Abstract. CD147 is a novel cancer biomarker that has been confirmed to be overexpressed in ovarian carcinoma, which is significantly associated with poor prognosis. Although the Sp1 protein regulates the expression level of CD147, it remains unclear whether Sp1 phosphorylation plays a role in this regulation. A dual-luciferase assay revealed that T453 and T739 mutations decreased the activity of Sp1 binding to the promoter of CD147, followed by a decrease in CD147 mRNA and protein expression. Western blot analysis showed that CD147 promoted Sp1 phosphorylation at T453 and T739 through the PI3K/AKT and MAPK/ERK pathways. In addition, blocking the Sp1-CD147 positive feedback loop reduced the invasion ability of HO-8910pm cells. Immunohistochemical staining showed that the components of the feedback loop were overexpressed in ovarian cancer tissues. The correlation analysis revealed a significant correlation between phospho-Sp1 (T453), phospho-Sp1 (T739) and CD147 expression levels, with correlation coefficients of r=0.477 and r=0.461, respectively. Collectively, our results suggest that a Sp1-CD147 positive feedback loop plays a critical role in the invasion ability of ovarian cancer cells.

Introduction

Ovarian cancer is the leading cause of gynecological malignancy-associated mortalities in women in the USA, with an estimated 14,030 deaths in 2013 (1). Depending on the stage and treatment, the 5-year survival rate of ovarian cancer is <30%, and one of the reasons for this poor prognosis is the high potential of invasion and metastasis.

CD147, also known as EMMPRIN or Basigin, is a highly glycosylated transmembrane protein that belongs to the immunoglobulin superfamily (IgSF) (2). Previous findings have shown that CD147 promotes cancer cell migration, invasion and metastasis by enhancing the activity of matrix metalloproteinases (MMPs) by digesting the components of the extracellular matrix (ECM) in breast cancer, lymphoma, oral squamous cell carcinoma, glioma, melanoma, lung cancer, bladder and kidney carcinomas, and ovarian cancer (3,4). CD147 regulation occurs at the transcriptional and post-transcriptional levels (5,6). As CD147 is an important cancer biomarker, it is important to evaluate the regulation mechanism of its expression.

Numerous kinases and phosphatases have been recognized as being involved in Sp1 phosphorylation. Zheng et al (9) reported that Sp1 was phosphorylated at Thr355 by MAPK. Angiotensin II was found to be able to activate PKCζ, with the subsequent phosphorylation of Sp1 in the zinc finger domain (Thr668, Ser670 and Thr681) (10). ERK has also been reported...
to phosphorylate Sp1 at Thr453 and Thr739 (11,12). A number of studies suggest that CD147 promotes tumor progression through phosphoinositide 3-kinase (PI3K)/AKT and mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathways (13,14). Khunkeawla et al showed that cell aggregation induced by the involvement of CD147 with specific mAbs depends on the activation of protein kinases C (PKCs) (15). Based on the above studies, we aimed to evaluate the exact role of CD147 in Sp1 phosphorylation. In the present study, we investigated whether Sp1 phosphorylation is involved in the regulation of CD147 expression and in turn how CD147 influences the process of Sp1 phosphorylation. We also examined the effect of the interaction of Sp1 and CD147 on the invasion ability of ovarian cancer.

Materials and methods

Cell culture and chemicals. HO-8910, HO-8910pm (a highly metastatic human ovarian cancer) and SKOv3 cell lines were cultured in RPMI-1640 (HyClone, Logan City, UT, USA) medium supplemented with 10% of fetal bovine serum (FBS; Gibco, Grand Island, NY, USA) and maintained in a humidified incubator at 37˚C and 5% CO₂. The following antibodies were purchased for western blotting and immunohistochemical staining: anti-AKT (ab32505; Abcam, Cambridge, UK), p70S6K (ab81283; Abcam), anti-phospho-p70S6K (9234; Cell Signaling Technology), anti-phospho-ERK1/2 (ab32538), (9258; Cell Signaling Technology), and anti-phospho-Sp1 (T453) and (ab59257) (both from Abcam), anti-phospho-Sp1 (T739) (SAB4504535; Sigma, St. Louis, CA, USA), anti-CD147 (24), and anti-β-actin (AB10024; Sangon Biotech, Shanghai, China). LY294002 (L9908; Sigma), rapamycin (R706203; Sangon Biotech) and PD98059 (P215; Sigma) were diluted in dimethyl sulfoxide (DMSO).

Construction of mutagenesis. We mutated six Ser/Thr residues (including Thr355, Thr453, Thr668, Ser670, Thr681 and Thr739) of Sp1 (8) to alanine. The QuickChange Mutagenesis kit (Stratagene, La Jolla, CA, USA) was used according to the manufacturer's instructions. The primers are listed in Table I.

Transfection and luciferase assay. HO-8910 and SKOv3 cell lines were co-transfected with wild-type or mutant Sp1 plasmids along with CD147 promoter plasmid containing the firefly luciferase reporter using Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA) following the manufacturer's instructions. pRL-TK was transfected as an internal control. The amount of Sp1 (including wild-type and mutants) was 0.4 µg in Fig. 1A, and the other quantities are indicated in the images. At 36 h after transfection, the cells were lysed with 1X passive lysis buffer and assayed for Renilla and firefly luciferase activities using the Dual-Luciferase Reporter Assay system (Promega, Madison, WI, USA). The experiments were performed in triplicate and were repeated at least twice.

<table>
<thead>
<tr>
<th>Primer names</th>
<th>Primers</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD147</td>
<td>5'-GCGGAAATTCTATATGGATATGGCTGCCGACAGTC-3'</td>
</tr>
<tr>
<td></td>
<td>5'-CAATACTCGAGTTAAATGTAGTGCGACACGGG-3'</td>
</tr>
<tr>
<td>Sp1</td>
<td>5'-TTGTAATGCTGCTAACTTCCC-3'</td>
</tr>
<tr>
<td></td>
<td>5'-CATGATTCATACCAACGGG-3'</td>
</tr>
<tr>
<td>GAPDH</td>
<td>5'-ACCAGTGTCATGCCATC-3'</td>
</tr>
<tr>
<td></td>
<td>5'-TACCACCCCTGTGCTGTA-3'</td>
</tr>
</tbody>
</table>

Primers for the generation of mutagenesis constructs of CD147

<table>
<thead>
<tr>
<th>Primer names</th>
<th>Primers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sp1 (T355A)</td>
<td>5'-CTCTCAAGCCAGCCACCCAGAGGTTC-3'</td>
</tr>
<tr>
<td></td>
<td>5'-GACCCTCTGGGTCCTGGCCTGAG-3'</td>
</tr>
<tr>
<td>Sp1 (T453A)</td>
<td>5'-CCCCATCATATCAGGACCAACAGTCGAGGCC-3'</td>
</tr>
<tr>
<td></td>
<td>5'-GCCAGACCTGATTGGCCGAGATGATGAGG-3'</td>
</tr>
<tr>
<td>Sp1 (T668A)</td>
<td>5'-GTGGGAAACGCTTGCAGCCTTCGAGAGG-3'</td>
</tr>
<tr>
<td></td>
<td>5'-CTCATCCAGATGCACAGCTTCCC-3'</td>
</tr>
<tr>
<td>Sp1 (S670A)</td>
<td>5'-GAAACGCTCACACGTGGTGGATTGAGAGAATGG-3'</td>
</tr>
<tr>
<td></td>
<td>5'-CTCTGGAATCCTACGCCTGCTCAGG-3'</td>
</tr>
<tr>
<td>Sp1 (T681A)</td>
<td>5'-GCCAGACAGCTACACAGCAGTGGAGAAATGGC-3'</td>
</tr>
<tr>
<td></td>
<td>5'-CAAATATTCTCTCTACCTGCTGTTACGTGTTAC-3'</td>
</tr>
<tr>
<td>Sp1 (T739A)</td>
<td>5'-GGCACTGCTGGCTCTTCACCCCATATGCC-3'</td>
</tr>
<tr>
<td></td>
<td>5'-GTAATAAGGGCTGAGAGGGCGCGAGTCACGTGCA-3'</td>
</tr>
</tbody>
</table>

siRNA designed to target CD147

<table>
<thead>
<tr>
<th>Primer names</th>
<th>Primers</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD147-homo</td>
<td>5'-GTACAGAGACTGACTCT-3'</td>
</tr>
</tbody>
</table>

Table I. Oligonucleotide sequence of PCR primers and siRNA fragments.
Quantitative RT-PCR. Total RNA was isolated from HO-8910 and SKOV3 cell lines using the TRizol reagent (Tiangen, Beijing, China) according to the manufacturer’s instructions. Reverse transcription was carried out using a PrimeScript™ RT reagent kit with gDNA Eraser (Takara, Japan). Quantitative PCR (qPCR) was performed according to the manufacturer’s instructions using SYBR® Premix Ex Taq II (Tli RNaseH Plus; Takara). The qPCR primer sequences are listed in Table I.

Western blot analysis. Cells were lysed with RIPA buffer (Beyotime, Nantong, China) containing protease and phosphatase inhibitors (Roche, Indianapolis, IN, USA). Each figure shows the relative luciferase activity (fold over pGL3-Basic).
30 µg aliquot was electrophoresed through a polyacrylamide gel at the appropriate concentration and transferred onto a PVDF membrane (Millipore, Billerica, MA, USA). The membrane was blocked with 5% bovine serum albumin (BSA), followed by incubation with or without anti-AKT (1/5,000), p70S6K (1/1,000), anti-ERK1/2 (1/1,000), anti-Sp1 (1/200), anti-phospho-AKT (1/5,000), anti-phospho-p70S6K (1/1,000), anti-phospho-ERK1/2 (1/500), anti-phospho-Sp1 (T453) (1/500), anti-phospho-Sp1 (T739) (1/500), anti-CD147 (1/100) (16,17) or anti-β-actin (1/1,000). The membrane were washed with TBST three times for 10 min and incubated with a 1/4,000 dilution of infrared dye-labeled anti-mouse/rabbit secondary antibodies (LI-COR Biosciences, Lincoln, NE, USA) for 1 h. The proteins were visualized using the Odyssey Infrared Imaging System (LI-COR Biosciences) as per the manufacturer's instructions.

CD147 transfection and knockdown. The CD147 eukaryotic expression vector (8) and small interfering RNA designed to knock down CD147 were transfected into SKOV3 and HO-8910 cells using Lipofectamine 2000. The final concentration of CD147 siRNA was 0.2 µM. The cells were collected at 36-48 h after transfection. The CD147 siRNA primer sequences are listed in Table I.

In vitro invasion assay. The upper chamber of Transwell inserts (8 µm; Millipore) was coated with 50 µl of 2.0 mg/ml Matrigel (BD Biosciences, NSW, Australia), seeded with cells at a density of 5x10^4, and cultured with 200 µl RPMI-1640 medium supplemented with 1% BSA, as previously described. The lower chamber contained 500 µl complete medium as a chemoattractant. The cells that did not migrate were completely removed using a cotton swab after 24 h of incubation. The cells were stained with crystal violet and counted under an inverted microscope at a magnification of x200. Five random fields of vision were selected to count the cells. The independent experiments were repeated in triplicate.

Ovarian cancer tissue collection. A total of 53 paraffin-embedded ovarian cancer tissue sections were obtained from the Department of Xijing Hospital (Xi’an, China) between January 2011 and June 2014. Written signed informed consent was obtained for use of the specimens. All histologically confirmed ovarian cancer patients had undergone surgical resections at Xijing Hospital. Approval for the study was obtained from the Xijing Hospital Institutional Review Board.

Immunohistochemical staining. Human ovarian cancer tissues were immunostained using anti-CD147, anti-phospho-Sp1 (T453) and anti-phospho-Sp1 (T739) antibodies, as previously described. Immunopositivity was independently assessed by two pathologists who were blinded to the clinical data. The percentage of positive cells was divided into five grades as percentage scores: 0, <10%; 1, 11-25%; 2, 26-50%; 3, 51-75% and 4, >75%. The intensity of staining was divided into four grades.
as intensity scores: 0, no staining; 1, light brown; 2, brown and 3, dark brown. The staining positivity was calculated using the formula: Overall score = percentage score x intensity score. The overall score was defined as: ≤1, negative; >1 to ≤3, weak; >3 to ≤6, moderate and >6, strong positive (44).

Statistical analysis. Statistical analysis was performed using the SPSS 19.0 statistical software package (SPSS, Inc., Chicago, IL, USA). The Student’s t-test was used to determine significance of the data. Spearman’s rho was calculated to analyze the correlation of CD147 expression and phospho-Sp1 (including

![Figure 2. CD147 promoted Sp1 phosphorylation through the PI3K/AKT and MAPK/ERK pathways. (A) The expression of Sp1 phosphorylated proteins involved in the PI3K/AKT and MAPK/ERK pathways, as measured by western blotting in HO-8910 and SKOV3 cells following transfection with CD147 siRNA or CD147/pcDNA3.1 (+). (B) The expression of Sp1 phosphorylated proteins involved in the PI3K/AKT and MAPK/ERK pathways, as measured by western blotting in HO-8910 and SKOV3 cells after 48 h of incubation with 5 µM of LY294002, 50 nm of rapamycin and 50 µM of PD98059. (C) Schematic diagram showing the possible Sp1-CD147 positive feedback loop that may be involved in ovarian cancer.]
T453 and T739) expression. The tests were two-sided, and P<0.05 was considered to indicate a statistically significant result. Each experiment was repeated independently at least twice with similar results, and one representative experiment is presented.

Results

Mutation of the two major Ser/Thr residues of Sp1 (T453 and T739) decrease the expression of CD147. A dual-luciferase assay confirmed that the phospho-Sp1 (T453) and phospho-Sp1 (T739) mutants showed reduced activity at the CD147 promoter compared with wild-type (P<0.05) in the HO-8910 and SKOV3 cell lines (Fig. 1A-a). To determine their roles in inhibition at the endogenous level, we co-transfected CD147 p(-108/+37) and an increasing amount of the two mutants, phospho-Sp1 (T453A) (Fig. 1A-b) or phospho-Sp1 (T739A) (Fig. 1A-c), in HO-8910 and SKOV3 cells and observed a dose-dependent decrease in reporter activity. The mRNA (Fig. 1B) and protein (Fig. 1C) expression levels were significantly decreased following transfection with the two mutants. Thus, the two major phosphorylation Ser/Thr residues of Sp1 (T453 and T739) may activate the ability of Sp1 to bind to the CD147 promoter, followed by an increase in the expression of CD147 at the mRNA and protein levels.

Sp1 was phosphorylated by CD147 through PI3K/AKT and MAPK/ERK pathways. To determine whether CD147 plays an important role in Sp1 gene expression, we used RNA interference to knock down CD147 expression in HO-8910 cells, which express a high level of CD147 (17), and examined the protein expression by western blot analysis. As shown in Fig. 2A, the CD147 protein levels were significantly reduced compared to the control siRNA group. The endogenous levels of the phospho-Sp1 (T453) and phospho-Sp1 (T739) proteins (Fig. 2A) were effectively blocked by CD147 siRNA transfection. Additionally, we transiently transfected a CD147 expression plasmid to upregulate CD147 expression in SKOV3 cells, which express a relatively low level of CD147 (17), and found that the expression of the phospho-Sp1 (T453) and phospho-Sp1 (T739) proteins was markedly increased (Fig. 2A). These regulated levels of CD147 resulted in a significant reduction or improvement in phospho-Sp1 (T453) and phospho-Sp1 (T739) protein expression although not the total Sp1 level.

We assessed the expression levels of pAKT and pERK1/2, but not AKT or ERK1/2, which were significantly upregulated followed by the transfection of the CD147 expression plasmid. To examine the mechanism by which CD147 promotes Sp1 phosphorylation through the PI3K/AKT and MAPK/ERK pathways, we measured the phospho-Sp1 (T453) and phospho-Sp1 (T739) protein levels by western blotting in HO-8910 and SKOV3 cells following the incubation of LY294002 and rapamycin, which are specific inhibitors for PI3K/AKT and PD98059, a specific inhibitor for MAPK/ERK. As shown in Fig. 2B, the levels of the phospho-Sp1 (T453) and phospho-Sp1 (T739) proteins were significantly reduced following inhibition of the two pathways. The results demonstrated that CD147 regulated the human Sp1 gene at the post-translational level (phosphorylation). Thus, CD147 promoted Sp1 phosphorylation through the PI3K/AKT and MAPK/ERK pathways, and simultaneously, phosphorylated Sp1 (phospho-Sp1 (T453) and phospho-Sp1 (T739) showed improved binding capacity to the CD147 promoter, followed by the unregulated expression level of CD147, forming an Sp1-CD147 positive feedback loop (Fig. 2C).

Invasion ability of the HO-8910 pm cell line was reduced by blocking the Sp1-CD147 positive feedback loop with antibodies. To examine the biological effect of the Sp1-CD147 positive feedback loop on epithelial ovarian cancer, we blocked HO-8910 pm cells with three antibodies (anti-CD147, anti-phospho-Sp1 (T453) and anti-phospho-Sp1 (T739) (Fig. 3). The results clearly showed that the invasion ability was significantly reduced by blocking this loop (Fig. 3), providing evidence that CD147 and Sp1 phosphorylation have a synergistic effect on enhancing the invasion ability of ovarian cancer cells.

Correlation between phospho-Sp1 (T453), phospho-Sp1 (T739) and CD147 expression in human ovarian cancer tissues. To determine the biological relevance of the Sp1-CD147 positive feedback loop, the phospho-Sp1 (T453), phospho-Sp1 (T739) and CD147 expression levels were examined in the same 53 human ovarian cancer tissues using immunohistochemical staining. As shown in Fig. 4A, CD147 expression was observed in 12 (strong, 22.64%), 15 (moderate, 28.30%), 6 (weak, 11.32%) and 20 (negative, 37.74%) cases. The CD147 protein was predominantly located in tumor epithelial cells, whereas little was detected in the stroma. The immunohistochemical results revealed that 62.26% ovarian cancer tissues showed CD147-positive expression. The phospho-Sp1 (T453) (Fig. 4B) and phospho-Sp1 (T739) (Fig. 4C) proteins were largely located in the nucleus. Phospho-Sp1 (T453) was expressed in 24 (strong, 45.28%), 13 (moderate, 24.53%), 7 (weak, 13.21%) and 9 (negative, 16.98%) cases (Fig. 4B), whereas phospho-Sp1 (T739) was observed in 16 (strong, 30.19%), 14 (moderate, 26.42%), 10 (weak, 18.87%) and 13 (negative, 24.53%) cases (Fig. 4C). The immunohistochemical results indicated that 83.02 and 75.47% of ovarian cancer tissues showed phospho-Sp1 (T453) and phospho-Sp1 (T739) positivity, respectively. The correlation analysis indicated that there was a significant positive correlation between the phospho-Sp1 (T453), phospho-Sp1 (T739) and CD147 expression levels, with a correlation coefficient of r=0.477, P<0.01 (Table II), and r=0.461, P<0.01 (Table III), respectively. These data clearly showed that the constitutive expression of phospho-Sp1 (T453) and phospho-Sp1 (T739) had a strong association with overexpressed CD147, which contributes to metastasis, invasion and progression in ovarian cancer.

Discussion

CD147, one of the most important cancer-associated molecules, has a significant impact on the biological behaviors of tumor cells, including migration, invasion, tumor recurrence and multidrug resistance (18-22). The relationship between CD147 and a poor prognosis in ovarian cancer has been analyzed, and multivariate analyses have indicated that the overexpression of CD147 is an independent prognostic factor for progression-free survival (PFS) and overall survival (OS) (17).
Given the prominent role of CD147 in tumor progression, it is critical to understand the molecular basis of CD147 gene expression (23-25). Although its expression has been shown to be well regulated by Sp1 at the transcriptional level (12), we found that two major mutants of Ser/Thr residues (Thr453 and Thr739) of Sp1 result in the significant suppression of its role in regulating CD147 expression. It is believed that the phosphorylation of the two residues increases the binding ability of Sp1 to activate the CD147 promoter at the post-transcriptional level, followed by an increase in CD147 expression.
Sp1 regulates the gene expression via multiple mechanisms, either by binding to GC-rich motifs with high affinity (26-28) or by regulating the expression of TATA-containing and TATA-lacking genes via protein-protein interactions or interaction with other transcription factors (29), such as c-myc (30), c-Jun (31) or Stat1 (32). Accumulating evidence indicates that post-translational modifications, particularly phosphorylation, can influence the transcriptional activity and stability of Sp1. Our results suggest that Sp1 phosphorylation improves CD147 transcriptional activity. Thus, Sp1 regulates the CD147 gene at the transcriptional and post-transcriptional levels.

The protein levels of pAKT, pERK1/2, pSp1 (T453) and pSp1 (T739), but not total protein, were reduced after the knockdown of CD147 expression in HO-8910 cells but were increased after transfection of a CD147 expression plasmid into SKOV3 cells. Consequently, whether CD147 influences the expression of phospho-Sp1 (T453) and phospho-Sp1 (T739) via the PI3K/AKT and MAPK/ERK1/2 pathways was examined. We used specific inhibitors to suppress the two pathways, and the western blotting results showed that the expressions of phospho-Sp1 (T453) and phospho-Sp1 (T739) was reduced following inhibition of the two pathways. Since
LY294002 has been shown to directly inhibit the kinase mTOR, we also studied the effects of rapamycin, an inhibitor of mTOR, which is a protein kinase located between Akt/PKB and p70S6K (33). Thus, CD147 may regulate the expression of phospho-Sp1 (T453) and phospho-Sp1 (T739) through the PI3K/AKT/mTOR and MAPK/ERK1/2 pathways, forming a positive feedback loop comprising CD147, phospho-Sp1 (T453), phospho-Sp1 (T739) and the two pathways.

The signaling network defined by PI3K/AKT/mTOR controls most of the hallmarks of cancer, including cell cycle, survival, metabolism, motility and genomic instability (34). However, emerging clinical data show limited single-agent activity of inhibitors targeting the PI3K-AKT-mTOR pathway. A greater focus on patient selection, an increased understanding of immune modulation and the rational strategic application of combinations should be useful to realize such promising targeted anticancer agents (35). ERK1 was the first mammalian MAPK to be cloned and characterized, and the ERK1 and ERK2 cDNAs were cloned in the early 1990 (36,37). ERK1/2 plays a central role in the control of cell proliferation via several mechanisms, including the induction of positive regulators of the cell cycle (38). ERK1/2 stabilizes proteins and activates transcription factors (e.g., c-Fos, Elk-1) through direct and indirect phosphorylation (39-41). MEK1/2 inhibitors have been extensively used to suggest ERK1/2 in a wide array of biological events. Despite competitive inhibitors, such as PD98059 (42,43) and U0126 (44), non-competitive inhibitors of MEK1/2 with greater bioavailability (PD184352 and PD0325901) have been developed and entered clinical trials as potential anticancer agents (45). In conclusion, the thoughtful application of principles, such as targeting genetic drivers in selected patient populations, and understanding the biology of crosstalk and feedback to use effective combinations may light the path towards effective ovarian cancer control by PI3K/AKT/mTOR and MAPK/ERK inhibitors.

To examine the biological function of the positive feedback loop in ovarian cancer, we utilized antibodies against phospho-Sp1 (T453), phospho-Sp1 (T739) and CD147 in HO-8910pm cells and found that the invasion ability of the ovarian cancer cells had been markedly reduced, particularly when co-blocking with the three antibodies, suggesting synergistic effects on ovarian cancer invasion caused by each component of the positive feedback loop.

The immunohistochemical staining outcomes showed that most of the ovarian cancer specimens overexpressed phospho-Sp1 (T453) and phospho-Sp1 (T739) and directly correlated with overexpressed CD147. As CD147 is a crucial cancer-related antigen, it is expected that the overexpression of phosphorylated Sp1 and CD147 may be important in ovarian cancer metastasis and progression.

We emphasize that CD147 promoted Sp1 phosphorylation and phospho-Sp1 (T453) and phospho-Sp1 (T739) activated Sp1 targeting to the promoter of CD147, forming a positive feedback loop and contributing to the overexpression of CD147, phospho-Sp1 (T453) and phospho-Sp1 (T739), thereby increasing the invasion and progression ability of ovarian cancer.

In summary, to the best of our knowledge, the present study is the first to reveal the mechanism of the Sp1-CD147 positive feedback loop and confirm its positive functions in the in vitro invasion ability of ovarian cancer cells. Our results suggest that Sp1 phosphorylation is significantly correlated with CD147 expression in ovarian cancer tissues. It is evident that efforts to understand and interrupt the Sp1-CD147 positive feedback loop may be significant for suppressing tumor progression and may lead to the design of novel therapeutic approaches.

Acknowledgements

The present study was supported by the National Natural Science Foundation of China (81072144).

References