Transforming growth factor‑β family and stem cell‑derived exosome therapeutic treatment in osteoarthritis (Review)
- Authors:
- Kwang Ho Yoo
- Nikita Thapa
- Yong Joon Chwae
- Seung Hyun Yoon
- Beom Joon Kim
- Jung Ok Lee
- You Na Jang
- Jaeyoung Kim
-
Affiliations: Department of Dermatology, Chung‑Ang University College of Medicine, Seoul 06973, Republic of Korea, CK‑Exogene, Inc., Seongnam, Gyeonggi‑do 13201, Republic of Korea, Department of Microbiology, Ajou University School of Medicine, Suwon, Gyeonggi‑do 16499, Republic of Korea, Department of Physical Medicine and Rehabilitation, Ajou University School of Medicine, Suwon, Gyeonggi‑do 16499, Republic of Korea - Published online on: March 10, 2022 https://doi.org/10.3892/ijmm.2022.5118
- Article Number: 62
-
Copyright : © Yoo et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY 4.0].
This article is mentioned in:
Abstract
Felson DT: Clinical practice. Osteoarthritis of the knee. N Engl J Med. 354:841–848. 2006. View Article : Google Scholar : PubMed/NCBI | |
Goldring SR and Goldring MB: Changes in the osteochondral unit during osteoarthritis: Structure, function and cartilage-bone crosstalk. Nat Rev Rheumatology. 12:632–644. 2016. View Article : Google Scholar : PubMed/NCBI | |
Urban H and Little CB: The role of fat and inflammation in the pathogenesis and management of osteoarthritis. Rheumatology (Oxford). 57(Suppl 4): pp. iv10–iv21. 2018, View Article : Google Scholar | |
Fox AJS, Bedi A and Rodeo SA: The basic science of articular cartilage: Structure, composition and function. Sports Health. 1:461–468. 2019. | |
Pearle AD, Warren RF and Rodeo SA: Basic science of articular cartilage and osteoarthritis. Clin Sports Med. 24:1–12. 2005. View Article : Google Scholar : PubMed/NCBI | |
Shoulders MD and Raines RT: Collagen structure and stability. Annu Rev Biochem. 78:929–958. 2009. View Article : Google Scholar : PubMed/NCBI | |
Aigner T, Zien A, Gehrsitz A, Gebhard PM and McKenna L: Anabolic and catabolic gene expression pattern analysis in normal versus osteoarthritic cartilage using complementary DNA-array technology. Arthritis Rheum. 44:2777–2789. 2001. View Article : Google Scholar | |
Darling EM and Athanasiou KA: Biomechanical strategies for articular cartilage regeneration. Ann Biomed Eng. 31:1114–1124. 2003. View Article : Google Scholar : PubMed/NCBI | |
Kevorkian L, Young DA, Darrah C, Donell ST, Shepstone L, Porter S, Brockbank SMV, Edwards DR, Parker AE and Clark IM: Expression profiling of metalloproteinases and their inhibitors in cartilage. Arthritis Rheum. 50:131–141. 2004. View Article : Google Scholar : PubMed/NCBI | |
Little CB, Barai A, Burkhardt D, Smith SM, Fosang AJ, Werb Z, Shah M and Thompson EW: Matrix metalloproteinase-13 deficient mice are resistant to osteoarthritic cartilage erosion but not chondrocyte hypertrophy or osteophyte development. Arthritis Rheum. 60:3723–3733. 2009. View Article : Google Scholar : PubMed/NCBI | |
Latourte A, Cherifi C, Maillet J, Ea HK, Bouaziz W, Brentano TF, Solal MC, Hay E and Richette P: Systemic inhibition of IL-6/Stat3 signaling protects against experimental osteoarthritis. Ann Rheum Dis. 76:748–755. 2017. View Article : Google Scholar | |
Jobling AI, Nguyen M, Gentle A and McBrien NA: Isoform-specific changes in scleral transforming growth factor-β expression and the regulation of collagen synthesis during myopia progression. J Biol Chem. 279:18121–18126. 2004. View Article : Google Scholar : PubMed/NCBI | |
Javelaud D and Mauviel A: Mammalian transforming growth factor-betas: Smad signaling and physio-pathological roles. Int J Biochem Cell Biol. 36:1161–1165. 2004. View Article : Google Scholar : PubMed/NCBI | |
Itoh S, Itoh F, Goumans MJ and Dijke PT: Signaling of transforming growth factor-b family members through Smad proteins. Eur J Biochem. 267:6954–6967. 2000. View Article : Google Scholar : PubMed/NCBI | |
Finnson KW, Parker WL, Dijke PT, Thorikay M and Philip A: ALK1 Opposes ALK5/Smad3 signaling and expression of extracellular matrix components in human chondrocytes. J Bone Miner Res. 23:896–906. 2008. View Article : Google Scholar : PubMed/NCBI | |
Blaney Davidson EN, Remst DF, Vitters EL, van Beuningen HM, Blom AB, Goumans MJ, van den Berg WB and van der Kraan PM: Increase in ALK1/ALK5 Ratio as a cause for elevated MMP-13 expression in osteoarthritis in humans and mice. J Immunol. 182:7937–7945. 2009. View Article : Google Scholar : PubMed/NCBI | |
Remst DF, Blaney Davidson EN, Vitters EL, Bank RA, van den Berg WB and van der Kraan PM: TGF-β induces Lysyl hydroxylase 2b in human synovial osteoarthritic fibroblasts through ALK5 signaling. Cell Tissue Res. 355:163–171. 2014. View Article : Google Scholar | |
Barry F, Boynton RE, Liu B and Murphy M: Chondrogenic differentiation of mesenchymal Stem cells from bone marrow: Differentiation-dependent gene expression of matrix components. Exp Cell Res. 268:189–200. 2001. View Article : Google Scholar : PubMed/NCBI | |
Enker ND and Krieglstein K: Targeted mutations of transforming growth factor-beta genes reveal important roles in mouse development and adult homeostasis. Eur J Biochem. 267:6982–6988. 2000. View Article : Google Scholar | |
van Beuningen HM, Glansbeek HL, van der Kraan PM and van den Berg WB: Osteoarthritis-like changes in the murine knee joint resulting from intra-articular transforming growth factor-beta injections. Osteoarthritis Cartilage. 8:25–33. 2000. View Article : Google Scholar | |
Zhen G, Wen C, Jia XF, Li Y, Crane JL, Mears SC, Askin FB, Frassica FJ, Chang W, Yao J, et al: Inhibition of TGF-β signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis. Nat Med. 19:704–714. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bakker AC, van de Loo FA, van Beuningen HM, Sime P, van Lent PL, van der Kraan PM, Richards CD and van den Berg WB: Overexpression of active TGF-beta-1 in the murine knee joint: Evidence for synovial-layer-dependent Chondro-osteophyte formation. Osteoarthritis Cartilage. 9:128–136. 2001. View Article : Google Scholar : PubMed/NCBI | |
Suarez MP, Oreja MTC, Calaza M, Reino JG and Gonzalez A: Differential upregulation of the three transforming growth factor beta isoforms in human osteoarthritic cartilage. Ann Rheum Dis. 68:568–571. 2009. View Article : Google Scholar | |
Wu J, Liu W, Bemis A, Wang E, Qiu YC, Morris EA, Flannery CR and Yang Z: Comparative proteomic characterization of articular cartilage tissue from normal donors and patients with osteoarthritis. Arthritis Rheum. 56:3675–3684. 2007. View Article : Google Scholar : PubMed/NCBI | |
Verdier MP, Seite S, Guntzer K, Pujol JP and Boumediene K: Immunohistochemical analysis of transforming growth factor beta isoforms and their receptors in human cartilage from normal and osteoarthritic femoral heads. Rheumatol Int. 25:118–124. 2005. View Article : Google Scholar | |
Lee WH, Song SU, Hwang TS, Yi Y, Oh IS, Lee JY, Choi KB, Choi MS and Kim S: Regeneration of hyaline cartilage by cell-mediated gene therapy using transforming growth factor beta1-producing fibroblasts. Hum Gene Ther. 12:1805–1813. 2001. View Article : Google Scholar : PubMed/NCBI | |
Song SU, Cha YD, Han JU, Oh IS, Choi KB, Yi Y, Hyun JP, Lee HY, Chi GF, Lim CL, et al: Hyaline cartilage regeneration using mixed human chondrocytes and transforming growth factor-beta1-producing chondrocytes. Tissue Eng. 11:1516–1526. 2005. View Article : Google Scholar : PubMed/NCBI | |
Guo X, Zheng Q, Yang S, Shao Z, Yuan Q, Pan Z, Tang S, Liu K and Quan D: Repair of full-thickness articular cartilage defects by cultured mesenchymal stem cells transfected with the transforming growth factor beta1 gene. Biomed Mater. 1:206–215. 2006. View Article : Google Scholar | |
Zhang P, Zhong ZH, Yu HT and Liu B: Exogenous expression of IL-1Ra and TGF-β1 promotes in vivo repair in experimental rabbit osteoarthritis. Scand J Rheumatol. 44:404–411. 2015. View Article : Google Scholar | |
Eshghi EA, Liu M, Harper PE, Doré J, Martin G, Furey A, Green R, Rahman P and Zhai G: Overexpression of MMP13 in human osteoarthritic cartilage is associated with the SMAD-independent TGF-β signaling pathway. Arthritis Res Ther. 17:264–272. 2015. View Article : Google Scholar | |
Xie J, Zhang D and Lin Y: Anterior Cruciate ligament transection-induced cellular and extracellular events in menisci: Implications for osteoarthritis. Am J Sports Med. 46:1185–1198. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kudipudi PK, Galuska SP, Dietze R, Bobis GS, Loveland KL and Konrad L: Betaglycan (TβRIII) is a key factor in TGF-β2 signaling in prepubertal rat Sertoli cells. Int J Mol Sci. 20:6214–6232. 2019. View Article : Google Scholar | |
Sandell LJ and Aigner T: Articular cartilage and changes in arthritis. An introduction: Cell biology of osteoarthritis. Arthritis Res. 3:107–113. 2001. View Article : Google Scholar : PubMed/NCBI | |
Xie J, Fu N, Cai LY, Gong TY, Li GY, Peng Q and Ca XX: The effects of interleukin-1β in modulating osteoclast-conditioned medium's influence on gelatinases in chondrocytes through mitogen-activated protein kinases. Int J Oral Sci. 7:220–231. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tchetina EV, Antoniou J, Tanzer M, Zukor DJ and Poole AR: Transforming growth factor-beta2 suppresses collagen cleavage in cultured human osteoarthritic cartilage, reduces expression of genes associated with chondrocyte hypertrophy and degradation, and increases prostaglandin E(2) production. Am J Pathol. 168:132–1340. 2006. View Article : Google Scholar | |
Mrugala D, Bony C, Neves N, Caillot L, Fabre S, Moukoko D, Jorgensen C and Noe D: Phenotypic and functional characterization of ovine mesenchymal stem cells: Application to a cartilage defect model. Ann Rheum Dis. 67:288–295. 2008. View Article : Google Scholar | |
Tang QO, Shakib K, Heliotis M and Tsiridis E, Mantalaris A, Ripamonti A and Tsiridis E: TGF-beta3: A potential biological therapy for enhancing chondrogenesis. Expert Opin Biol Ther. 9:689–701. 2009. View Article : Google Scholar : PubMed/NCBI | |
Mehlhorn A, Schmal H, Kaiser S, Lepski G, Finkenzeller G, Stark GB and Südkamp NP: Mesenchymal stem cells maintain TGF-beta-mediated chondrogenic phenotype in alginate bead culture. Tissue Eng. 12:1393–1403. 2006. View Article : Google Scholar : PubMed/NCBI | |
Bian L, Zhai DY, Tous E, Rai R, Mauck RL and Burdick JA: Enhanced MSC chondrogenesis following delivery of TGF-β3 from alginate microspheres within hyaluronic acid hydrogels in vitro and in vivo. Biomaterials. 32:6425–6434. 2011. View Article : Google Scholar : PubMed/NCBI | |
Choi SJ, Na K, Kim S, Woo DG, Sun BK, Chung HM and Park KH: Combination of ascorbate and growth factor (TGF beta-3) in thermo-reversible hydrogel constructs embedded with rabbit chondrocytes for neocartilage formation. J Biomed Mater Res A. 83:897–905. 2007. View Article : Google Scholar : PubMed/NCBI | |
Deng ZH, Li YS, Gao X, Lei GH and Huard J: Bone morphogenetic proteins for articular cartilage regeneration. Osteoarthritis Cartilage. 26:1153–1161. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hayashi M, Muneta T, Ju YJ, Mochizuki T and Sekiya I: Weekly intra-articular injections of bone morphogenetic protein-7 inhibits osteoarthritis progression. Arthritis Res Ther. 10:R1182008. View Article : Google Scholar : PubMed/NCBI | |
Hino K, Saito A, Kido M, Kanemoto S, Asada R, Takai T, Cui M, Cui X and Imaizumi K: Master regulator for chondrogenesis, Sox9, regulates transcriptional activation of the endoplasmic reticulum stress transducer BBF2H7/CREB3L2 in chondrocytes. J Biol Chem. 289:13810–13820. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tan AR and Hung CT: Concise review: Mesenchymal stem cells for functional cartilage tissue engineering: Taking cues from chondrocyte-based constructs. Stem Cells Transl Med. 6:1295–1303. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gimble JM and Guilak F: Adipose-derived adult stem cells: Isolation, characterization and differentiation potential. Cytotherapy. 5:362–369. 2003. View Article : Google Scholar | |
Goldring MB: Immortalization of human articular chondrocytes for generation of stable, differentiated cell lines. Methods Mol Med. 100:23–36. 2004.PubMed/NCBI | |
L PK, Kandoi S, Misra R, Vijayalakshmi S, Rajagopal K and Verma RS: The mesenchymal stem cell secretome: A new paradigm towards cell-free therapeutic mode in regenerative medicine. Cytokine Growth Factor Rev. 46:1–9. 2019. View Article : Google Scholar : PubMed/NCBI | |
Cheng L, Zhang K, Wu S, Cui M and Xu T: Focus on mesenchymal stem cell-derived exosomes: Opportunities and challenges in cell-free therapy. Stem Cells Int. 2017:63052952017. View Article : Google Scholar | |
Lai RC, Arslan F, Lee MM, Sze NS, Choo A, Chen TS, Salto-Tellez M, Timmers L, Lee CN, El Oakley RM, et al: Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res. 4:214–222. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kanakaris NK and Giannoudis PV: Clinical applications of bone morphogenetic proteins: Current evidence. J Surg Orthop Adv. 17:133–146. 2008.PubMed/NCBI | |
Gentile P, Piccinno MS and Calabrese C: Characteristics and potentiality of human adipose-derived stem cells (hASCs) obtained from enzymatic digestion of fat graft. Cells. 8:2822019. View Article : Google Scholar : | |
Galateanu B, Dinescu S, Cimpean A, Dinischiotu A and Costache M: Modulation of adipogenic conditions for prospective use of hADSCs in adipose tissue engineering. Int J Mol Sci. 13:15881–15900. 2012. View Article : Google Scholar | |
Hsiao ST, Asgari A, Lokmic Z, Sinclair R, Dusting GJ, Lim SY and Dilley RJ: Comparative analysis of paracrine factor expression in human adult mesenchymal stem cells derived from bone marrow, adipose and dermal tissue. Stem Cells Dev. 21:2189–2203. 2012. View Article : Google Scholar | |
Shukla L, Yuan Y, Shayan R, Greening DW and Karnezis T: Fat therapeutics: The clinical capacity of adipose-derived stem cells and exosomes for human disease and tissue regeneration. Front Pharmacol. 11:1582020. View Article : Google Scholar : PubMed/NCBI | |
Hong P, Yang H, Wu Y, Li K and Tang Z: The functions and clinical application potential of exosomes derived from adipose mesenchymal stem cells: A comprehensive review. Stem Cell Res Ther. 10:2422019. View Article : Google Scholar : PubMed/NCBI | |
Wong DE, Banyard DA, Santos PJF, Sayadic LR, Evans GR and Widgerow AD: Adipose-derived stem cell extracellular vesicles: A systematic review. J Plast Reconstr Aesthet Surg. 72:1207–1218. 2019. View Article : Google Scholar : PubMed/NCBI | |
Dinescu S, Hermenean A and Costache M: Human adipose-derived stem cells for tissue engineering approaches: Current challenges and perspectives. Stem Cells in Clinical Practice and Tissue Engineering. InTech. Chapter-14. 2018, View Article : Google Scholar | |
Spasovski D, Spasovski V, Baščarević Z and Stojiljković M: Intra-articular injection of autologous adipose-derived mesenchymal stem cells in the treatment of knee osteoarthritis. J Gene Med. 20:e30022018. View Article : Google Scholar | |
Maumus M, Manferdini C, Toupet K, Peyrafitte JA, Ferreira R, Facchini A, Gabusi E, Bourin P, Jorgensen C, Lisignoli G and Noël D: Adipose mesenchymal stem cells protect chondrocytes from degeneration associated with osteoarthritis. Stem Cell Res. 11:834–844. 2013. View Article : Google Scholar : PubMed/NCBI | |
Qiu H, Liu S, Wu K, Zhao R, Cao L and Wang H: Prospective application of exosomes derived from adipose-derived stem cells in skin wound healing: A review. J Cosmet Dermatol. 19:574–581. 2020. View Article : Google Scholar | |
Kowal J, Tkach M and Thery C: Biogenesis and secretion of exosomes. Curr Opin Cell Biol. 29:116–125. 2014. View Article : Google Scholar : PubMed/NCBI | |
Minciacchi RV, Freeman MR and Vizio DD: Extracellular vesicles in cancer: Exosomes, microvesicles and the emerging role of large oncosomes. Semin Cell Dev Biol. 40:41–51. 2015. View Article : Google Scholar : PubMed/NCBI | |
Choi DS, Kim DK, Kim YK and Gho YS: Proteomics, transcriptomics and lipidomics of exosomes and ectosomes. Proteomics. 13:1554–1571. 2013. View Article : Google Scholar : PubMed/NCBI | |
Park SJ, Kim JM, Kim J, Hur J, Park S, Kim K, Shin HJ and Chwae YJ: Molecular mechanisms of biogenesis of apoptotic exosome-like vesicles and their roles as damage-associated molecular patterns. Proc Natl Acad Sci USA. 115:E11721–E11730. 2018. View Article : Google Scholar : PubMed/NCBI | |
Weichand B, Weis N, Weigert A, Grossmann N, Levkau B and Brüne B: Apoptotic cells enhance sphingosine-1-phosphate receptor 1 dependent macrophage migration. Eur J Immunol. 43:3306–3313. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kakarla R, Hur J, Kim YJ, Kim J and Chwae YJ: Apoptotic cell-derived exosomes: Messages from dying cells. Expe Mol Med. 52:1–6. 2020. View Article : Google Scholar | |
Tao SC, Yuan T, Zhang YL, Yin WJ, Guo SC and Zhang CQ: Exosomes derived from miR-140-5p-overexpressing human synovial mesenchymal stem cells enhance cartilage tissue regeneration and prevent osteoarthritis of the knee in a rat model. Theranostics. 7:180–1895. 2017. View Article : Google Scholar : PubMed/NCBI | |
Vonk LA, van Dooremalen SFJ, Liv N, Klumperman J, Coffe PJ, Saris DBF and Lorenowicz MJ: Mesenchymal stromal/stem cell-derived extracellular vesicles promote human cartilage regeneration in vitro. Theranostics. 8:906–920. 2018. View Article : Google Scholar : | |
Cosenza S, Ruiz M, Toupet K, Jorgensen C and Noël D: Mesenchymal stem cells derived exosomes and microparticles protect cartilage and bone from degradation in osteoarthritis. Sci Rep. 7:162142017. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Yu D, Liu Z, Zhou F, Dai J, Wu B, Zhou J, Heng BC, Zou XH, Ouyang H and Liu H: Exosomes from embryonic mesenchymal stem cells alleviate osteoarthritis through balancing synthesis and degradation of cartilage extracellular matrix. Stem Cell Res. 8:1892017. | |
Jin Z, Ren J and Qi S: Human bone mesenchymal stem cells-derived exosomes overexpressing microRNA-26a-5p alleviate osteoarthritis via down-regulation of PTGS2. Int Immunopharmacol. 78:1059462020. View Article : Google Scholar | |
Mao G, Zhang Z, Hu S, Zhang Z, Chang Z, Huang Z, Liao W and Kang Y: Exosomes derived from miR-92a-3poverexpressing human mesenchymal stem cells enhance chondrogenesis and suppress cartilage degradation via targeting WNT5A. Stem Cell Res Ther. 9:2472018. View Article : Google Scholar | |
Tofiño-Vian M, Guillén MI, Pérez del Caz MD, Silvestre A and Alcaraz MJ: Microvesicles from human adipose tissue-derived mesenchymal stem cells as a new protective strategy in osteoarthritic chondrocytes. Cell Physiol Biochem. 47:11–25. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tofiño-Vian M, Guillén MI, Pérez del Caz MD, Castejón MA and Alcaraz MJ: Extracellular vesicles from adipose-derived mesenchymal stem cells downregulate senescence features in osteoarthritic osteoblasts. Oxid Med Cell Longev. 2017:71975982017. View Article : Google Scholar : PubMed/NCBI | |
Woo CH, Kim HK, Jung GY, Jung YJ, Lee KS, Yun YE, Han J, Lee J, Kim WS, Choi JS, et al: Small extracellular vesicles from human adipose-derived stem cells attenuate cartilage degeneration. J Extracell Vesicles. 9:17352492020. View Article : Google Scholar : PubMed/NCBI | |
Zhao C, Chen JY, Peng WM, Yuan B, Bi Q and Xu YJ: Exosomes from adipose-derived stem cells promote chondrogenesis and suppress inflammation by upregulating miR-145 and miR-221. Mol Med Rep. 21:1881–1889. 2020.PubMed/NCBI | |
Stepien A, Dabrowska NL, Maciagowska M, Macoch RP, Zolocinska A, Mazur S, Siennicka K, Frankowska E, Kidzinski R, Chalimoniuk M and Pojda Z: Clinical application of autologous adipose stem cells in patients with multiple sclerosis: Preliminary results. Mediators Inflamm. Sep 28–2016.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI | |
Kuriyan AE, Albini TA, Townsend JH, Rodriguez M, Pandya HK, Leonard RE II, Parrott MB, Rosenfeld PJ, Flynn HW Jr and Goldberg JL: Vision loss after intravitreal injection of autologous 'stem cells' for AMD. N Engl J Med. 376:1047–1053. 2017. View Article : Google Scholar : PubMed/NCBI | |
Vériter S, André W, Aouassar N, Poirel HA, Lafosse A, Docquier PL and Dufrane D: Human adipose-derived mesenchymal stem cells in cell therapy: Safety and feasibility in different 'Hospital Exemption' clinical applications. PLoS One. 10:e01395662015. View Article : Google Scholar | |
Atat OE, Antonios D, Hilal G, Hokayem N, Abou-Ghoch J, Hashim H, Serhal R, Hebbo C, Moussa M and Alaaeddine N: An evaluation of the stemness, paracrine and tumorigenic characteristics of highly expanded, minimally passaged adipose-derived stem cells. PLoS One. 11:e01623322016. View Article : Google Scholar | |
Tátrai P, Szepesi Á, Matula Z, Szigeti A, Buchan G, Mádi A, Uher F and Német K: Combined introduction of Bmi-1 and hTERT immortalizes human adipose tissue-derived stromal cells with low risk of transformation. Biochem Biophys Res Commun. 422:28–35. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Liu J, Mo Y, Chen Z, Chen T, Li Y, Zheng Y, Deng S, Xu X, Chen H, et al: Immortalized mesenchymal stem cells: A safe cell source for cellular or cell membrane-based treatment of glioma. Southern Medical University; 2021 | |
Vater C, Kasten P and Stiehler M: Culture media for the differentiation of mesenchymal stromal cells. Acta Biomater. 7:463–477. 2011. View Article : Google Scholar | |
Pelttari K, Winter A, Steck E, Goetzke K, Hennig T, Ochs BG, Aigner T and Richter W: Premature induction of hypertrophy during in vitro chondrogenesis of human mesenchymal stem cells correlates with calcification and vascular invasion after ectopic transplantation in SCID mice. Arthritis Rheum. 54:3254–3266. 2006. View Article : Google Scholar : PubMed/NCBI | |
Puetzer JL, Petitte JN and Loboa EG: Comparative review of growth factors for induction of three-dimensional in vitro chondrogenesis in human mesenchymal stem cells isolated from bone marrow and adipose tissue. Tissue Eng Part B Rev. 16:435–444. 2010. View Article : Google Scholar : PubMed/NCBI | |
Freyria AM and Mallein-Gerin F: Chondrocytes or adult stem cells for cartilage repair: The indisputable role of growth factors. Injury. 3:259–265. 2012. View Article : Google Scholar | |
Santo VE, Gomes ME, Mano JF and Reis RL: Controlled release strategies for bone, cartilage and osteochondral engineering-part II: Challenges on the evolution from single to multiple bioactive factor delivery. Tissue Eng Part B Rev. 19:327–352. 2013. View Article : Google Scholar : | |
Afizah H, Yang Z, Hui JH, Ouyang HW and Lee EH: A comparison between the chondrogenic potential of human bone marrow stem cells (BMSCs) and adipose-derived stem cells (ADSCs) taken from the same donors. Tissue Eng. 13:659–666. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ude CC, Shamsul BS, Ng MH, Chen HC, Ohnmar H, Amaramalar SN, Rizal AR, Johan A, Norhamdan MY, Azizi M, et al: Long-term evaluation of osteoarthritis sheep knee, treated with TGF-β3 and BMP-6 induced multipotent stem cells. Exp Gerontol. 104:43–51. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lu CH, Yeh TY, Yeh CL, Fang YH, Sung LY, Lin SY, Yen TC, Chang YH and Hu YC: Regenerating cartilages by engineered ASCs: Prolonged TGF-β3/BMP-6 expression improved articular cartilage formation and restored zonal structure. Mol Ther. 22:186–1895. 2014. View Article : Google Scholar | |
Choi S, Cho TJ, Kwon SK, Lee G and Cho J: Chondrogenesis of periodontal ligament stem cells by transforming growth factor-β3 and bone morphogenetic protein-6 in a normal healthy impacted third molar. Int J Oral Sci. 5:7–13. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yoo KH, Thapa N, Kim BJ, Lee JO, Jang YN, Chwae YJ and Kim J: Possibility of exosome-based coronavirus disease 2019 vaccine (Review). Mol Med Rep. 25:262022. View Article : Google Scholar |