Abstract. X-chromosome-linked inhibitor of apoptosis protein (XIAP) is an important member of the inhibitors of apoptosis (IAP) family. It has been shown that XIAP promotes the invasion, metastasis, growth and survival of malignant cells, and confers resistance to some chemotherapeutic drugs in various types of cancer. However, little is known regarding its detailed role in osteosarcoma (OS). In the present study, we first investigated the expression of XIAP in OS tissues, and an increased expression of XIAP in OS tissues compared to adjacent non-tumor tissue was identified. Additionally, its expression level correlated with key pathological characteristics including clinical stage, tumor size and metastasis. Subsequently, small interfering RNA (siRNA) was used to block XIAP expression to evaluate the effect of XIAP siRNA on cell proliferation, colony formation, cell cycle, apoptosis, tumorigenicity, and the combined effects of doxorubicin or cisplatin in OS cell lines (MG63 cells). Downregulation of XIAP expression using the RNA silencing approach efficiently decreased cell proliferation and colony formation, and induced cell apoptosis and cell cycle in the G0/G1 stage. In addition, this downregulation inhibited tumor growth in a nude murine model. The results also showed that treatment with XIAP-shRNA in combination with doxorubicin or cisplatin enhanced chemosensitivity. These results suggested that XIAP may aid the diagnosis of OS and may be an effective strategy for gene therapy of this disease.

Introduction

Osteosarcoma (OS) is the most common primary bone malignancy in children and adolescents (1,2). Although neoadjuvant chemotherapy followed by surgical excision has ameliorated the long-term survival of OS patients, most patients that do not respond to commonly used drugs, such as cisplatin and doxorubicin, have a poor prognosis due to intrinsic or acquired drug resistance (3,4). Identification of the critical molecules and/or signal transduction pathways responsible for regulating the development to drug resistance is therefore required to optimize therapeutic options or develop novel effective therapy for OS (5,6).

At the molecular level, a number of aberrations have been identified that contribute to this chemoresistance. The deregulated expression of members of the inhibitor of apoptosis protein (IAP) family, such as X-chromosome-linked inhibitor of apoptosis protein (XIAP) and survivin (7,8), have been shown to influence the sensitivity towards chemotherapeutic agents. XIAP, an important member of the IAP family proteins, binds to and inhibits the activities of caspase-3, -7 or -9, leading to apoptosis inhibition (9). XIAP is extensively expressed in many types of cancer and is not expressed or expressed at a substantially lower level in normal tissue counterparts (10-12). Accumulating evidence showed that inhibition of XIAP expression using antisense oligonucleotides or small-interfering RNA (siRNA) suppressed tumor cell proliferation and invasion, induced cell apoptosis, and suppressed tumor growth (13-18). In addition, Harlin et al reported that XIAP knockout mice are phenotypically normal with no significant pathological characteristics (19). XIAP is considered one of the most important factors involved in resistance to the apoptotic effects of drugs and radiation in tumor cells (20). It has been shown to be one of the important regulators in cisplatin- and doxorubicin-induced apoptosis in some cancer cells (21,22) and downregulation of XIAP sensitizes cells to cisplatin and doxorubicin (13,23). Therefore, XIAP is considered to be an attractive target with respect to the molecular therapy of cancer. However, for XIAP, the possible roles and whether increase resistance of doxorubicin and cisplatin in OS remain unclear.

The present study was undertaken to evaluate the expression and its clinical diagnostic significance in OS patients and to analyze its functional role, especially with respect to chemoresistance. Our results showed that the downregulation of XIAP expression by short hairpin RNA (shRNA)
significantly inhibited MG63 cell proliferation and colony formation, induced cell arrest in the G0/G1 and cell apoptosis, and suppressed OS tumor growth in a nude murine model. Furthermore, downregulation of XIAP significantly enhanced the chemosensitivity of doxorubicin and cisplatin in OS cells. These experimental data suggested that XIAP was associated with the development of human OS and silencing XIAP is a potential strategy therapy for human OS.

Materials and methods

Patients and tissue samples. This study was approved by the Research Ethics Committee of the Second Hospital of Jilin University (Changchun, China). Written informed consent was obtained from all the patients.

Sixty OS patients (36 male and 24 female) treated in the Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China, between August 2008 and August 2013, were enrolled retrospectively in this study. The human OS biopsy specimens were obtained from primary lesions. The biopsies were performed prior to chemotherapy or radiotherapy for diagnostic purposes. Clinicopathological characteristics were recorded from the subjects, such as personal information, diagnosis, disease stage, metastasis and tumor characteristics. The selection criteria were selected as clear pathological diagnosis, full medical records, and completed follow-up data. Patients were excluded when a previous or secondary malignancy was identified. Normal tissue samples adjacent to the tumor were removed 5 cm away from the peripheral tumor cells, and the lack of tumor cell infiltration was verified by pathological examination.

Immunohistochemistry. Samples were divided into the OS group and tissue adjacent to tumor, which was stained against XIAP, in the two treatment groups. Briefly, the sections were dewaxed in xylene, rehydrated in descending alcohols, and blocked for endogenous peroxidase and avidin/biotin activity. After blocking with 3% BSA in 0.01 M PBS, the sections were incubated with mouse monoclonal antibody against human XIAP (Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA) at a dilution of 1:1,000 overnight at 4˚C. The sections were incubated with horseradish peroxidase (HRP) ‑labeled goat anti-rabbit secondary antibody for 2 h at room temperature. The samples were then incubated with diaminobenzidine (DAB)-H₂O₂ (wuhan) and observed under an optical microscope.

Immunoreactivity was graded according to the percentage of positive tumor cells (0, 0%; 1<10%; 2, 10-50%; 3, 51-80%; 4, 80-100%), and the intensity of staining (0, no staining; 1, weak; 2, moderate; and 3, strong). These scores were calculated by multiplying the intensity score to the percentage score. The section with a final score of <4 being classified as negative, and a score of ≥4 as positive.

shRNA design and plasmid construction. XIAP-shRNA (GenBank accession no. NM_001167) and non-specific shRNA sequences were designed using the siRNA target design tools (Ambion Inc., Austin, TX, USA), XIAP-shRNA and non-specific shRNA were synthesized as follows: XIAP-shRNA sense: 5'-GATCCACTGGACAGAGAAAGAG CTTCAAGAGAAGGCTTCTTCTCCTG1CCAGTTTTTGG GAAA-3' and antisense: 5'-AGCTTTTTCCAAAAAAAACGGA CAGAGAAAGACCTCCTTTGAAAGGCTTCTTCTTCTG TCCAGTG-3'; non-specific-shRNA sense: 5'-GATCTTCTCC CGAACGTTCAGCTTCAAGAAGAAACTCTTCTTTAC CTTAGA-3' and antisense: 5’-AGCTTCTTCTTTCTCCG AAGGTGTCAGCTTCCTTTGAAAAAAACTCTTCTTTACC TTG-3', where the sequence did not target any gene product and where there was no significant sequence similarity to human gene sequences. The oligonucleotides were annealed and ligated into the BamHI and HindIII sites of pSilencer 6.1-CMV neo expression vector according to the manufacturer's instructions (Ambion). The two recombinant plasmids were verified by DNA sequencing. The plasmid encoding XIAP-shRNA was referred to as pSi-XIAP, and the plasmid encoding non-specific shRNA, which was used as a negative control, was designated as pSi-NC.

Cell culture and transfection. Human MG63 OS cells were obtained from the Cell Bank of the Type Culture Collection of Chinese Academy of Sciences, Shanghai Institute of Cell Biology (Shanghai, China). MG63 cells were grown in DMEM medium (HyClone, Logan, UT, USA) supplemented with 10% fetal bovine serum (FBS, Gibco, Carlsbad, CA, USA), 2 mM glutamine, 100 U/ml penicillin and 100 mg/ml streptomycin at 37°C in a humidified atmosphere containing 5% CO₂.

MG63 cells were seeded in 6-well plates at 2.0×10⁴ cells/well, respectively, and cultured overnight to 80% confluence prior to transfection. The cells were then transfected with plasmid pSi-XIAP or plasmid pSi-NC using Lipofectamine™ 2000 (Invitrogen, Carlsbad, CA, USA) in medium according to the manufacturer's instructions. G418 (800 µg/ml, Sigma, St. Louis, MO, USA) was used to screen stably transfected clones. Stable transfectants were designated as MG63/pSi-XIAP and MG63/pSi-NC. After 48 h, quantitative real-time polymerase chain reaction (RT-qPCR) and western blot analysis were performed to evaluate the effect of gene silencing.

Quantification by real-time polymerase chain reaction. Total RNA of OS tissue and cells was isolated using TRIzol reagent following the manufacturer's instructions (Invitrogen), and quantified with the Nanodrop 2000 (Thermo, Japan). First-strand cDNA synthesis and amplification were performed using reverse transcription reagents (Takara, China) according to the manufacturer's instructions. RT-qPCR assays were carried out using SYBR-TAQ real-time kits (Takara, China) and observed under an optical microscope.

Immunoreactivity was graded according to the percentage of positive tumor cells (0, 0%; 1<10%; 2, 10-50%; 3, 51-80%; 4, 80-100%), and the intensity of staining (0, no staining; 1, weak; 2, moderate; and 3, strong). These scores were calculated by multiplying the intensity score to the percentage score. The section with a final score of <4 being classified as negative, and a score of ≥4 as positive.

shRNA design and plasmid construction. XIAP-shRNA (GenBank accession no. NM_001167) and non-specific shRNA sequences were designed using the siRNA target design tools (Ambion Inc., Austin, TX, USA), XIAP-shRNA and non-specific shRNA were synthesized as follows: XIAP-shRNA sense: 5'-GATCCACTGGACAGAGAAAGAG CTTCAAGAGAAGGCTTCTTCTCCTG1CCAGTTTTTGG GAAA-3' and antisense: 5'-AGCTTTTTCCAAAAAAAACGGA CAGAGAAAGACCTCCTTTGAAAGGCTTCTTCTTCTG TCCAGTG-3'; non-specific-shRNA sense: 5'-GATCTTCTCC CGAACGTTCAGCTTCAAGAAGAAACTCTTCTTTAC CTTAGA-3' and antisense: 5’-AGCTTCTTCTTTCTCCG AAGGTGTCAGCTTCCTTTGAAAAAAACTCTTCTTTACC TTG-3', where the sequence did not target any gene product and where there was no significant sequence similarity to human gene sequences. The oligonucleotides were annealed and ligated into the BamHI and HindIII sites of pSilencer 6.1-CMV neo expression vector according to the manufacturer's instructions (Ambion). The two recombinant plasmids were verified by DNA sequencing. The plasmid encoding XIAP-shRNA was referred to as pSi-XIAP, and the plasmid encoding non-specific shRNA, which was used as a negative control, was designated as pSi-NC.

Cell culture and transfection. Human MG63 OS cells were obtained from the Cell Bank of the Type Culture Collection of Chinese Academy of Sciences, Shanghai Institute of Cell Biology (Shanghai, China). MG63 cells were grown in DMEM medium (HyClone, Logan, UT, USA) supplemented with 10% fetal bovine serum (FBS, Gibco, Carlsbad, CA, USA), 2 mM glutamine, 100 U/ml penicillin and 100 mg/ml streptomycin at 37°C in a humidified atmosphere containing 5% CO₂.

MG63 cells were seeded in 6-well plates at 2.0×10⁴ cells/well, respectively, and cultured overnight to 80% confluence prior to transfection. The cells were then transfected with plasmid pSi-XIAP or plasmid pSi-NC using Lipofectamine™ 2000 (Invitrogen, Carlsbad, CA, USA) in medium according to the manufacturer's instructions. G418 (800 µg/ml, Sigma, St. Louis, MO, USA) was used to screen stably transfected clones. Stable transfectants were designated as MG63/pSi-XIAP and MG63/pSi-NC. After 48 h, quantitative real-time polymerase chain reaction (RT-qPCR) and western blot analysis were performed to evaluate the effect of gene silencing.
annealing/extension at 60°C for 20 sec, within final extension of 72°C for 5 min. The amplification specificity was assessed by the melting curve analysis. The 2-ΔΔCt method was used to calculate the relative abundance of target gene expression generated using the Rotor-Gene 6000 Series Software 1.7 (Qiagen, Hilden, Germany).

Western blotting. After 48 h of transfection, MG63 cells were trypsinized, lysed in RIPA lysis buffer (pH 7.4, 150 mM NaCl, 0.1% SDS, 0.5% sodium deoxycholate, 1% NP-40 in PBS, protease complete inhibitor; Roche Diagnostics GmbH, Mannheim, Germany), frozen and thawed three times, centrifuged at 13,000 x g for 20 min at 4°C to remove insoluble material, and then the supernatant was harvested as total proteins for experiments. Total protein concentration was determined using the BCA assay kit (Sigma). Cell extracts (50 µg of protein) were separated by 8-15% SDS-PAGE gel and transferred to nitrocellulose membranes. After blocking non-specific binding sites with 5% dried milk in PBST, the membranes were incubated with anti-cleaved caspase-3 (1:1,500; Santa Cruz Biotechnology, Inc.), anti-β-actin (1:5,000; Sigma-Aldrich, St. Louis, MO, USA) anti-cleaved PARP (1:2,000) and anti-XIAP (1:2,000) (both from Santa Cruz Biotechnology, Inc.) antibody in PBST containing 3% BSA overnight at 4°C, followed by incubation for 2 h at room temperature with the appropriate HRP secondary antibody diluted (1:3,000) in PBST containing 3% BSA. Protein bands were visualized with enhanced chemiluminescence reagent (ECL; Amersham, GE Healthcare, Velizy-Villacoublay, France). Densitometry was performed by Quantity One image analysis software.

Cell proliferation and colony formation. The MTT assay was used to determine the effect of downregulated XIAP on cell proliferation. Briefly, MG63 cells transfected with pSi-XIAP and pSi-NC, along with untreated cells were seeded in 96-well plates at a density of 5x10^3 cells/well. At indicated time points, 20 µl methyl thiazol tetrazolium (MTT) solution (5 mg/ml) was added to each well and cultured for 4 h. Centrifugation was performed to remove the supernatant, and 200 µl of DMSO was added to each well followed by agitation for 10 min to dissolve the crystals. Absorbance was measured at 570 nm with a microplate reader (Molecular Devices Corp., Sunnyvale, CA, USA), and growth inhibition was calculated. All the experiments were performed in triplicate.

For the colony formation assay, MG63 cells transfected with plasmid pSi-XIAP or pSi-NC, along with untreated cells were seeded in 6-well plate at a density of 5x10^3 cells/well, and then cultured for 7 days. The cells were fixed with 4% paraformaldehyde for 20 min and counted after staining with 1% crystal violet. The experiments were carried out in triplicate wells at least three times.

Cell cycle analysis. MG63 cells were plated in 10-cm dishes and treated with plasmid pSi-XIAP or pSi-NC for 48 h. The cells were trypsinized, fixed with 70% ethanol, and incubated overnight at -20°C. The cells were pelleted and resuspended in 200 µl of PBS with 50 µl DNAase-free, RNase A, and incubated at 37°C for 1 h. Propidium iodide (PI, 750 µl) was added and incubated at room temperature for 15 min. The DNA contents of samples were measured using a FACs-Calibur™ flow cytometer (BD Biosciences, San Jose, CA, USA). The flow data obtained from the samples were then analysed by CellQuest software (BD Biosciences).

Cell apoptosis. Cell apoptosis was detected using flow cytometry. Briefly, at 24 h after transfection, a total of 1x10^6 cells were digested with 10 µg/ml RNase for 30 min at 37°C. Annexin V-Fluorescein isothiocyanate (0.5 µg/ml) and PI (0.6 µg/ml) were then added to a 250 µl aliquot of this cell suspension. After a 15-min incubation in the dark at room temperature, the sample was read on a Coulter Epics XL flow cytometer (Beckman Coulter Inc., Brea, CA, USA), and the percentage of apoptotic cells was calculated using CellQuest software (BD Biosciences). Experiments were performed in triplicate. In addition, cleaved caspase-3 and cleaved PARP protein expression were determined by western blotting using specific antibody as an additional indicator of apoptosis.

In vitro drug treatment. MG63 cells transfected with plasmid pSi-XIAP or pSi-NC were cultured for 24 h, and the medium was changed to DMEM containing indicated concentrations of doxorubicin and cisplatin. After 72 h of treatment, cell proliferation was assessed using an MTT assay, and cell apoptosis was measured by flow cytometry. In addition, caspase-3 activity was determined by the caspase colorimetric protease assay kits (Millipore Corporation, Billerica, MA, USA), following the manufacturer’s instructions, as an additional indicator of apoptosis.

Tumor growth in vivo. To investigate the effects of downregulated XIAP by RNAi on the tumorgenicity of xenograft and the influence on survival of tumor-burdened animals, 30 female BALB/nude mice (aged 4-6 weeks) were purchased from the Jilin Institute of Experimental Animals. The study protocol was approved and mice were maintained in accordance with the Institutional Guidelines of the Experimental Animals of Jilin University.

Stable MG63/pSi-XIAP and MG63/pSi-NC clone cells and untreated MG63 cells (1x10^6), respectively, were subcutaneously injected into the right flank of mice. The animals were sacrificed on the 21st day after injection, tumor tissues were resected and the volume and weight were measured. In addition, spleen tissue was collected and cultured for a splenocyte surveillance study using the MTT assay as previously described (30).

Statistical analysis. Data are presented as mean ± SD (standard deviation). Statistical analysis between two samples was performed using the Student's t-test. Statistical comparison of >2 groups was performed using one-way ANOVA followed by a Tukey post-hoc test. The relationship between XIAP expression levels and clinical and pathological variables was analysed using Pearson’s Chi-square test. Graphpad Prism 5.01 software (GraphPad Software, San Diego, CA, USA) and SPSS® 16.0 (SPSS Inc., Chicago, IL, USA) for Windows® were used for statistical analyses. P<0.05 was considered to indicate a statistically significant difference.

Results

XIAP is upregulated in OS patients and correlates with clinical characteristics of OS patients. To identify the potential
roles of XIAP in the development and progression of OS, we
detected XIAP expression levels in tumor tissues and adjacent
non-tumoral tissues from 60 patients with OS by RT-qPCR and
immunohistochemistry. As revealed by the RT-qPCR analysis,
the mRNA expression level of XIAP was significantly upregu-
lated in tumoral tissues compared to expression in the matched
adjacent non-tumoral tissues (P<0.05; Fig. 1A). In addition,
elevated levels of XIAP protein were found in OS tumoral
tissues compared with the paired adjacent non-tumoral tissues
from the same patients as shown by immunohistochemical
staining (Fig. 1B).

The associations of XIAP protein expression with various
clinicopathological parameters of OS tissues was analyzed.
XIAP protein was significantly upregulated in OS patients
with advanced clinical stage, larger tumour size (>8 cm) and
positive distant metastasis as compared to those with low
clinical stage, small tumor size (<8 cm) and without distant
metastasis (all P<0.05) (Table I). No correlations occurred
between XIAP protein levels and patient age, gender and
anatomic location.

Silencing XIAP causes effective and specific downregulation
of XIAP expression in MG63 cells. We constructed a plasmid
(pSi-XIAP) that is capable of expressing a shRNA that targets
the XIAP, and then transfected this plasmid into MG63 cells.
The mRNA and protein expression intensities of XIAP were
analyzed by RT-qPCR and western blotting which showed that
plasmid pSi-XIAP markedly decreased the expression of XIAP
compared with the control and pSi-NC groups (Fig. 2A and B).
The above results indicated that the expression of XIAP gene
in MG63 cells was downregulated specifically and effectively
by plasmid pSi-XIAP.

Silencing XIAP inhibited cell proliferation and colony forma-
tion in MG63 cells. The anti-proliferative effect of XIAP
silencing on MG63 tumor cells was examined using the MTT
assay following MG63 cell transfection with individual
plasmid. Downregulation of XIAP by pSi-XIAP could signifi-
cantly inhibited the proliferation of MG63 tumor cells compared
with the control and pSi-NC groups (P<0.01; Fig. 3A).

The effects of silencing XIAP on tumor cell colony forma-
tion were determined in MG63 cell lines by analyzing cell
colony formation at 14 days after transfection with the indi-
cated plasmid. Cell colony formation in the pSi-XIAP groups
was significantly reduced compared to the control and pSi-NC
groups (P<0.05; Fig. 3B). No significant difference was identi-
fied between the pSi-NC and control groups (P>0.05).

Silencing XIAP induces cell arrest and apoptosis in MG63
cells. To determine the effects of silencing XIAP on the cell
cycle, FACScan flow cytometry assays were performed. A flow
cytometric analysis revealed that G1-phase cell population
was increased in the pSi-XIAP group compared to the control
and pSi-NC groups (P<0.05; Fig. 4A and B). In addition, silencing
XIAP resulted in a much lower percentage of cells in S
phase compared with those of the control and pSi-NC groups
(P<0.05; Fig. 4A and B).

Table I. The correlation of XIAP expression with clinicopatho-
logical characteristics of osteosarcoma.

<table>
<thead>
<tr>
<th>Clinical factor</th>
<th>Positive</th>
<th>Negative</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><20 (n=39)</td>
<td>30</td>
<td>9</td>
<td>>0.05</td>
</tr>
<tr>
<td>≥60 (n=21)</td>
<td>15</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male (n=36)</td>
<td>28</td>
<td>8</td>
<td>>0.05</td>
</tr>
<tr>
<td>Female (n=24)</td>
<td>17</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Clinical stage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-IIA (n=31)</td>
<td>20</td>
<td>11</td>
<td><0.01</td>
</tr>
<tr>
<td>IIB-III (n=29)</td>
<td>25</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Distant metastasis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absent (n=41)</td>
<td>27</td>
<td>14</td>
<td><0.01</td>
</tr>
<tr>
<td>Present (n=19)</td>
<td>18</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Anatomic location</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tibia/Femur (n=46)</td>
<td>36</td>
<td>10</td>
<td>>0.05</td>
</tr>
<tr>
<td>Other location (n=14)</td>
<td>9</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Tumor size, cm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><8 (n=38)</td>
<td>25</td>
<td>13</td>
<td><0.01</td>
</tr>
<tr>
<td>≥8 (n=22)</td>
<td>20</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1. Levels of XIAP are increased in OS clinical samples. (A) Quantitative
RT-PCR results of relative expression level of XIAP in 60 cases of OS tissue
samples and adjacent non-tumoral tissue samples. The mRNA expression
level of GAPDH was quantified as an internal standard and used to normalize
the level of XIAP from the same sample. (B) Immunohistochemical results
of XIAP expression in OS tissue samples and matched adjacent non-tumoral
tissue samples, P<0.01 vs. non-tumoral tissue.
In order to investigate the effect of silencing XIAP on cell apoptosis in MG63 cells, flow cytometry assays were performed. Flow cytometric analysis showed that cells transfected with plasmid pSi-XIAP significantly induced cell apoptosis compared to untreated cells and cells transfected with plasmid pSi-NC (P<0.05; Fig. 4C).

To determine the potential mechanism of cell apoptosis in vitro, cleaved PARP and cleaved caspase-3 protein expression were detected using western blotting. It was found that cleaved caspase-3 and cleaved PARP protein expression was significantly increased in pSi-XIAP treatment groups compared to the control and pSi-NC groups (Fig. 4D).

Downregulation of XIAP sensitizes OS cells to doxorubicin and cisplatin. To investigate whether downregulation of XIAP expression has the potential to sensitize OS cells to chemotherapy, a combination treatment of XIAP-specific siRNA with anticancer drugs was performed. Twenty-four hours after transfection with plasmid pSi-XIAP, cells were treated with doxorubicin and cisplatin at indicated concentrations for 72 h, respectively. To evaluate the growth inhibitory effects of pSi-XIAP in combination with doxorubicin or cisplatin in MG63 cells, MTT assays were performed. As shown in Fig. 5A, pSi-XIAP treatment significantly enhanced the growth inhibitory effect of doxorubicin and cisplatin in MG63 cells. The pSi-NC had either no effect or only a minimal effect.

We also evaluated the effect of pSi-XIAP combination with doxorubicin or cisplatin on cell apoptosis in MG63 cells. It was found that pSi-XIAP combination with doxorubicin or cisplatin significantly increased cell apoptosis compared to monotherapy or combination with pSi-NC (P<0.05; Fig. 5B). In addition, we evaluated the effect of pSi-XIAP combination with doxorubicin or cisplatin on caspase-3 activity, and found that pSi-XIAP combination with doxorubicin or cisplatin could increase caspase-3 activity compared to single drug treatment or combination with pSi-NC (P<0.05; Fig. 5C). These results suggested that downregulation of XIAP sensitizes OS cells to doxorubicin and cisplatin.

Silencing XIAP suppressed tumor growth in vivo. We also investigated the effect of silencing XIAP on tumor growth in nude mice. Tumor growth was monitored for 21 days. On day 21, the animals were sacrificed and tumor weight and volume were measured. Our results showed that tumor weight and volume of mice treated with pSi-XIAP were significantly
reduced when compared to the control and pSi-NC groups (P<0.05; Fig. 6A-C). We employed MTT assay in modulating splenocyte proliferation to demonstrate the antitumor activities. We found that splenocyte cell proliferation of pSi-XIAP group was significantly decreased compared to the control and pSi-NC groups (P<0.01; Fig. 6D). These results indicated that suppression of XIAP expression in OS cells markedly inhibited their tumorigenicity in nude mice.

Discussion

It is well known that inhibition of apoptosis contributes to tumorigenesis by aberrantly prolonging cell life span, permitting resistance to immune-based cytotoxicity, and allowing diobeyance of cell cycle check points that usually induce apoptosis (24). Several critical genes in the regulation of apoptosis have been identified, such as the anti-apoptotic
gene family IAPs and Bcl-2 family (9,25). The IAPs have been identified as acting downstream of Bcl-2 by inhibiting caspasases (25-27). Eight members of IAPs have been identified in humans, and XIAP is the most potent one (28). A larger number of studies in various types of cancer cells have suggested that the expression of XIAP is elevated in various cancers and that it is important in oncogenesis (10-12,29). It has been shown that the downregulated expression of XIAP inhibited cell proliferation and induced the apoptosis of many types of tumor, and sensitized cancer cells to chemotherapeutic drugs (13‑24). However, the expression and detailed role of XIAP remains to be thoroughly investigated in OS. Therefore, this study mainly focuses on XIAP expression and its detailed role in OS. We first found that XIAP was elevated in most OS tissue compared to adjacent non-tumoral tissue, and its expression level correlated with key pathological characteristics, including clinical stage and metastasis. In addition, our findings show that downregulation of XIAP results in the inhibition of proliferation of MG63 cells in vitro, and suppression of solid tumor growth in a nude murine model. These results provide evidence that XIAP is required for tumor growth and that it is important in tumorigenicity for OS.

Cisplatin (cis-diamminedichloroplatinum or cis-DDP/CDDP) is an anticancer drug widely used in the treatment of various types of cancer such as ovarian cancer, bladder, cervical, head and neck, esophageal and small cell lung cancer (SCLC) and OS (13,21,23,30). Cisplatin-based treatment has been successful in treating some patients with OS to either prolong survival or ameliorate symptoms (30,31). Other OS patients remain inherently resistant to cisplatin, which limits the therapeutic efficacy of cisplatin (32). It has been shown that the overexpression of XIAP by adenoviral sense XIAP complementary DNA attenuated the ability of cisplatin to induce apoptosis (33). Extensive studies have shown that downregulation of XIAP using adenoviral antisense XIAP infection or siRNA increased sensitivity to cisplatin in resistant various cancer cells (13,34,35). Consistent with those results, our results first showed that downregulation of XIAP by plasmid pSi-XIAP increased sensitivity to cisplatin in resistant OS cancer cells. These findings support that XIAP is an adjuvant gene therapy target to the chemotherapy of OS.

Doxorubicin, an anthracycline antibiotic, was isolated from Streptomyces peucetius which has been widely used for the treatment of various types of cancer including lymphomas, leukemias, lung, breast, OS and ovarian cancers (36). In fact, doxorubicin is the most widely used anticancer drug with FDA approval (37). However, studies have shown that some cancer cells, including OS, are resistant to the apoptotic effects of doxorubicin (38). It has been shown that downregulation of XIAP by antisense oligonucleotide (ASO) induced cell apoptosis and increased sensitivity to doxorubicin in resistant OS cells (23). Consistent with that result, our study showed that treatment with XIAP-shRNA in combination with doxorubicin significantly induced cell apoptosis and increased caspase-3 activity, and enhanced sensitivity to doxorubicin in resistant OS cancer cells.

In conclusion, to the best of our knowledge, this is the first full-scale report concerning the association of XIAP with OS. The present study has demonstrated that XIAP was elevated in most OS patients and its expression level was correlated with
key pathological characteristics, including clinical stage and metastasis. Additionally, downregulation of XIAP suppressed tumor growth in vitro and in vivo and increased sensitivity of OS cells to doxorubicin and cisplatin. Based on the multiple functions of XIAP in OS tumor growth, it may be considered a diagnostic marker and a potential anticancer therapeutic target for OS.

References

2. Ottaviani G and Jaffe N: The epidemiology of osteosarcoma.

