1
|
Bernardo BC, Weeks KL, Pretorius L and
McMullen JR: Molecular distinction between physiological and
pathological cardiac hypertrophy: Experimental findings and
therapeutic strategies. Pharmacol Ther. 128:191–227. 2010.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Ritterhoff J and Tian R: Metabolic
mechanisms in physiological and pathological cardiac hypertrophy:
New paradigms and challenges. Nat Rev Cardiol. 20:812–829. 2023.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Zeidan A, Javadov S and Karmazyn M:
Essential role of Rho/ROCK-dependent processes and actin dynamics
in mediating leptin-induced hypertrophy in rat neonatal ventricular
myocytes. Cardiovasc Res. 72:101–111. 2006. View Article : Google Scholar : PubMed/NCBI
|
4
|
Rangrez AY, Bernt A, Poyanmehr R, Harazin
V, Boomgaarden I, Kuhn C, Rohrbeck A, Frank D and Frey N: Dysbindin
is a potent inducer of RhoA-SRF-mediated cardiomyocyte hypertrophy.
J Cell Biol. 203:643–656. 2013. View Article : Google Scholar : PubMed/NCBI
|
5
|
Wu G, Yussman MG, Barrett TJ, Hahn HS,
Osinska H, Hilliard GM, Wang X, Toyokawa T, Yatani A, Lynch RA, et
al: Increased myocardial Rab GTPase expression: A consequence and
cause of cardiomyopathy. Circ Res. 89:1130–1137. 2001. View Article : Google Scholar : PubMed/NCBI
|
6
|
Ramos-Kuri M, Meka SH, Salamanca-Buentello
F, Hajjar RJ, Lipskaia L and Chemaly ER: Molecules linked to Ras
signaling as therapeutic targets in cardiac pathologies. Biol Res.
54:232021. View Article : Google Scholar : PubMed/NCBI
|
7
|
Tcherkezian J and Lamarche-Vane N: Current
knowledge of the large RhoGAP family of proteins. Biol Cell.
99:67–86. 2007. View Article : Google Scholar : PubMed/NCBI
|
8
|
Johnson DS and Chen YH: Ras family of
small GTPases in immunity and inflammation. Curr Opin Pharmacol.
12:458–463. 2012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Reiner DJ and Lundquist EA: Small GTPases.
WormBook. 2018:1–65. 2018. View Article : Google Scholar : PubMed/NCBI
|
10
|
Song S, Cong W, Zhou S, Shi Y, Dai W,
Zhang H, Wang X, He B and Zhang Q: Small GTPases: Structure,
biological function and its interaction with nanoparticles. Asian J
Pharm Sci. 14:30–39. 2019. View Article : Google Scholar : PubMed/NCBI
|
11
|
Aikawa R, Komuro I, Nagai R and Yazaki Y:
Rho plays an important role in angiotensin II-induced hypertrophic
responses in cardiac myocytes. Mol Cell Biochem. 212:177–182. 2000.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Aikawa R, Komuro I, Yamazaki T, Zou Y,
Kudoh S, Zhu W, Kadowaki T and Yazaki Y: Rho family small G
proteins play critical roles in mechanical stress-induced
hypertrophic responses in cardiac myocytes. Circ Res. 84:458–466.
1999. View Article : Google Scholar : PubMed/NCBI
|
13
|
Schmidt A and Hall A: Guanine nucleotide
exchange factors for Rho GTPases: Turning on the switch. Genes Dev.
16:1587–1609. 2002. View Article : Google Scholar : PubMed/NCBI
|
14
|
Cherfils J and Zeghouf M: Regulation of
small GTPases by GEFs, GAPs, and GDIs. Physiol Rev. 93:269–309.
2013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Barbeau PA, Houad JM, Huber JS,
Paglialunga S, Snook LA, Herbst EAF, Dennis KMJH, Simpson JA and
Holloway GP: Ablating the Rab-GTPase activating protein TBC1D1
predisposes rats to high-fat diet-induced cardiomyopathy. J
Physiol. 598:683–697. 2020. View
Article : Google Scholar : PubMed/NCBI
|
16
|
Binsch C, Barbosa DM, Hansen-Dille G,
Hubert M, Hodge SM, Kolasa M, Jeruschke K, Weiß J, Springer C,
Gorressen S, et al: Deletion of Tbc1d4/As160 abrogates cardiac
glucose uptake and increases myocardial damage after
ischemia/reperfusion. Cardiovasc Diabetol. 22:172023. View Article : Google Scholar : PubMed/NCBI
|
17
|
Bisserier M, Berthouze-Duquesnes M,
Breckler MS, Tortosa F, Fazal L, de Régibus A, Laurent AC, Varin A,
Lucas A, Branchereau M, et al: Carabin protects against cardiac
hypertrophy by blocking calcineurin, Ras, and
Ca2+/calmodulin-dependent protein kinase II signaling. Circulation.
131:390–400. 2015. View Article : Google Scholar : PubMed/NCBI
|
18
|
De Windt LJ, Lim HW, Bueno OF, Liang Q,
Delling U, Braz JC, Glascock BJ, Kimball TF, del Monte F, Hajjar RJ
and Molkentin JD: Targeted inhibition of calcineurin attenuates
cardiac hypertrophy in vivo. Proc Natl Acad Sci USA. 98:3322–3327.
2001. View Article : Google Scholar : PubMed/NCBI
|
19
|
Xu J, Ismat FA, Wang T, Lu MM, Antonucci N
and Epstein JA: Cardiomyocyte-specific loss of neurofibromin
promotes cardiac hypertrophy and dysfunction. Circ Res.
105:304–311. 2009. View Article : Google Scholar : PubMed/NCBI
|
20
|
Richnau N, Fransson A, Farsad K and
Aspenström P: RICH-1 has a BIN/Amphiphysin/Rvsp domain responsible
for binding to membrane lipids and tubulation of liposomes. Biochem
Biophys Res Commun. 320:1034–1042. 2004. View Article : Google Scholar : PubMed/NCBI
|
21
|
Wells CD, Fawcett JP, Traweger A, Yamanaka
Y, Goudreault M, Elder K, Kulkarni S, Gish G, Virag C, Lim C, et
al: A Rich1/Amot complex regulates the Cdc42 GTPase and
apical-polarity proteins in epithelial cells. Cell. 125:535–548.
2006. View Article : Google Scholar : PubMed/NCBI
|
22
|
Nagy Z, Wynne K, von Kriegsheim A,
Gambaryan S and Smolenski A: Cyclic nucleotide-dependent protein
kinases target ARHGAP17 and ARHGEF6 complexes in platelets. J Biol
Chem. 290:29974–29983. 2015. View Article : Google Scholar : PubMed/NCBI
|
23
|
Richnau N and Aspenström P: Rich, a rho
GTPase-activating protein domain-containing protein involved in
signaling by Cdc42 and Rac1. J Biol Chem. 276:35060–35070. 2001.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Pan SL, Deng YY, Fu J, Zhang YH, Zhang ZJ
and Qin XJ: ARHGAP17 enhances 5-Fluorouracil-induced apoptosis in
colon cancer cells by suppressing Rac1. Neoplasma. 69:640–647.
2022. View Article : Google Scholar : PubMed/NCBI
|
25
|
Wang L, Yang X, Wan L, Wang S, Pan J and
Liu Y: ARHGAP17 inhibits pathological cyclic strain-induced
apoptosis in human periodontal ligament fibroblasts via Rac1/Cdc42.
Clin Exp Pharmacol Physiol. 47:1591–1599. 2020. View Article : Google Scholar : PubMed/NCBI
|
26
|
Wu PR, Chiang SY, Midence R, Kao WC, Lai
CL, Cheng IC, Chou SJ, Chen CC, Huang CY and Chen RH: Wdr4 promotes
cerebellar development and locomotion through Arhgap17-mediated
Rac1 activation. Cell Death Dis. 14:522023. View Article : Google Scholar : PubMed/NCBI
|
27
|
Yi C, Troutman S, Fera D,
Stemmer-Rachamimov A, Avila JL, Christian N, Persson NL, Shimono A,
Speicher DW, Marmorstein R, et al: A tight junction-associated
Merlin-angiomotin complex mediates Merlin's regulation of mitogenic
signaling and tumor suppressive functions. Cancer Cell. 19:527–540.
2011. View Article : Google Scholar : PubMed/NCBI
|
28
|
Ullah R, Yin Q, Snell AH and Wan L:
RAF-MEK-ERK pathway in cancer evolution and treatment. Semin Cancer
Biol. 85:123–154. 2022. View Article : Google Scholar : PubMed/NCBI
|
29
|
Tian Q, Gao H, Zhou Y, Zhu L and Yang J,
Wang B, Liu P and Yang J: RICH1 inhibits breast cancer stem cell
traits through activating kinases cascade of Hippo signaling by
competing with Merlin for binding to Amot-p80. Cell Death Dis.
13:712022. View Article : Google Scholar : PubMed/NCBI
|
30
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Aslan JE: Platelet Rho GTPase regulation
in physiology and disease. Platelets. 30:17–22. 2019. View Article : Google Scholar : PubMed/NCBI
|
32
|
Zhang J, Wang J, Zhou YF, Ren XY, Lin MM,
Zhang QQ, Wang YH and Li X: Rich1 negatively regulates the
epithelial cell cycle, proliferation and adhesion by
CDC42/RAC1-PAK1-Erk1/2 pathway. Cell Signal. 27:1703–1712. 2015.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Luan Y, Luan Y, Feng Q, Chen X, Ren KD and
Yang Y: Emerging role of mitophagy in the heart: Therapeutic
potentials to modulate mitophagy in cardiac diseases. Oxid Med Cell
Longev. 2021:32599632021. View Article : Google Scholar : PubMed/NCBI
|
34
|
Pan C, Wang S, Liu C and Ren Z:
Actin-binding proteins in cardiac hypertrophy. Cells. 11:35662022.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Yan ZP, Li JT, Zeng N and Ni GX: Role of
extracellular signal-regulated kinase 1/2 signaling underlying
cardiac hypertrophy. Cardiol J. 28:473–482. 2021. View Article : Google Scholar : PubMed/NCBI
|
36
|
Zoppino FC, Militello RD, Slavin I,
Alvarez C and Colombo MI: Autophagosome formation depends on the
small GTPase Rab1 and functional ER exit sites. Traffic.
11:1246–1261. 2010. View Article : Google Scholar : PubMed/NCBI
|
37
|
Sun Y, Xu C, Jiang Z and Jiang X:
DEF6(differentially exprehomolog. exacerbates pathological cardiac
hypertrophy via RAC1. Cell Death Dis. 14:4832023. View Article : Google Scholar : PubMed/NCBI
|
38
|
Li G, Wang Y, Guo XB and Zhao B: CDC42
regulates cell proliferation and apoptosis in bladder cancer via
the IQGAP3-mediated Ras/ERK pathway. Biochem Genet. 60:2383–2398.
2022. View Article : Google Scholar : PubMed/NCBI
|
39
|
Mondaca-Ruff D, Araos P, Yañez CE, Novoa
UF, Mora IG, Ocaranza MP and Jalil JE: Hydrochlorothiazide reduces
cardiac hypertrophy, fibrosis and rho-kinase activation in
DOCA-salt induced hypertension. J Cardiovasc Pharmacol Ther.
26:724–735. 2021. View Article : Google Scholar : PubMed/NCBI
|
40
|
Moradi A, Maroofi A, Hemati M, Hashemzade
T, Alborzi N and Safari F: Inhibition of GTPase Rac1 expression by
vitamin D mitigates pressure overload-induced cardiac hypertrophy.
Int J Cardiol Heart Vasc. 37:1009222021.PubMed/NCBI
|
41
|
Liao JK: Statin therapy for cardiac
hypertrophy and heart failure. J Investig Med. 52:248–253. 2004.
View Article : Google Scholar : PubMed/NCBI
|