  84. Therapeutic targets and signaling pathways of active components of QiLing decoction against castration-resistant prostate cancer based on network pharmacology
    Hongwen Cao et al, 2022 CrossRef
  85. Mitochondrial dysfunction and epithelial to mesenchymal transition in head neck cancer cell lines
    Maria do Carmo Greier et al, 2022, Sci Rep CrossRef
  86. Recent advances in glioblastoma multiforme therapy: A focus on autophagy regulation
    Mehdi Sanati et al, 2022, Biomedicine & Pharmacotherapy CrossRef
  87. Role of Cell-Cell Junctions in Oesophageal Squamous Cell Carcinoma
    Qian-Rui Xu et al, 2022, Biomolecules CrossRef
  88. Molecular Targeting of the Most Functionally Complex Gene in Precision Oncology: p53
    Douglas W. Brown et al, 2022, Cancers CrossRef
  89. Inside the stemness engine: Mechanistic links between deregulated transcription factors and stemness in cancer
    Egle-Helene Ervin et al, 2022, Seminars in Cancer Biology CrossRef
  90. The p53 Family Members p63 and p73 Roles in the Metastatic Dissemination: Interactions with microRNAs and TGFβ Pathway
    Lidia Rodriguez Calleja et al, 2022, Cancers CrossRef
  91. Autophagy and Cancer Metastasis: A Trojan Horse
    Javad Alizadeh et al, 2021, Journal of Investigative Medicine CrossRef
  92. Interplay between Partial EMT and Cisplatin Resistance as the Drivers for Recurrence in HNSCC
    Julia Ingruber et al, 2022, Biomedicines CrossRef
  93. Molecular predictors of metastasis in patients with prostate cancer
    Jundong Lin et al, 2023, Expert Review of Molecular Diagnostics CrossRef
  94. Recent Advances in Transcription Factors Biomarkers and Targeted Therapies Focusing on Epithelial–Mesenchymal Transition
    Kai-Ting Chuang et al, 2023, Cancers CrossRef
  95. p53 isoform expression promotes a stemness phenotype and inhibits doxorubicin sensitivity in breast cancer
    Luiza Steffens Reinhardt et al, 2023, Cell Death Dis CrossRef
  96. Restoration of Tumor Suppression to Cancer Carrying p53 Mutations
    Mohammad Nurul Amin et al, 2023 CrossRef
  97. The Suppression of the Epithelial to Mesenchymal Transition in Prostate Cancer through the Targeting of MYO6 Using MiR-145-5p
    Lee Armstrong et al, 2024, IJMS CrossRef
  98. Loss of microRNA-135b Enhances Bone Metastasis in Prostate Cancer and Predicts Aggressiveness in Human Prostate Samples
    Mireia Olivan et al, 2021, Cancers CrossRef
  99. MicroRNA in prostate cancer: from biogenesis to applicative potential
    Xu Luo et al, 2024, BMC Urol CrossRef
  100. The Patterns of P53, E-Cadherin, β-Catenin, CXCR4 and Podoplanin Expression in Oral Squamous Cell Carcinoma Suggests a Hybrid Invasion Model: an Immunohistochemical Study on Tissue Microarrays
    Daniele Heguedusch et al, 2025, Head and Neck Pathol CrossRef