1
|
Powers WJ, Rabinstein AA, Ackerson T,
Adeoye OM, Bambakidis NC, Becker K, Biller J, Brown M, Demaerschalk
BM, Hoh B, et al: Guidelines for the early management of patients
with acute ischemic stroke: 2019 update to the 2018 guidelines for
the early management of acute ischemic stroke: A guideline for
healthcare professionals from the American Heart
Association/American Stroke Association. Stroke. 50:e344–e418.
2019.PubMed/NCBI View Article : Google Scholar
|
2
|
Muth CC: Long-term outcomes after
thrombolytic therapy for acute ischemic stroke. JAMA.
323:2184–2185. 2020.PubMed/NCBI View Article : Google Scholar
|
3
|
Prabhakaran S, Ruff I and Bernstein RA:
Acute stroke intervention: A systematic review. JAMA.
313:1451–1462. 2015.PubMed/NCBI View Article : Google Scholar
|
4
|
Li T, Qin JJ, Yang X, Ji YX, Guo F, Cheng
WL, Wu X, Gong FH, Hong Y, Zhu XY, et al: The ubiquitin E3 ligase
TRAF6 exacerbates ischemic stroke by ubiquitinating and activating
Rac1. J Neurosci. 37:12123–12140. 2017.PubMed/NCBI View Article : Google Scholar
|
5
|
Mehta SL, Manhas N and Raghubir R:
Molecular targets in cerebral ischemia for developing novel
therapeutics. Brain Res Rev. 54:34–66. 2007.PubMed/NCBI View Article : Google Scholar
|
6
|
Gu J, Gui S, Hu L, Kong L, Di M and Wang
Y: Downregulated miRNA-324-5p aggravates neuronal injury induced by
oxygen-glucose deprivation via modulating RAN. Exp Ther Med.
19:658–664. 2020.PubMed/NCBI View Article : Google Scholar
|
7
|
Yang L, Han B, Zhang Z, Wang S, Bai Y,
Zhang Y, Tang Y, Du L, Xu L, Wu F, et al: Extracellular
vesicle-mediated delivery of CircSCMH1 promotes functional recovery
in rodent and nonhuman primate ischemic stroke models. Circulation.
142:556–574. 2020.PubMed/NCBI View Article : Google Scholar
|
8
|
Ulitsky I and Bartel DP: lincRNAs:
Genomics, evolution, and mechanisms. Cell. 154:26–46.
2013.PubMed/NCBI View Article : Google Scholar
|
9
|
Quinn JJ and Chang HY: Unique features of
long non-coding RNA biogenesis and function. Nat Rev Genet.
17:47–62. 2016.PubMed/NCBI View Article : Google Scholar
|
10
|
Salmena L, Poliseno L, Tay Y, Kats L and
Pandolfi PP: A ceRNA hypothesis: The Rosetta stone of a hidden RNA
language? Cell. 146:353–358. 2011.PubMed/NCBI View Article : Google Scholar
|
11
|
Zhang X, Zhu XL, Ji BY, Cao X, Yu LJ,
Zhang Y, Bao XY, Xu Y and Jin JL: LncRNA-1810034E14Rik reduces
microglia activation in experimental ischemic stroke. J
Neuroinflammation. 16(75)2019.PubMed/NCBI View Article : Google Scholar
|
12
|
Wang H, Zheng X, Jin J, Zheng L, Guan T,
Huo Y, Xie S, Wu Y and Chen W: LncRNA MALAT1 silencing protects
against cerebral ischemia-reperfusion injury through miR-145 to
regulate AQP4. J Biomed Sci. 27(40)2020.PubMed/NCBI View Article : Google Scholar
|
13
|
Zhou B, Yuan W and Li X: Long intergenic
noncoding RNA 319 (linc00319) promotes cell proliferation and
invasion in lung cancer cells by directly downregulating the tumor
suppressor MiR-32. Oncol Res: Aug 11, 2017 doi:
10.3727/096504017X15016337254650 (Epub ahead of print).
|
14
|
Qi G, Kong W, Mou X and Wang S: A new
method for excavating feature lncRNA in lung adenocarcinoma based
on pathway crosstalk analysis. J Cell Biochem. 120:9034–9046.
2019.PubMed/NCBI View Article : Google Scholar
|
15
|
Wang X, Meng R and Hu QM:
LINC00319-mediated miR-3127 repression enhances bladder cancer
progression through upregulation of RAP2A. Front Genet.
11(180)2020.PubMed/NCBI View Article : Google Scholar
|
16
|
Yang Y, Zhang F, Huang H, Xie Z, Huang W,
Xie H and Wang F: Long noncoding RNA LINC00319 regulates ROMO1
expression and promotes bladder cancer progression via
miR-4492/ROMO1 axis. J Cell Physiol. 235:3768–3775. 2020.PubMed/NCBI View Article : Google Scholar
|
17
|
Lang Q, Zhou M, Feng H, Guo J, Chen N and
He L: Research on the relationship between fibrinogen level and
subtypes of the TOAST criteria in the acute ischemic stroke. BMC
Neurol. 13(207)2013.PubMed/NCBI View Article : Google Scholar
|
18
|
General Assembly of the World Medical
Association: World medical association declaration of Helsinki.
Ethical principles for medical research involving human subjects. J
Am Coll Dent. 81:14–18. 2014.PubMed/NCBI
|
19
|
Barrett T, Wilhite SE, Ledoux P,
Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH,
Sherman PM, Holko M, et al: NCBI GEO: Archive for functional
genomics data sets-update. Nucleic Acids Res. 41 (Database
Issue):D991–D995. 2013.PubMed/NCBI View Article : Google Scholar
|
20
|
Zhang ZH, Li JJ, Wang QJ, Zhao WQ, Hong J,
Lou SJ and Xu XH: WNK1 is involved in Nogo66 inhibition of OPC
differentiation. Mol Cell Neurosci. 65:135–142. 2015.PubMed/NCBI View Article : Google Scholar
|
21
|
Ryou MG and Mallet RT: An in vitro
oxygen-glucose deprivation model for studying ischemia-reperfusion
injury of neuronal cells. Methods Mol Biol. 1717:229–235.
2018.PubMed/NCBI View Article : Google Scholar
|
22
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
23
|
Chen X, Robinson DG and Storey JD: The
functional false discovery rate with applications to genomics.
Biostatistics. 28(kxz010)2019.
|
24
|
Schönenberger S, Hendén PL, Simonsen CZ,
Uhlmann L, Klose C, Pfaff JAR, Yoo AJ, Sørensen LH, Ringleb PA,
Wick W, et al: Association of general anesthesia vs procedural
sedation with functional outcome among patients with acute ischemic
stroke undergoing thrombectomy: A systematic review and
meta-analysis. JAMA. 322:1283–1293. 2019.PubMed/NCBI View Article : Google Scholar
|
25
|
Yu S, Yu M, He X, Wen L, Bu Z and Feng J:
KCNQ1OT1 promotes autophagy by regulating miR-200a/FOXO3/ATG7
pathway in cerebral ischemic stroke. Aging Cell.
18(e12940)2019.PubMed/NCBI View Article : Google Scholar
|
26
|
Riva P, Ratti A and Venturin M: The long
non-coding RNAs in neurodegenerative diseases: Novel mechanisms of
pathogenesis. Curr Alzheimer Res. 13:1219–1231. 2016.PubMed/NCBI View Article : Google Scholar
|
27
|
Zhang L and Wang H: Long non-coding RNA in
CNS injuries: A new target for therapeutic intervention. Mol Ther
Nucleic Acids. 17:754–766. 2019.PubMed/NCBI View Article : Google Scholar
|
28
|
Briggs JA, Wolvetang EJ, Mattick JS, Rinn
JL and Barry G: Mechanisms of long non-coding RNAs in mammalian
nervous system development, plasticity, disease, and evolution.
Neuron. 88:861–877. 2015.PubMed/NCBI View Article : Google Scholar
|
29
|
Ng SY, Lin L, Soh BS and Stanton LW: Long
noncoding RNAs in development and disease of the central nervous
system. Trends Genet. 29:461–468. 2013.PubMed/NCBI View Article : Google Scholar
|
30
|
Paraskevopoulou MD and Hatzigeorgiou AG:
Analyzing MiRNA-LncRNA interactions. Methods Mol Biol.
1402:271–286. 2016.PubMed/NCBI View Article : Google Scholar
|
31
|
Barangi S, Hayes AW, Reiter R and Karimi
G: The therapeutic role of long non-coding RNAs in human diseases:
A focus on the recent insights into autophagy. Pharmacol Res.
142:22–29. 2019.PubMed/NCBI View Article : Google Scholar
|
32
|
Bao MH, Szeto V, Yang BB, Zhu SZ, Sun HS
and Feng ZP: Long non-coding RNAs in ischemic stroke. Cell Death
Dis. 9(281)2018.PubMed/NCBI View Article : Google Scholar
|
33
|
Treiber T, Treiber N and Meister G:
Regulation of microRNA biogenesis and its crosstalk with other
cellular pathways. Nat Rev Mol Cell Biol. 20:5–20. 2019.PubMed/NCBI View Article : Google Scholar
|
34
|
Brennan GP and Henshall DC: MicroRNAs as
regulators of brain function and targets for treatment of epilepsy.
Nat Rev Neurol. 16:506–519. 2020.PubMed/NCBI View Article : Google Scholar
|
35
|
Kolosowska N, Gotkiewicz M, Dhungana H,
Giudice L, Giugno R, Box D, Huuskonen MT, Korhonen P, Scoyni F,
Kanninen KM, et al: Intracerebral overexpression of miR-669c is
protective in mouse ischemic stroke model by targeting MyD88 and
inducing alternative microglial/macrophage activation. J
Neuroinflammation. 17(194)2020.PubMed/NCBI View Article : Google Scholar
|
36
|
Zhang X, Feng Y, Li J, Zheng L, Shao Y,
Zhu F and Sun X: MicroRNA-665-3p attenuates oxygen-glucose
deprivation-evoked microglial cell apoptosis and inflammatory
response by inhibiting NF-κB signaling via targeting TRIM8. Int
Immunopharmacol. 85(106650)2020.PubMed/NCBI View Article : Google Scholar
|
37
|
Bernstein DL, Zuluaga-Ramirez V, Gajghate
S, Reichenbach NL, Polyak B, Persidsky Y and Rom S: miR-98 reduces
endothelial dysfunction by protecting blood-brain barrier (BBB) and
improves neurological outcomes in mouse ischemia/reperfusion stroke
model. J Cereb Blood Flow Metab. 40:1953–1965. 2020.PubMed/NCBI View Article : Google Scholar
|
38
|
Zhao H, Li G, Zhang S, Li F, Wang R, Tao
Z, Ma Q, Han Z, Yan F, Fan J, et al: Inhibition of histone
deacetylase 3 by MiR-494 alleviates neuronal loss and improves
neurological recovery in experimental stroke. J Cereb Blood Flow
Metab. 39:2392–2405. 2019.PubMed/NCBI View Article : Google Scholar
|
39
|
Guo T, Liu Y, Ren X, Wang W and Liu H:
Promoting role of long non-coding RNA small nucleolar RNA host gene
15 (SNHG15) in neuronal injury following ischemic stroke via the
MicroRNA-18a/CXC chemokine ligand 13 (CXCL13)/ERK/MEK Axis. Med Sci
Monit. 26(e923610)2020.PubMed/NCBI View Article : Google Scholar
|
40
|
Chen X, Zhang X, Su C and Huang S: Long
noncoding RNA HULC in acute ischemic stroke: Association with
disease risk, severity, and recurrence-free survival and relation
with IL-6, ICAM1, miR-9, and miR-195. J Clin Lab Anal.
34(e23500)2020.PubMed/NCBI View Article : Google Scholar
|
41
|
Yan G, Zhao H and Hong X: LncRNA MACC1-AS1
attenuates microvascular endothelial cell injury and promotes
angiogenesis under hypoxic conditions via modulating
miR-6867-5p/TWIST1 in human brain microvascular endothelial cells.
Ann Transl Med. 8(876)2020.PubMed/NCBI View Article : Google Scholar
|
42
|
Li X and Sui Y: Valproate improves middle
cerebral artery occlusion-induced ischemic cerebral disorders in
mice and oxygen-glucose deprivation-induced injuries in microglia
by modulating RMRP/PI3K/Akt axis. Brain Res.
1747(147039)2020.PubMed/NCBI View Article : Google Scholar
|
43
|
Deng Y, Chen D, Wang L, Gao F, Jin B, Lv
H, Zhang G, Sun X, Liu L, Mo D, et al: Silencing of long noncoding
RNA nespas aggravates microglial cell death and neuroinflammation
in ischemic stroke. Stroke. 50:1850–1858. 2019.PubMed/NCBI View Article : Google Scholar
|
44
|
Wang C, Wan H, Wang Q, Sun H, Sun Y, Wang
K and Zhang C: Safflor yellow B attenuates ischemic brain injury
via downregulation of long noncoding AK046177 and inhibition of
MicroRNA-134 expression in rats. Oxid Med Cell Longev.
2020(4586839)2020.PubMed/NCBI View Article : Google Scholar
|
45
|
Yan H, Rao J, Yuan J, Gao L, Huang W, Zhao
L and Ren J: Long non-coding RNA MEG3 functions as a competing
endogenous RNA to regulate ischemic neuronal death by targeting
miR-21/PDCD4 signaling pathway. Cell Death Dis.
8(3211)2017.PubMed/NCBI View Article : Google Scholar
|
46
|
Guo D, Ma J, Yan L, Li T, Li Z, Han X and
Shui S: Down-regulation of Lncrna MALAT1 attenuates neuronal cell
death through suppressing beclin1-dependent autophagy by regulating
Mir-30a in cerebral ischemic stroke. Cell Physiol Biochem.
43:182–194. 2017.PubMed/NCBI View Article : Google Scholar
|