1. Epigenetic machine learning: utilizing DNA methylation patterns to predict spastic cerebral palsy
    Erin L. Crowgey et al, 2018, BMC Bioinformatics CrossRef
  2. null
    Robert E. Akins et al, 2019 CrossRef
  3. Twin Registries Moving Forward and Meeting the Future: A Review
    Paul N. Baird et al, 2019, Twin Res Hum Genet CrossRef
  4. Epigenetic Marks at the Ribosomal DNA Promoter in Skeletal Muscle Are Negatively Associated With Degree of Impairment in Cerebral Palsy
    Ferdinand von Walden et al, 2020, Front. Pediatr. CrossRef
  5. null
    Robert E. Akins et al, 2020 CrossRef
  6. Congenital cerebral palsy: genetic cause and nosological integrity
    P. I. Sokolov et al, 2021, Rus. ΕΎ. det. nevrol. CrossRef
  7. Whole genome methylation and transcriptome analyses to identify risk for cerebral palsy (CP) in extremely low gestational age neonates (ELGAN)
    An N. Massaro et al, 2021, Sci Rep CrossRef
  8. Resistance to Neuromuscular Blockade by Rocuronium in Surgical Patients with Spastic Cerebral Palsy
    Stephanie Lee et al, 2021, JPM CrossRef
  9. Differential DNA methylation and transcriptional signatures characterize impairment of muscle stem cells in pediatric human muscle contractures after brain injury
    Lydia A. Sibley et al, 2021, FASEB j. CrossRef
  10. CEREBRAL PALSY BIOMARKER
    Aleksandr S. Golota, 2021, Physical and rehabilitation medicine, medical rehabilitation CrossRef
  11. Cerebral palsy and related neuromotor disorders: Overview of genetic and genomic studies
    Jan M. Friedman et al, 2021, Molecular Genetics and Metabolism CrossRef
  12. An Emerging Role for Epigenetics in Cerebral Palsy
    Brigette Romero et al, 2021, JPM CrossRef
  13. null
    Aino Heikkinen et al, 2022 CrossRef
  14. Integrative Multi-Omics Research in Cerebral Palsy: Current Progress and Future Prospects
    Chengqi Xin et al, 2022, Neurochem Res CrossRef
  15. null
    Zeynep Alpay Savasan et al, 2021 CrossRef
  16. null
    Jan Friedman et al, 2023 CrossRef