You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
![]() |
![]() |
|
Katoh M: WNT and FGF gene clusters (Review). Int J Oncol. 21:1269–1273. 2002.PubMed/NCBI | |
|
Katoh M and Katoh M: WNT signaling pathway and stem cell signaling network. Clin Cancer Res. 13:4042–4045. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Niehrs C: The complex world of WNT receptor signalling. Nat Rev Mol Cell Biol. 13:767–779. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Yang K, Wang X, Zhang H, Wang Z, Nan G, Li Y, Zhang F, Mohammed MK, Haydon RC, Luu HH, et al: The evolving roles of canonical WNT signaling in stem cells and tumorigenesis: Implications in targeted cancer therapies. Lab Invest. 96:116–136. 2016. View Article : Google Scholar : | |
|
Acebron SP and Niehrs C: β-catenin-independent roles of Wnt/LRP6 signaling. Trends Cell Biol. 26:956–967. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Rada P, Rojo AI, Offergeld A, Feng GJ, Velasco-Martín JP, González-Sancho JM, Valverde ÁM, Dale T, Regadera J and Cuadrado A: WNT-3A regulates an Axin1/NRF2 complex that regulates antioxidant metabolism in hepatocytes. Antioxid Redox Signal. 22:555–571. 2015. View Article : Google Scholar : | |
|
Katoh M: WNT/PCP signaling pathway and human cancer (Review). Oncol Rep. 14:1583–1588. 2005.PubMed/NCBI | |
|
Zhang S, Chen L, Cui B, Chuang HY, Yu J, Wang-Rodriguez J, Tang L, Chen G, Basak GW and Kipps TJ: ROR1 is expressed in human breast cancer and associated with enhanced tumor-cell growth. PLoS One. 7:e311272012. View Article : Google Scholar : PubMed/NCBI | |
|
Zhuo W and Kang Y: Lnc-ing ROR1-HER3 and Hippo signalling in metastasis. Nat Cell Biol. 19:81–83. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Medema JP: Cancer stem cells: The challenges ahead. Nat Cell Biol. 15:338–344. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Holland JD, Klaus A, Garratt AN and Birchmeier W: Wnt signaling in stem and cancer stem cells. Curr Opin Cell Biol. 25:254–264. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Lamb R, Bonuccelli G, Ozsvári B, Peiris-Pagès M, Fiorillo M, Smith DL, Bevilacqua G, Mazzanti CM, McDonnell LA, Naccarato AG, et al: Mitochondrial mass, a new metabolic biomarker for stem-like cancer cells: Understanding WNT/FGF-driven anabolic signaling. Oncotarget. 6:30453–30471. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Tam WL and Weinberg RA: The epigenetics of epithelial-mesenchymal plasticity in cancer. Nat Med. 19:1438–1449. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Ranganathan P, Weaver KL and Capobianco AJ: Notch signalling in solid tumours: A little bit of everything but not all the time. Nat Rev Cancer. 11:338–351. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Gonzalez DM and Medici D: Signaling mechanisms of the epithelial-mesenchymal transition. Sci Signal. 7:re82014. View Article : Google Scholar : PubMed/NCBI | |
|
Katoh M and Nakagama H: FGF receptors: Cancer biology and therapeutics. Med Res Rev. 34:280–300. 2014. View Article : Google Scholar | |
|
Yu M, Ting DT, Stott SL, Wittner BS, Ozsolak F, Paul S, Ciciliano JC, Smas ME, Winokur D, Gilman AJ, et al: RNA sequencing of pancreatic circulating tumour cells implicates WNT signalling in metastasis. Nature. 487:510–513. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Bozdag S, Li A, Riddick G, Kotliarov Y, Baysan M, Iwamoto FM, Cam MC, Kotliarova S and Fine HA: Age-specific signatures of glioblastoma at the genomic, genetic, and epigenetic levels. PLoS One. 8:e629822013. View Article : Google Scholar : PubMed/NCBI | |
|
Miyamoto DT, Zheng Y, Wittner BS, Lee RJ, Zhu H, Broderick KT, Desai R, Fox DB, Brannigan BW, Trautwein J, et al: RNA-Seq of single prostate CTCs implicates noncanonical Wnt signaling in antiandrogen resistance. Science. 349:1351–1356. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Gu Z, Churchman M, Roberts K, Li Y, Liu Y, Harvey RC, McCastlain K, Reshmi SC, Payne-Turner D, Iacobucci I, et al: Genomic analyses identify recurrent MEF2D fusions in acute lymphoblastic leukaemia. Nat Commun. 7:133312016. View Article : Google Scholar : PubMed/NCBI | |
|
Pettinato G, Ramanathan R, Fisher RA, Mangino MJ, Zhang N and Wen X: Scalable differentiation of human iPSCs in a multicellular spheroid-based 3D culture into hepatocyte-like cells through direct Wnt/β-catenin pathway inhibition. Sci Rep. 6:328882016. View Article : Google Scholar | |
|
Motono M, Ioroi Y, Ogura T and Takahashi J: WNT-C59, a small-molecule WNT inhibitor, efficiently induces anterior cortex that includes cortical motor neurons from human pluripotent stem cells. Stem Cells Transl Med. 5:552–560. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Matsuno K, Mae SI, Okada C, Nakamura M, Watanabe A, Toyoda T, Uchida E and Osafune K: Redefining definitive endoderm subtypes by robust induction of human induced pluripotent stem cells. Differentiation. 92:281–290. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Mohamed TM, Stone NR, Berry EC, Radzinsky E, Huang Y, Pratt K, Ang YS, Yu P, Wang H, Tang S, et al: Chemical enhancement of in vitro and in vivo direct cardiac reprogramming. Circulation. 135:978–995. 2017. View Article : Google Scholar | |
|
Tao L, Zhang J, Meraner P, Tovaglieri A, Wu X, Gerhard R, Zhang X, Stallcup WB, Miao J, He X, et al: Frizzled proteins are colonic epithelial receptors for C. difficile toxin B. Nature. 538:350–355. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Collery RF, Volberding PJ, Bostrom JR, Link BA and Besharse JC: Loss of zebrafish mfrp causes nanophthalmia, hyperopia, and accumulation of subretinal macrophages. Invest Ophthalmol Vis Sci. 57:6805–6814. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Kinzler KW and Vogelstein B: Lessons from hereditary colorectal cancer. Cell. 87:159–170. 1996. View Article : Google Scholar : PubMed/NCBI | |
|
Lammi L, Arte S, Somer M, Jarvinen H, Lahermo P, Thesleff I, Pirinen S and Nieminen P: Mutations in AXIN2 cause familial tooth agenesis and predispose to colorectal cancer. Am J Hum Genet. 74:1043–1050. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Gala MK, Mizukami Y, Le LP, Moriichi K, Austin T, Yamamoto M, Lauwers GY, Bardeesy N and Chung DC: Germline mutations in oncogene-induced senescence pathways are associated with multiple sessile serrated adenomas. Gastroenterology. 146:520–529. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Muzny DM, Bainbridge MN, Chang K, Dinh HH, Drummond JA, Fowler G, Kovar CL, Lewis LR, Morgan MB, Newsham IF, et al Cancer Genome Atlas Network: Comprehensive molecular characterization of human colon and rectal cancer. Nature. 487:330–337. 2012. View Article : Google Scholar | |
|
Giannakis M, Mu XJ, Shukla SA, Qian ZR, Cohen O, Nishihara R, Bahl S, Cao Y, Amin-Mansour A, Yamauchi M, et al: Genomic correlates of immune-cell infiltrates in colorectal carcinoma. Cell Rep. 15:857–865. 2016. View Article : Google Scholar : | |
|
Seshagiri S, Stawiski EW, Durinck S, Modrusan Z, Storm EE, Conboy CB, Chaudhuri S, Guan Y, Janakiraman V, Jaiswal BS, et al: Recurrent R-spondin fusions in colon cancer. Nature. 488:660–664. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Ciriello G, Gatza ML, Beck AH, Wilkerson MD, Rhie SK, Pastore A, Zhang H, McLellan M, Yau C, Kandoth C, et al TCGA Research Network: Comprehensive molecular portraits of invasive lobular breast cancer. Cell. 163:506–519. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Bass AJ, Thorsson V, Shmulevich I, Reynolds SM, Miller M, Bernard B, Hinoue T, Laird PW, Curtis C, Shen H, et al Cancer Genome Atlas Research Network: Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 513:202–209. 2014. View Article : Google Scholar : | |
|
Guichard C, Amaddeo G, Imbeaud S, Ladeiro Y, Pelletier L, Maad IB, Calderaro J, Bioulac-Sage P, Letexier M, Degos F, et al: Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma. Nat Genet. 44:694–698. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Campbell JD, Alexandrov A, Kim J, Wala J, Berger AH, Pedamallu CS, Shukla SA, Guo G, Brooks AN, Murray BA, et al Cancer Genome Atlas Research Network: Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas. Nat Genet. 48:607–616. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Bailey P, Chang DK, Nones K, Johns AL, Patch AM, Gingras MC, Miller DK, Christ AN, Bruxner TJ, Quinn MC, et al Australian Pancreatic Cancer Genome Initiative: Genomic analyses identify molecular subtypes of pancreatic cancer. Nature. 531:47–52. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Robinson D, Van Allen EM, Wu YM, Schultz N, Lonigro RJ, Mosquera JM, Montgomery B, Taplin ME, Pritchard CC, Attard G, et al: Integrative clinical genomics of advanced prostate cancer. Cell. 161:1215–1228. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Kandoth C, Schultz N, Cherniack AD, Akbani R, Liu Y, Shen H, Robertson AG, Pashtan I, Shen R, Benz CC, et al Cancer Genome Atlas Research Network: Integrated genomic characterization of endometrial carcinoma. Nature. 497:67–73. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Barker N: Adult intestinal stem cells: Critical drivers of epithelial homeostasis and regeneration. Nat Rev Mol Cell Biol. 15:19–33. 2014. View Article : Google Scholar | |
|
Flanagan DJ, Phesse TJ, Barker N, Schwab RH, Amin N, Malaterre J, Stange DE, Nowell CJ, Currie SA, Saw JT, et al: Frizzled7 functions as a Wnt receptor in intestinal epithelial Lgr5(+) stem cells. Stem Cell Reports. 4:759–767. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang X and Cong F: Novel regulation of Wnt signaling at the proximal membrane level. Trends Biochem Sci. 41:773–783. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Valenta T, Hausmann G and Basler K: The many faces and functions of β-catenin. EMBO J. 31:2714–2736. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Katoh M: Mutation spectra of histone methyltransferases with canonical SET domains and EZH2-targeted therapy. Epigenomics. 8:285–305. 2016. View Article : Google Scholar | |
|
Wang Z, Liu P, Inuzuka H and Wei W: Roles of F-box proteins in cancer. Nat Rev Cancer. 14:233–247. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Kajiguchi T, Katsumi A, Tanizaki R, Kiyoi H and Naoe T: Y654 of β-catenin is essential for FLT3/ITD-related tyrosine phosphorylation and nuclear localization of β-catenin. Eur J Haematol. 88:314–320. 2012. View Article : Google Scholar | |
|
Jin B, Ding K and Pan J: Ponatinib induces apoptosis in imatinib-resistant human mast cells by dephosphorylating mutant D816V KIT and silencing β-catenin signaling. Mol Cancer Ther. 13:1217–1230. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Fernández-Sánchez ME, Barbier S, Whitehead J, Béalle G, Michel A, Latorre-Ossa H, Rey C, Fouassier L, Claperon A, Brullé L, et al: Mechanical induction of the tumorigenic β-catenin pathway by tumour growth pressure. Nature. 523:92–95. 2015. View Article : Google Scholar | |
|
van Veelen W, Le NH, Helvensteijn W, Blonden L, Theeuwes M, Bakker ER, Franken PF, van Gurp L, Meijlink F, van der Valk MA, et al: β-catenin tyrosine 654 phosphorylation increases Wnt signalling and intestinal tumorigenesis. Gut. 60:1204–1212. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Kuechler A, Willemsen MH, Albrecht B, Bacino CA, Bartholomew DW, van Bokhoven H, van den Boogaard MJ, Bramswig N, Büttner C, Cremer K, et al: De novo mutations in β-catenin (CTNNB1) appear to be a frequent cause of intellectual disability: Expanding the mutational and clinical spectrum. Hum Genet. 134:97–109. 2015. View Article : Google Scholar | |
|
Dixon MW, Stem MS, Schuette JL, Keegan CE and Besirli CG: CTNNB1 mutation associated with familial exudative vitreoretinopathy (FEVR) phenotype. Ophthalmic Genet. 37:468–470. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Lui JH, Hansen DV and Kriegstein AR: Development and evolution of the human neocortex. Cell. 146:18–36. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Inestrosa NC and Arenas E: Emerging roles of Wnts in the adult nervous system. Nat Rev Neurosci. 11:77–86. 2010. View Article : Google Scholar | |
|
Bayod S, Felice P, Andrés P, Rosa P, Camins A, Pallàs M and Canudas AM: Downregulation of canonical Wnt signaling in hippocampus of SAMP8 mice. Neurobiol Aging. 36:720–729. 2015. View Article : Google Scholar | |
|
Wakabayashi T, Hidaka R, Fujimaki S, Asashima M and Kuwabara T: Diabetes impairs Wnt3 protein-induced neurogenesis in olfactory bulbs via glutamate transporter 1 inhibition. J Biol Chem. 291:15196–15211. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Marzo A, Galli S, Lopes D, McLeod F, Podpolny M, Segovia-Roldan M, Ciani L, Purro S, Cacucci F, Gibb A, et al: Reversal of synapse degeneration by restoring Wnt signaling in the adult hippocampus. Curr Biol. 26:2551–2561. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Lu T, Aron L, Zullo J, Pan Y, Kim H, Chen Y, Yang TH, Kim HM, Drake D, Liu XS, et al: REST and stress resistance in ageing and Alzheimer's disease. Nature. 507:448–454. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Dias C, Feng J, Sun H, Shao NY, Mazei-Robison MS, Damez-Werno D, Scobie K, Bagot R, LaBonté B, Ribeiro E, et al: β-catenin mediates stress resilience through Dicer1/microRNA regulation. Nature. 516:51–55. 2014.PubMed/NCBI | |
|
Madison JM, Zhou F, Nigam A, Hussain A, Barker DD, Nehme R, van der Ven K, Hsu J, Wolf P, Fleishman M, et al: Characterization of bipolar disorder patient-specific induced pluripotent stem cells from a family reveals neurodevelopmental and mRNA expression abnormalities. Mol Psychiatry. 20:703–717. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Karantalis V and Hare JM: Use of mesenchymal stem cells for therapy of cardiac disease. Circ Res. 116:1413–1430. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Atashi F, Modarressi A and Pepper MS: The role of reactive oxygen species in mesenchymal stem cell adipogenic and osteogenic differentiation: A review. Stem Cells Dev. 24:1150–1163. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Y and Alman BA: Wnt pathway, an essential role in bone regeneration. J Cell Biochem. 106:353–362. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang R, Oyajobi BO, Harris SE, Chen D, Tsao C, Deng HW and Zhao M: Wnt/β-catenin signaling activates bone morphogenetic protein 2 expression in osteoblasts. Bone. 52:145–156. 2013. View Article : Google Scholar | |
|
Ke HZ, Richards WG, Li X and Ominsky MS: Sclerostin and Dickkopf-1 as therapeutic targets in bone diseases. Endocr Rev. 33:747–783. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Boudin E, Fijalkowski I, Piters E and Van Hul W: The role of extracellular modulators of canonical Wnt signaling in bone metabolism and diseases. Semin Arthritis Rheum. 43:220–240. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Silva BC and Bilezikian JP: Parathyroid hormone: Anabolic and catabolic actions on the skeleton. Curr Opin Pharmacol. 22:41–50. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Maeda K, Kobayashi Y, Udagawa N, Uehara S, Ishihara A, Mizoguchi T, Kikuchi Y, Takada I, Kato S, Kani S, et al: Wnt5a-Ror2 signaling between osteoblast-lineage cells and osteoclast precursors enhances osteoclastogenesis. Nat Med. 18:405–412. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Kim SJ, Bieganski T, Sohn YB, Kozlowski K, Semënov M, Okamoto N, Kim CH, Ko AR, Ahn GH, Choi YL, et al: Identification of signal peptide domain SOST mutations in autosomal dominant craniodiaphyseal dysplasia. Hum Genet. 129:497–502. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Brunkow ME, Gardner JC, Van Ness J, Paeper BW, Kovacevich BR, Proll S, Skonier JE, Zhao L, Sabo PJ, Fu Y, et al: Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein. Am J Hum Genet. 68:577–589. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Balemans W, Patel N, Ebeling M, Van Hul E, Wuyts W, Lacza C, Dioszegi M, Dikkers FG, Hildering P, Willems PJ, et al: Identification of a 52 kb deletion downstream of the SOST gene in patients with van Buchem disease. J Med Genet. 39:91–97. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Van Wesenbeeck L, Cleiren E, Gram J, Beals RK, Bénichou O, Scopelliti D, Key L, Renton T, Bartels C, Gong Y, et al: Six novel missense mutations in the LDL receptor-related protein 5 (LRP5) gene in different conditions with an increased bone density. Am J Hum Genet. 72:763–771. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Canalis E: Wnt signalling in osteoporosis: Mechanisms and novel therapeutic approaches. Nat Rev Endocrinol. 9:575–583. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Laine CM, Joeng KS, Campeau PM, Kiviranta R, Tarkkonen K, Grover M, Lu JT, Pekkinen M, Wessman M, Heino TJ, et al: WNT1 mutations in early-onset osteoporosis and osteogenesis imperfecta. N Engl J Med. 368:1809–1816. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Gong Y, Slee RB, Fukai N, Rawadi G, Roman-Roman S, Reginato AM, Wang H, Cundy T, Glorieux FH, Lev D, et al Osteoporosis-Pseudoglioma Syndrome Collaborative Group: LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell. 107:513–523. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Mani A, Radhakrishnan J, Wang H, Mani A, Mani MA, Nelson-Williams C, Carew KS, Mane S, Najmabadi H, Wu D, et al: LRP6 mutation in a family with early coronary disease and metabolic risk factors. Science. 315:1278–1282. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Simsek Kiper PO, Saito H, Gori F, Unger S, Hesse E, Yamana K, Kiviranta R, Solban N, Liu J, Brommage R, et al: Cortical-bone fragility: Insights from sFRP4 deficiency in Pyle's disease. N Engl J Med. 374:2553–2562. 2016. View Article : Google Scholar | |
|
Estrada K, Styrkarsdottir U, Evangelou E, Hsu YH, Duncan EL, Ntzani EE, Oei L, Albagha OM, Amin N, Kemp JP, et al: Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nat Genet. 44:491–501. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Carmeliet P and Jain RK: Molecular mechanisms and clinical applications of angiogenesis. Nature. 473:298–307. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Katoh M: Therapeutics targeting angiogenesis: Genetics and epigenetics, extracellular miRNAs and signaling networks (Review). Int J Mol Med. 32:763–767. 2013.PubMed/NCBI | |
|
Hayakawa Y, Ariyama H, Stancikova J, Sakitani K, Asfaha S, Renz BW, Dubeykovskaya ZA, Shibata W, Wang H, Westphalen CB, et al: Mist1 expressing gastric stem cells maintain the normal and neoplastic gastric epithelium and are supported by a perivascular stem cell niche. Cancer Cell. 28:800–814. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Rafii S, Butler JM and Ding BS: Angiocrine functions of organ-specific endothelial cells. Nature. 529:316–325. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Goel HL and Mercurio AM: VEGF targets the tumour cell. Nat Rev Cancer. 13:871–882. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Ferrara N and Adamis AP: Ten years of anti-vascular endothelial growth factor therapy. Nat Rev Drug Discov. 15:385–403. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Katoh M: Therapeutics targeting FGF signaling network in human diseases. Trends Pharmacol Sci. 37:1081–1096. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou W, Wang G and Guo S: Regulation of angiogenesis via Notch signaling in breast cancer and cancer stem cells. Biochim Biophys Acta. 1836:304–320. 2013.PubMed/NCBI | |
|
Zhang P, Yan X, Chen Y, Yang Z and Han H: Notch signaling in blood vessels: From morphogenesis to homeostasis. Sci China Life Sci. 57:774–780. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Rostama B, Peterson SM, Vary CP and Liaw L: Notch signal integration in the vasculature during remodeling. Vascul Pharmacol. 63:97–104. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Hilbert T and Klaschik S: The angiopoietin/TIE receptor system: Focusing its role for ischemia-reperfusion injury. Cytokine Growth Factor Rev. 26:281–291. 2015. View Article : Google Scholar | |
|
Zhang X, Gaspard JP and Chung DC: Regulation of vascular endothelial growth factor by the Wnt and K-ras pathways in colonic neoplasia. Cancer Res. 61:6050–6054. 2001.PubMed/NCBI | |
|
Korn C, Scholz B, Hu J, Srivastava K, Wojtarowicz J, Arnsperger T, Adams RH, Boutros M, Augustin HG and Augustin I: Endothelial cell-derived non-canonical Wnt ligands control vascular pruning in angiogenesis. Development. 141:1757–1766. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Gilmour DF: Familial exudative vitreoretinopathy and related retinopathies. Eye (Lond). 29:1–14. 2015. View Article : Google Scholar | |
|
Kirikoshi H, Sagara N, Koike J, Tanaka K, Sekihara H, Hirai M and Katoh M: Molecular cloning and characterization of human Frizzled-4 on chromosome 11q14-q21. Biochem Biophys Res Commun. 264:955–961. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang K, Harada Y, Wei X, Shukla D, Rajendran A, Tawansy K, Bedell M, Lim S, Shaw PX, He X, et al: An essential role of the cysteine-rich domain of FZD4 in Norrin/Wnt signaling and familial exudative vitreoretinopathy. J Biol Chem. 286:10210–10215. 2011. View Article : Google Scholar : | |
|
Musada GR, Syed H, Jalali S, Chakrabarti S and Kaur I: Mutation spectrum of the FZD-4, TSPAN12 and ZNF408 genes in Indian FEVR patients. BMC Ophthalmol. 16:902016. View Article : Google Scholar : PubMed/NCBI | |
|
Tang M, Ding X, Li J, Hu A, Yuan M, Yang Y, Zhan Z, Li Z and Lu L: Novel mutations in FZD4 and phenotype-genotype correlation in Chinese patients with familial exudative vitreoretinopathy. Mol Vis. 22:917–932. 2016.PubMed/NCBI | |
|
Fei P, Zhang Q, Huang L, Xu Y, Zhu X, Tai Z, Gong B, Ma S, Yao Q, Li J, et al: Identification of two novel LRP5 mutations in families with familial exudative vitreoretinopathy. Mol Vis. 20:395–409. 2014.PubMed/NCBI | |
|
Ye X, Wang Y and Nathans J: The Norrin/Frizzled4 signaling pathway in retinal vascular development and disease. Trends Mol Med. 16:417–425. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Stenman JM, Rajagopal J, Carroll TJ, Ishibashi M, McMahon J and McMahon AP: Canonical Wnt signaling regulates organ-specific assembly and differentiation of CNS vasculature. Science. 322:1247–1250. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Z, Liu CH, Sun Y, Gong Y, Favazza TL, Morss PC, Saba NJ, Fredrick TW, He X, Akula JD, et al: Pharmacologic activation of Wnt signaling by lithium normalizes retinal vasculature in a murine model of familial exudative vitreoretinopathy. Am J Pathol. 186:2588–2600. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Birdsey GM, Shah AV, Dufton N, Reynolds LE, Osuna Almagro L, Yang Y, Aspalter IM, Khan ST, Mason JC, Dejana E, et al: The endothelial transcription factor ERG promotes vascular stability and growth through Wnt/β-catenin signaling. Dev Cell. 32:82–96. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Arthofer E, Hot B, Petersen J, Strakova K, Jäger S, Grundmann M, Kostenis E, Gutkind JS and Schulte G: WNT stimulation dissociates a Frizzled 4 inactive-state complex with Gα12/13. Mol Pharmacol. 90:447–459. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Adler PN: The frizzled/stan pathway and planar cell polarity in the Drosophila wing. Curr Top Dev Biol. 101:1–31. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Yang Y and Mlodzik M: Wnt-Frizzled/planar cell polarity signaling: Cellular orientation by facing the wind (Wnt). Annu Rev Cell Dev Biol. 31:623–646. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Gao B, Song H, Bishop K, Elliot G, Garrett L, English MA, Andre P, Robinson J, Sood R, Minami Y, et al: Wnt signaling gradients establish planar cell polarity by inducing Vangl2 phosphorylation through Ror2. Dev Cell. 20:163–176. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Nishimura T, Honda H and Takeichi M: Planar cell polarity links axes of spatial dynamics in neural-tube closure. Cell. 149:1084–1097. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Pan X, Sittaramane V, Gurung S and Chandrasekhar A: Structural and temporal requirements of Wnt/PCP protein Vangl2 function for convergence and extension movements and facial branchiomotor neuron migration in zebrafish. Mech Dev. 131:1–14. 2014. View Article : Google Scholar : | |
|
Gödde NJ, Pearson HB, Smith LK and Humbert PO: Dissecting the role of polarity regulators in cancer through the use of mouse models. Exp Cell Res. 328:249–257. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Cantrell VA and Jessen JR: The planar cell polarity protein Van Gogh-Like 2 regulates tumor cell migration and matrix metalloproteinase-dependent invasion. Cancer Lett. 287:54–61. 2010. View Article : Google Scholar | |
|
O'Connell MP, Fiori JL, Xu M, Carter AD, Frank BP, Camilli TC, French AD, Dissanayake SK, Indig FE, Bernier M, et al: The orphan tyrosine kinase receptor, ROR2, mediates Wnt5A signaling in metastatic melanoma. Oncogene. 29:34–44. 2010. View Article : Google Scholar : | |
|
Wang W, Runkle KB, Terkowski SM, Ekaireb RI and Witze ES: Protein depalmitoylation is induced by Wnt5a and promotes polarized cell behavior. J Biol Chem. 290:15707–15716. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Webster MR, Kugel CH III and Weeraratna AT: The Wnts of change: How Wnts regulate phenotype switching in melanoma. Biochim Biophys Acta. 1856:244–251. 2015.PubMed/NCBI | |
|
Katoh M: Function and cancer genomics of FAT family genes (Review). Int J Oncol. 41:1913–1918. 2012.PubMed/NCBI | |
|
Matis M and Axelrod JD: Regulation of PCP by the Fat signaling pathway. Genes Dev. 27:2207–2220. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Katoh M and Katoh M: Identification and characterization of human PRICKLE1 and PRICKLE2 genes as well as mouse Prickle1 and Prickle2 genes homologous to Drosophila tissue polarity gene prickle. Int J Mol Med. 11:249–256. 2003.PubMed/NCBI | |
|
De Marco P, Merello E, Piatelli G, Cama A, Kibar Z and Capra V: Planar cell polarity gene mutations contribute to the etiology of human neural tube defects in our population. Birth Defects Res A Clin Mol Teratol. 100:633–641. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Allache R, Lachance S, Guyot MC, De Marco P, Merello E, Justice MJ, Capra V and Kibar Z: Novel mutations in Lrp6 orthologs in mouse and human neural tube defects affect a highly dosage-sensitive Wnt non-canonical planar cell polarity pathway. Hum Mol Genet. 23:1687–1699. 2014. View Article : Google Scholar : | |
|
Bassuk AG, Wallace RH, Buhr A, Buller AR, Afawi Z, Shimojo M, Miyata S, Chen S, Gonzalez-Alegre P, Griesbach HL, et al: A homozygous mutation in human PRICKLE1 causes an autosomal-recessive progressive myoclonus epilepsy-ataxia syndrome. Am J Hum Genet. 83:572–581. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Tao H, Manak JR, Sowers L, Mei X, Kiyonari H, Abe T, Dahdaleh NS, Yang T, Wu S, Chen S, et al: Mutations in prickle orthologs cause seizures in flies, mice, and humans. Am J Hum Genet. 88:138–149. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Sowers LP, Loo L, Wu Y, Campbell E, Ulrich JD, Wu S, Paemka L, Wassink T, Meyer K, Bing X, et al: Disruption of the non-canonical Wnt gene PRICKLE2 leads to autism-like behaviors with evidence for hippocampal synaptic dysfunction. Mol Psychiatry. 18:1077–1089. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
White JJ, Mazzeu JF, Hoischen A, Bayram Y, Withers M, Gezdirici A, Kimonis V, Steehouwer M, Jhangiani SN, Muzny DM, et al Baylor-Hopkins Center for Mendelian Genomics: DVL3 alleles resulting in a -1 frameshift of the last exon mediate autosomal-dominant Robinow syndrome. Am J Hum Genet. 98:553–561. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Copp AJ and Greene ND: Genetics and development of neural tube defects. J Pathol. 220:217–230. 2010. | |
|
Muñoz-Soriano V, Belacortu Y and Paricio N: Planar cell polarity signaling in collective cell movements during morphogenesis and disease. Curr Genomics. 13:609–622. 2012. View Article : Google Scholar : | |
|
Wu G, Huang X, Hua Y and Mu D: Roles of planar cell polarity pathways in the development of neutral tube defects. J Biomed Sci. 18:662011. View Article : Google Scholar : | |
|
de la Hoz AB, Maortua H, García-Rives A, Martínez-González MJ, Ezquerra M and Tejada MI: 3p14 de novo interstitial microdeletion in a patient with intellectual disability and autistic features with language impairment: A comparison with similar cases. Case Rep Genet. 2015:8763482015.PubMed/NCBI | |
|
Mazzeu JF, Pardono E, Vianna-Morgante AM, Richieri-Costa A, Ae Kim C, Brunoni D, Martelli L, de Andrade CE, Colin G and Otto PA: Clinical characterization of autosomal dominant and recessive variants of Robinow syndrome. Am J Med Genet A. 143:320–325. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Person AD, Beiraghi S, Sieben CM, Hermanson S, Neumann AN, Robu ME, Schleiffarth JR, Billington CJ Jr, van Bokhoven H, Hoogeboom JM, et al: WNT5A mutations in patients with autosomal dominant Robinow syndrome. Dev Dyn. 239:327–337. 2010. | |
|
Afzal AR, Rajab A, Fenske CD, Oldridge M, Elanko N, Ternes-Pereira E, Tüysüz B, Murday VA, Patton MA, Wilkie AO, et al: Recessive Robinow syndrome, allelic to dominant brachydactyly type B, is caused by mutation of ROR2. Nat Genet. 25:419–422. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Oldridge M, Fortuna AM, Maringa M, Propping P, Mansour S, Pollitt C, DeChiara TM, Kimble RB, Valenzuela DM, Yancopoulos GD, et al: Dominant mutations in ROR2, encoding an orphan receptor tyrosine kinase, cause brachydactyly type B. Nat Genet. 24:275–278. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Green JL, Kuntz SG and Sternberg PW: Ror receptor tyrosine kinases: Orphans no more. Trends Cell Biol. 18:536–544. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Minami Y, Oishi I, Endo M and Nishita M: Ror-family receptor tyrosine kinases in noncanonical Wnt signaling: Their implications in developmental morphogenesis and human diseases. Dev Dyn. 239:1–15. 2010. | |
|
Petrova IM, Malessy MJ, Verhaagen J, Fradkin LG and Noordermeer JN: Wnt signaling through the Ror receptor in the nervous system. Mol Neurobiol. 49:303–315. 2014. View Article : Google Scholar | |
|
Debebe Z and Rathmell WK: Ror2 as a therapeutic target in cancer. Pharmacol Ther. 150:143–148. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Bunn KJ, Lai A, Al-Ani A, Farella M, Craw S and Robertson SP: An osteosclerotic form of Robinow syndrome. Am J Med Genet A. 164A:2638–2642. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Liu C, Lin C, Gao C, May-Simera H, Swaroop A and Li T: Null and hypomorph Prickle1 alleles in mice phenocopy human Robinow syndrome and disrupt signaling downstream of Wnt5a. Biol Open. 3:861–870. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Ford CE, Qian Ma SS, Quadir A and Ward RL: The dual role of the novel Wnt receptor tyrosine kinase, ROR2, in human carcinogenesis. Int J Cancer. 133:779–787. 2013. View Article : Google Scholar | |
|
Asad M, Wong MK, Tan TZ, Choolani M, Low J, Mori S, Virshup D, Thiery JP and Huang RY: FZD7 drives in vitro aggressiveness in Stem-A subtype of ovarian cancer via regulation of non-canonical Wnt/PCP pathway. Cell Death Dis. 5:e13462014. View Article : Google Scholar : PubMed/NCBI | |
|
Qin L, Yin YT, Zheng FJ, Peng LX, Yang CF, Bao YN, Liang YY, Li XJ, Xiang YQ, Sun R, et al: WNT5A promotes stemness characteristics in nasopharyngeal carcinoma cells leading to metastasis and tumorigenesis. Oncotarget. 6:10239–10252. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Thiele S, Rachner TD, Rauner M and Hofbauer LC: WNT5A and its receptors in the bone-cancer dialogue. J Bone Miner Res. 31:1488–1496. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Kumawat K and Gosens R: WNT-5A: Signaling and functions in health and disease. Cell Mol Life Sci. 73:567–587. 2016. View Article : Google Scholar : | |
|
Wei H, Wang N, Zhang Y, Wang S, Pang X and Zhang S: Wnt-11 overexpression promoting the invasion of cervical cancer cells. Tumour Biol. 37:11789–11798. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Arabzadeh S, Hossein G, Salehi-Dulabi Z and Zarnani AH: WNT5A-ROR2 is induced by inflammatory mediators and is involved in the migration of human ovarian cancer cell line SKOV-3. Cell Mol Biol Lett. 21:92016. View Article : Google Scholar | |
|
Jiang W, Crossman DK, Mitchell EH, Sohn P, Crowley MR and Serra R: WNT5A inhibits metastasis and alters splicing of Cd44 in breast cancer cells. PLoS One. 8:e583292013. View Article : Google Scholar : PubMed/NCBI | |
|
Easter SL, Mitchell EH, Baxley SE, Desmond R, Frost AR and Serra R: Wnt5a suppresses tumor formation and redirects tumor phenotype in MMTV-Wnt1 tumors. PLoS One. 9:e1132472014. View Article : Google Scholar : PubMed/NCBI | |
|
Wang MT, Holderfield M, Galeas J, Delrosario R, To MD, Balmain A and McCormick F: K-Ras promotes tumorigenicity through suppression of non-canonical Wnt signaling. Cell. 163:1237–1251. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Fukuda T, Chen L, Endo T, Tang L, Lu D, Castro JE, Widhopf GF II, Rassenti LZ, Cantwell MJ, Prussak CE, et al: Antisera induced by infusions of autologous Ad-CD154-leukemia B cells identify ROR1 as an oncofetal antigen and receptor for Wnt5a. Proc Natl Acad Sci USA. 105:3047–3052. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Bicocca VT, Chang BH, Masouleh BK, Muschen M, Loriaux MM, Druker BJ and Tyner JW: Crosstalk between ROR1 and the Pre-B cell receptor promotes survival of t(1;19) acute lymphoblastic leukemia. Cancer Cell. 22:656–667. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Yu J, Chen L, Cui B, Widhopf GF II, Shen Z, Wu R, Zhang L, Zhang S, Briggs SP and Kipps TJ: Wnt5a induces ROR1/ROR2 heterooligomerization to enhance leukemia chemotaxis and proliferation. J Clin Invest. 126:585–598. 2016. View Article : Google Scholar : | |
|
Gentile A, Lazzari L, Benvenuti S, Trusolino L and Comoglio PM: The ROR1 pseudokinase diversifies signaling outputs in MET-addicted cancer cells. Int J Cancer. 135:2305–2316. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Hojjat-Farsangi M, Moshfegh A, Daneshmanesh AH, Khan AS, Mikaelsson E, Osterborg A and Mellstedt H: The receptor tyrosine kinase ROR1 - an oncofetal antigen for targeted cancer therapy. Semin Cancer Biol. 29:21–31. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Li C, Wang S, Xing Z, Lin A, Liang K, Song J, Hu Q, Yao J, Chen Z, Park PK, et al: A ROR1-HER3-lncRNA signalling axis modulates the Hippo-YAP pathway to regulate bone metastasis. Nat Cell Biol. 19:106–119. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Widhopf GF II, Cui B, Ghia EM, Chen L, Messer K, Shen Z, Briggs SP, Croce CM and Kipps TJ: ROR1 can interact with TCL1 and enhance leukemogenesis in Eμ-TCL1 transgenic mice. Proc Natl Acad Sci USA. 111:793–798. 2014. View Article : Google Scholar | |
|
Yamaguchi T, Lu C, Ida L, Yanagisawa K, Usukura J, Cheng J, Hotta N, Shimada Y, Isomura H, Suzuki M, et al: ROR1 sustains caveolae and survival signalling as a scaffold of cavin-1 and caveolin-1. Nat Commun. 7:100602016. View Article : Google Scholar : PubMed/NCBI | |
|
O'Connell MP, Marchbank K, Webster MR, Valiga AA, Kaur A, Vultur A, Li L, Herlyn M, Villanueva J, Liu Q, et al: Hypoxia induces phenotypic plasticity and therapy resistance in melanoma via the tyrosine kinase receptors ROR1 and ROR2. Cancer Discov. 3:1378–1393. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Lai SS, Xue B, Yang Y, Zhao L, Chu CS, Hao JY and Wen CJ: Ror2-Src signaling in metastasis of mouse melanoma cells is inhibited by NRAGE. Cancer Genet. 205:552–562. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Niemann S, Zhao C, Pascu F, Stahl U, Aulepp U, Niswander L, Weber JL and Müller U: Homozygous WNT3 mutation causes tetra-amelia in a large consanguineous family. Am J Hum Genet. 74:558–563. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Woods CG, Stricker S, Seemann P, Stern R, Cox J, Sherridan E, Roberts E, Springell K, Scott S, Karbani G, et al: Mutations in WNT7A cause a range of limb malformations, including Fuhrmann syndrome and Al-Awadi/Raas-Rothschild/Schinzel phocomelia syndrome. Am J Hum Genet. 79:402–408. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Biason-Lauber A, Konrad D, Navratil F and Schoenle EJ: A WNT4 mutation associated with Müllerian-duct regression and virilization in a 46, XX woman. N Engl J Med. 351:792–798. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Mandel H, Shemer R, Borochowitz ZU, Okopnik M, Knopf C, Indelman M, Drugan A, Tiosano D, Gershoni-Baruch R, Choder M, et al: SERKAL syndrome: An autosomal-recessive disorder caused by a loss-of-function mutation in WNT4. Am J Hum Genet. 82:39–47. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Kirikoshi H, Sekihara H and Katoh M: WNT10A and WNT6, clustered in human chromosome 2q35 region with head-to-tail manner, are strongly coexpressed in SW480 cells. Biochem Biophys Res Commun. 283:798–805. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Adaimy L, Chouery E, Megarbane H, Mroueh S, Delague V, Nicolas E, Belguith H, de Mazancourt P and Megarbane A: Mutation in WNT10A is associated with an autosomal recessive ectodermal dysplasia: The odonto-onycho-dermal dysplasia. Am J Hum Genet. 81:821–828. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
van den Boogaard MJ, Créton M, Bronkhorst Y, van der Hout A, Hennekam E, Lindhout D, Cune M and Ploos van Amstel HK: Mutations in WNT10A are present in more than half of isolated hypodontia cases. J Med Genet. 49:327–331. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Yu P, Yang W, Han D, Wang X, Guo S, Li J, Li F, Zhang X, Wong SW, Bai B, et al: Mutations in WNT10B are identified in individuals with oligodontia. Am J Hum Genet. 99:195–201. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Massink MP, Créton MA, Spanevello F, Fennis WM, Cune MS, Savelberg SM, Nijman IJ, Maurice MM, van den Boogaard MJ and van Haaften G: H and van Haaften G. Loss-of-function mutations in the WNT co-receptor LRP6 cause autosomal-dominant oligodontia. Am J Hum Genet. 97:621–626. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Poulsen A, Ho SY, Wang W, Alam J, Jeyaraj DA, Ang SH, Tan ES, Lin GR, Cheong VW, Ke Z, et al: Pharmacophore model for Wnt/Porcupine inhibitors and its use in drug design. J Chem Inf Model. 55:1435–1448. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Grzeschik KH, Bornholdt D, Oeffner F, König A, del Carmen Boente M, Enders H, Fritz B, Hertl M, Grasshoff U, Höfling K, et al: Deficiency of PORCN, a regulator of Wnt signaling, is associated with focal dermal hypoplasia. Nat Genet. 39:833–835. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Liu C, Widen SA, Williamson KA, Ratnapriya R, Gerth-Kahlert C, Rainger J, Alur RP, Strachan E, Manjunath SH, Balakrishnan A, et al UK10K Consortium: A secreted WNT-ligand-binding domain of FZD5 generated by a frameshift mutation causes autosomal dominant coloboma. Hum Mol Genet. 25:1382–1391. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Fröjmark AS, Schuster J, Sobol M, Entesarian M, Kilander MB, Gabrikova D, Nawaz S, Baig SM, Schulte G, Klar J, et al: Mutations in Frizzled 6 cause isolated autosomal-recessive nail dysplasia. Am J Hum Genet. 88:852–860. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Parma P, Radi O, Vidal V, Chaboissier MC, Dellambra E, Valentini S, Guerra L, Schedl A and Camerino G: R-spondin1 is essential in sex determination, skin differentiation and malignancy. Nat Genet. 38:1304–1309. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Brüchle NO, Frank J, Frank V, Senderek J, Akar A, Koc E, Rigopoulos D, van Steensel M, Zerres K and Bergmann C: RSPO4 is the major gene in autosomal-recessive anonychia and mutations cluster in the furin-like cysteine-rich domains of the Wnt signaling ligand R-spondin 4. J Invest Dermatol. 128:791–796. 2008. View Article : Google Scholar | |
|
Ekici AB, Hilfinger D, Jatzwauk M, Thiel CT, Wenzel D, Lorenz I, Boltshauser E, Goecke TW, Staatz G, Morris-Rosendahl DJ, et al: Disturbed Wnt signalling due to a mutation in CCDC88C causes an autosomal recessive non-syndromic hydrocephalus with medial diverticulum. Mol Syndromol. 1:99–112. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Aznar N, Midde KK, Dunkel Y, Lopez-Sanchez I, Pavlova Y, Marivin A, Barbazán J, Murray F, Nitsche U, Janssen KP, et al: Daple is a novel non-receptor GEF required for trimeric G protein activation in Wnt signaling. eLife. 4:e070912015. View Article : Google Scholar : PubMed/NCBI | |
|
Voronkov A and Krauss S: Wnt/β-catenin signaling and small molecule inhibitors. Curr Pharm Des. 19:634–664. 2013. View Article : Google Scholar | |
|
Takebe N, Miele L, Harris PJ, Jeong W, Bando H, Kahn M, Yang SX and Ivy SP: Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: Clinical update. Nat Rev Clin Oncol. 12:445–464. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Tai D, Wells K, Arcaroli J, Vanderbilt C, Aisner DL, Messersmith WA and Lieu CH: Targeting the WNT signaling pathway in cancer therapeutics. Oncologist. 20:1189–1198. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Pelay-Gimeno M, Glas A, Koch O and Grossmann TN: Structure-based design of inhibitors of protein-protein interactions: Mimicking peptide binding epitopes. Angew Chem Int Ed Engl. 54:8896–8927. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Kakugawa S, Langton PF, Zebisch M, Howell SA, Chang TH, Liu Y, Feizi T, Bineva G, O'Reilly N, Snijders AP, et al: Notum deacylates Wnt proteins to suppress signalling activity. Nature. 519:187–192. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Madan B, Ke Z, Harmston N, Ho SY, Frois AO, Alam J, Jeyaraj DA, Pendharkar V, Ghosh K, Virshup IH, et al: Wnt addiction of genetically defined cancers reversed by PORCN inhibition. Oncogene. 35:2197–2207. 2016. View Article : Google Scholar | |
|
Chen B, Dodge ME, Tang W, Lu J, Ma Z, Fan CW, Wei S, Hao W, Kilgore J, Williams NS, et al: Small molecule-mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer. Nat Chem Biol. 5:100–107. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Liu J, Pan S, Hsieh MH, Ng N, Sun F, Wang T, Kasibhatla S, Schuller AG, Li AG, Cheng D, et al: Targeting Wnt-driven cancer through the inhibition of Porcupine by LGK974. Proc Natl Acad Sci USA. 110:20224–20229. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Proffitt KD, Madan B, Ke Z, Pendharkar V, Ding L, Lee MA, Hannoush RN and Virshup DM: Pharmacological inhibition of the Wnt acyltransferase PORCN prevents growth of WNT-driven mammary cancer. Cancer Res. 73:502–507. 2013. View Article : Google Scholar | |
|
van de Wetering M, Francies HE, Francis JM, Bounova G, Iorio F, Pronk A, van Houdt W, van Gorp J, Taylor-Weiner A, Kester L, et al: Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell. 161:933–945. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Cheng Y, Phoon YP, Jin X, Chong SY, Ip JC, Wong BW and Lung ML: Wnt-C59 arrests stemness and suppresses growth of nasopharyngeal carcinoma in mice by inhibiting the Wnt pathway in the tumor microenvironment. Oncotarget. 6:14428–14439. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Madan B, Ke Z, Lei ZD, Oliver FA, Oshima M, Lee MA, Rozen S and Virshup DM: NOTUM is a potential pharmacodynamic biomarker of Wnt pathway inhibition. Oncotarget. 7:12386–12392. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Blyszczuk P, Müller-Edenborn B, Valenta T, Osto E, Stellato M, Behnke S, Glatz K, Basler K, Lüscher TF, Distler O, et al: Transforming growth factor-β-dependent Wnt secretion controls myofibroblast formation and myocardial fibrosis progression in experimental autoimmune myocarditis. Eur Heart J. 38:1413–1425. 2017. | |
|
Madan B, Patel MB, Zhang J, Bunte RM, Rudemiller NP, Griffiths R, Virshup DM and Crowley SD: Experimental inhibition of porcupine-mediated Wnt O-acylation attenuates kidney fibrosis. Kidney Int. 89:1062–1074. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Diamond JR, Eckhardt SG, Bendell JC, Munster P, Morris VK, Kopetz S, Cattaruzza F, Kapoun AM, Dupont J and Faoro L: A Phase 1a/b study of OMP-131R10, an anti-RSPO3 antibody, in advanced solid tumors and previously treated metastatic colorectal cancer (CRC). Presented at: TAT 2016 Conference; Washington DC. 21–23 March, 2016; | |
|
Katoh M, Hirai M, Sugimura T and Terada M: Cloning, expression and chromosomal localization of Wnt-13, a novel member of the Wnt gene family. Oncogene. 13:873–876. 1996.PubMed/NCBI | |
|
Katoh M, Kirikoshi H, Terasaki H and Shiokawa K: WNT2B2 mRNA, upregulated in primary gastric cancer, is a positive regulator of the WNT- β-catenin-TCF signaling pathway. Biochem Biophys Res Commun. 289:1093–1098. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang H, Li F, He C, Wang X, Li Q and Gao H: Expression of Gli1 and Wnt2B correlates with progression and clinical outcome of pancreatic cancer. Int J Clin Exp Pathol. 7:4531–4538. 2014.PubMed/NCBI | |
|
Li G, Liu Y, Su Z, Ren S, Zhu G, Tian Y and Qiu Y: MicroRNA-324-3p regulates nasopharyngeal carcinoma radioresistance by directly targeting WNT2B. Eur J Cancer. 49:2596–2607. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Li SJ, Yang XN and Qian HY: Antitumor effects of WNT2B silencing in GLUT1 overexpressing cisplatin resistant head and neck squamous cell carcinoma. Am J Cancer Res. 5:300–308. 2014. | |
|
Kobayashi M, Huang CL, Sonobe M, Kikuchi R and Date H: Ad-shWnt2b vector therapy demonstrates antitumor activity in orthotopic intrapleural models as monitored with the in vitro imaging system (IVIS). Anticancer Res. 36:5887–5893. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Tokuhara M, Hirai M, Atomi Y, Terada M and Katoh M: Molecular cloning of human Frizzled-6. Biochem Biophys Res Commun. 243:622–627. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Cantilena S, Pastorino F, Pezzolo A, Chayka O, Pistoia V, Ponzoni M and Sala A: Frizzled receptor 6 marks rare, highly tumourigenic stem-like cells in mouse and human neuroblastomas. Oncotarget. 2:976–983. 2011. View Article : Google Scholar | |
|
Kim BK, Yoo HI, Kim I, Park J and Kim Yoon S: FZD6 expression is negatively regulated by miR-199a-5p in human colorectal cancer. BMB Rep. 48:360–366. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Corda G, Sala G, Lattanzio R, Iezzi M, Sallese M, Fragassi G, Lamolinara A, Mirza H, Barcaroli D, Ermler S, et al: Functional and prognostic significance of the genomic amplification of frizzled 6 (FZD6) in breast cancer. J Pathol. 241:350–361. 2017. View Article : Google Scholar : | |
|
Saitoh T, Hirai M and Katoh M: Molecular cloning and characterization of human Frizzled-5 gene on chromosome 2q33.3-q34 region. Int J Oncol. 19:105–110. 2001.PubMed/NCBI | |
|
Steinhart Z, Pavlovic Z, Chandrashekhar M, Hart T, Wang X, Zhang X, Robitaille M, Brown KR, Jaksani S, Overmeer R, et al: Genome-wide CRISPR screens reveal a Wnt-FZD5 signaling circuit as a druggable vulnerability of RNF43-mutant pancreatic tumors. Nat Med. 23:60–68. 2017. View Article : Google Scholar | |
|
Sagara N, Toda G, Hirai M, Terada M and Katoh M: Molecular cloning, differential expression, and chromosomal localization of human frizzled-1, frizzled-2, and frizzled-7. Biochem Biophys Res Commun. 252:117–122. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Simmons GE Jr, Pandey S, Nedeljkovic-Kurepa A, Saxena M, Wang A and Pruitt K: Frizzled 7 expression is positively regulated by SIRT1 and β-catenin in breast cancer cells. PLoS One. 9:e988612014. View Article : Google Scholar | |
|
Vincan E, Flanagan DJ, Pouliot N, Brabletz T and Spaderna S: Variable FZD7 expression in colorectal cancers indicates regulation by the tumour microenvironment. Dev Dyn. 239:311–317. 2010. | |
|
Qiu X, Jiao J, Li Y and Tian T: Overexpression of FZD7 promotes glioma cell proliferation by upregulating TAZ. Oncotarget. 7:85987–85999. 2016.PubMed/NCBI | |
|
Song J, Gao L, Yang G, Tang S, Xie H, Wang Y, Wang J, Zhang Y, Jin J, Gou Y, et al: MiR-199a regulates cell proliferation and survival by targeting FZD7. PLoS One. 9:e1100742014. View Article : Google Scholar : PubMed/NCBI | |
|
Koike J, Takagi A, Miwa T, Hirai M, Terada M and Katoh M: Molecular cloning of Frizzled-10, a novel member of the Frizzled gene family. Biochem Biophys Res Commun. 262:39–43. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Gong C, Qu S, Lv XB, Liu B, Tan W, Nie Y, Su F, Liu Q, Yao H and Song E: BRMS1L suppresses breast cancer metastasis by inducing epigenetic silence of FZD10. Nat Commun. 5:54062014. View Article : Google Scholar : PubMed/NCBI | |
|
Terasaki H, Saitoh T, Shiokawa K and Katoh M: Frizzled-10, upregulated in primary colorectal cancer, is a positive regulator of the WNT-β-catenin-TCF signaling pathway. Int J Mol Med. 9:107–112. 2002.PubMed/NCBI | |
|
Hanaoka H, Katagiri T, Fukukawa C, Yoshioka H, Yamamoto S, Iida Y, Higuchi T, Oriuchi N, Paudyal B, Paudyal P, et al: Radioimmunotherapy of solid tumors targeting a cell-surface protein, FZD10: Therapeutic efficacy largely depends on radio-sensitivity. Ann Nucl Med. 23:479–485. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Gurney A, Axelrod F, Bond CJ, Cain J, Chartier C, Donigan L, Fischer M, Chaudhari A, Ji M, Kapoun AM, et al: Wnt pathway inhibition via the targeting of Frizzled receptors results in decreased growth and tumorigenicity of human tumors. Proc Natl Acad Sci USA. 109:11717–11722. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Nielsen TO, Poulin NM and Ladanyi M: Synovial sarcoma: Recent discoveries as a roadmap to new avenues for therapy. Cancer Discov. 5:124–134. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Le PN, McDermott JD and Jimeno A: Targeting the Wnt pathway in human cancers: Therapeutic targeting with a focus on OMP-54F28. Pharmacol Ther. 146:1–11. 2015. View Article : Google Scholar | |
|
Ferreira Tojais N, Peghaire C, Franzl N, Larrieu-Lahargue F, Jaspard B, Reynaud A, Moreau C, Couffinhal T, Duplàa C and Dufourcq P: Frizzled7 controls vascular permeability through the Wnt-canonical pathway and crosstalk with endothelial cell junction complexes. Cardiovasc Res. 103:291–303. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Phesse T, Flanagan D and Vincan E: Frizzled7: A promising Achilles' heel for targeting the Wnt receptor complex to treat cancer. Cancers (Basel). 8. pp. 502016, View Article : Google Scholar | |
|
Katoh M: FGFR inhibitors: Effects on cancer cells, tumor microenvironment and whole-body homeostasis (Review). Int J Mol Med. 38:3–15. 2016.PubMed/NCBI | |
|
Shabani M and Hojjat-Farsangi M: Targeting receptor tyrosine kinases using monoclonal antibodies: The most specific tools for targeted-based cancer therapy. Curr Drug Targets. 17:1687–1703. 2016. View Article : Google Scholar | |
|
Gentile A, Lazzari L, Benvenuti S, Trusolino L and Comoglio PM: Ror1 is a pseudokinase that is crucial for Met-driven tumorigenesis. Cancer Res. 71:3132–3141. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Mellstedt H, Hojjat-Farsangi M, Daneshmanesh AH, Moshfegh A, Byström S, Norin M, Olin T, Schultz J, Vågberg J and Österborg A: First generation of a small chemical molecule ROR1 RTK tyrosine kinase inhibitor. Ann Oncol. 27(Suppl 6): 15332016. View Article : Google Scholar | |
|
Khan AS, Hojjat-Farsangi M, Daneshmanesh AH, Hansson L, Kokhaei P, Österborg A, Mellstedt H and Moshfegh A: Dishevelled proteins are significantly upregulated in chronic lymphocytic leukaemia. Tumour Biol. 37:11947–11957. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Barat B, Chichili G, Ciccarone V, Tamura J, Gorlatov S, Spliedt M, Chen F, Koenig S, Moore P, Bonvini E, et al: Development of a humanized ROR1 × CD3 bispecific DART molecule for the treatment of solid and liquid tumors. (Abstract). Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; Apr 16–20, 2016; New Orleans, LA | |
|
Blankenship JW, Misher L, Mitchell D, Zhang N, Tan P, Hoyos GH, Ravikumar P, Bader R, McMahan CJ, Miller RE, et al: Anti-ROR1 × anti-CD3 ADAPTIR™ molecule, ES425, redirects T-cell cytotoxicity and inhibits tumor growth in preclinical models of triple-negative breast cancer. (Abstract). Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; Apr 16–20, 2016; New Orleans, LA. Philadelphia | |
|
Berger C, Sommermeyer D, Hudecek M, Berger M, Balakrishnan A, Paszkiewicz PJ, Kosasih PL, Rader C and Riddell SR: Safety of targeting ROR1 in primates with chimeric antigen receptor-modified T cells. Cancer Immunol Res. 3:206–216. 2015. View Article : Google Scholar : | |
|
Tian E, Zhan F, Walker R, Rasmussen E, Ma Y, Barlogie B and Shaughnessy JD Jr: The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med. 349:2483–2494. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Voorzanger-Rousselot N, Goehrig D, Journe F, Doriath V, Body JJ, Clézardin P and Garnero P: Increased Dickkopf-1 expression in breast cancer bone metastases. Br J Cancer. 97:964–970. 2007.PubMed/NCBI | |
|
McClung MR, Grauer A, Boonen S, Bolognese MA, Brown JP, Diez-Perez A, Langdahl BL, Reginster JY, Zanchetta JR, Wasserman SM, et al: Romosozumab in postmenopausal women with low bone mineral density. N Engl J Med. 370:412–420. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Recker RR, Benson CT, Matsumoto T, Bolognese MA, Robins DA, Alam J, Chiang AY, Hu L, Krege JH, Sowa H, et al: A randomized, double-blind phase 2 clinical trial of blosozumab, a sclerostin antibody, in postmenopausal women with low bone mineral density. J Bone Miner Res. 30:216–224. 2015. View Article : Google Scholar | |
|
Roschger A, Roschger P, Keplingter P, Klaushofer K, Abdullah S, Kneissel M and Rauch F: Effect of sclerostin antibody treatment in a mouse model of severe osteogenesis imperfecta. Bone. 66:182–188. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Fulciniti M, Tassone P, Hideshima T, Vallet S, Nanjappa P, Ettenberg SA, Shen Z, Patel N, Tai YT, Chauhan D, et al: Anti-DKK1 mAb (BHQ880) as a potential therapeutic agent for multiple myeloma. Blood. 114:371–379. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Bendell JC, Murphy JE, Mahalingam D, Halmos B, Sirard CA, Landau SB and Ryan DP: A Phase 1 study of DKN-01, an anti-DKK1 antibody, in combination with paclitaxel (pac) in patients with DKK1 relapsed or refractory esophageal cancer (EC) or gastro-esophageal junction tumors (GEJ). J Clin Oncol. 34(Suppl 4S): Abstract 111. 2016. View Article : Google Scholar | |
|
Betts AM, Clark TH, Yang J, Treadway JL, Li M, Giovanelli MA, Abdiche Y, Stone DM and Paralkar VM: The application of target information and preclinical pharmacokinetic/pharmacodynamic modeling in predicting clinical doses of a Dickkopf-1 antibody for osteoporosis. J Pharmacol Exp Ther. 333:2–13. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Florio M, Gunasekaran K, Stolina M, Li X, Liu L, Tipton B, Salimi-Moosavi H, Asuncion FJ, Li C, Sun B, et al: A bispecific antibody targeting sclerostin and DKK-1 promotes bone mass accrual and fracture repair. Nat Commun. 7:115052016. View Article : Google Scholar : PubMed/NCBI | |
|
Liu C and Yu X: ADP-ribosyltransferases and poly ADP-ribosylation. Curr Protein Pept Sci. 16:491–501. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Katoh M and Katoh M: Identification and characterization of human TIPARP gene within the CCNL amplicon at human chromosome 3q25.31. Int J Oncol. 23:541–547. 2003.PubMed/NCBI | |
|
Roper SJ, Chrysanthou S, Senner CE, Sienerth A, Gnan S, Murray A, Masutani M, Latos P and Hemberger M: ADP-ribosyltransferases Parp1 and Parp7 safeguard pluripotency of ES cells. Nucleic Acids Res. 42:8914–8927. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Haince JF, Rouleau M, Hendzel MJ, Masson JY and Poirier GG: Targeting poly(ADP-ribosyl)ation: A promising approach in cancer therapy. Trends Mol Med. 11:456–463. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Gunderson CC and Moore KN: Olaparib: An oral PARP-1 and PARP-2 inhibitor with promising activity in ovarian cancer. Future Oncol. 11:747–757. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Nathubhai A, Haikarainen T, Koivunen J, Murthy S, Koumanov F, Lloyd MD, Holman GD, Pihlajaniemi T, Tosh D, Lehtiö L, et al: Highly potent and isoform selective dual site binding tankyrase/Wnt signaling inhibitors that increase cellular glucose uptake and have antiproliferative activity. J Med Chem. 60:814–820. 2017. View Article : Google Scholar | |
|
Riffell JL, Lord CJ and Ashworth A: Tankyrase-targeted therapeutics: Expanding opportunities in the PARP family. Nat Rev Drug Discov. 11:923–936. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Wang W, Li N, Li X, Tran MK, Han X and Chen J: Tankyrase inhibitors target YAP by stabilizing angiomotin family proteins. Cell Rep. 13:524–532. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Kulak O, Chen H, Holohan B, Wu X, He H, Borek D, Otwinowski Z, Yamaguchi K, Garofalo LA, Ma Z, et al: Disruption of Wnt/β-catenin signaling and telomeric shortening are inextricable consequences of tankyrase inhibition in human cells. Mol Cell Biol. 35:2425–2435. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Scarborough HA, Helfrich BA, Casás-Selves M, Schuller AG, Grosskurth SE, Kim J, Tan AC, Chan DC, Zhang Z, Zaberezhnyy V, et al: AZ1366: An inhibitor of tankyrase and the canonical Wnt pathway that limits the persistence of non-small cell lung cancer cells following EGFR inhibition. Clin Cancer Res. 23:1531–1541. 2017. View Article : Google Scholar | |
|
Lau T, Chan E, Callow M, Waaler J, Boggs J, Blake RA, Magnuson S, Sambrone A, Schutten M, Firestein R, et al: A novel tankyrase small-molecule inhibitor suppresses APC mutation-driven colorectal tumor growth. Cancer Res. 73:3132–3144. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Shultz MD, Cheung AK, Kirby CA, Firestone B, Fan J, Chen CH, Chen Z, Chin DN, Dipietro L, Fazal A, et al: Identification of NVP-TNKS656: The use of structure-efficiency relationships to generate a highly potent, selective, and orally active tankyrase inhibitor. J Med Chem. 56:6495–6511. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Arqués O, Chicote I, Puig I, Tenbaum SP, Argilés G, Dienstmann R, Fernández N, Caratù G, Matito J, Silberschmidt D, et al: Tankyrase inhibition blocks Wnt/β-catenin pathway and reverts resistance to PI3K and AKT inhibitors in the treatment of colorectal cancer. Clin Cancer Res. 22:644–656. 2016. View Article : Google Scholar | |
|
Huang SM, Mishina YM, Liu S, Cheung A, Stegmeier F, Michaud GA, Charlat O, Wiellette E, Zhang Y, Wiessner S, et al: Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature. 461:614–620. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Casás-Selves M, Kim J, Zhang Z, Helfrich BA, Gao D, Porter CC, Scarborough HA, Bunn PA Jr, Chan DC, Tan AC, et al: Tankyrase and the canonical Wnt pathway protect lung cancer cells from EGFR inhibition. Cancer Res. 72:4154–4164. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Feng W, Teng R, Zhao Y, Gao J and Chu H: Epigenetic modulation of Wnt signaling contributes to neuropathic pain in rats. Mol Med Rep. 12:4727–4733. 2015.PubMed/NCBI | |
|
Meijer L, Skaltsounis AL, Magiatis P, Polychronopoulos P, Knockaert M, Leost M, Ryan XP, Vonica CA, Brivanlou A, Dajani R, et al: GSK-3-selective inhibitors derived from Tyrian purple indirubins. Chem Biol. 10:1255–1266. 2003. View Article : Google Scholar | |
|
Wu Y, Ai Z, Yao K, Cao L, Du J, Shi X, Guo Z and Zhang Y: CHIR99021 promotes self-renewal of mouse embryonic stem cells by modulation of protein-encoding gene and long intergenic non-coding RNA expression. Exp Cell Res. 319:2684–2699. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Atkinson JM, Rank KB, Zeng Y, Capen A, Yadav V, Manro JR, Engler TA and Chedid M: Activating the Wnt/β-catenin pathway for the treatment of melanoma: Application of LY2090314, a novel selective inhibitor of glycogen synthase kinase-3. PLoS One. 10:e01250282015. View Article : Google Scholar | |
|
Ding S, Wu TY, Brinker A, Peters EC, Hur W, Gray NS and Schultz PG: Synthetic small molecules that control stem cell fate. Proc Natl Acad Sci USA. 100:7632–7637. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Lalit PA, Salick MR, Nelson DO, Squirrell JM, Shafer CM, Patel NG, Saeed I, Schmuck EG, Markandeya YS, Wong R, et al: Lineage reprogramming of fibroblasts into proliferative induced cardiac progenitor cells by defined factors. Cell Stem Cell. 18:354–367. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Narcisi R, Arikan OH, Lehmann J, Ten Berge D and van Osch GJ: Differential effects of small molecule WNT agonists on the multilineage differentiation capacity of human mesenchymal stem cells. Tissue Eng Part A. 22:1264–1273. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Fiskus W, Sharma S, Saha S, Shah B, Devaraj SG, Sun B, Horrigan S, Leveque C, Zu Y, Iyer S, et al: Pre-clinical efficacy of combined therapy with novel β-catenin antagonist BC2059 and histone deacetylase inhibitor against AML cells. Leukemia. 29:1267–1278. 2015. View Article : Google Scholar | |
|
Trautmann M, Sievers E, Aretz S, Kindler D, Michels S, Friedrichs N, Renner M, Kirfel J, Steiner S, Huss S, et al: SS18-SSX fusion protein-induced Wnt/β-catenin signaling is a therapeutic target in synovial sarcoma. Oncogene. 33:5006–5016. 2014. View Article : Google Scholar | |
|
Jang GB, Hong IS, Kim RJ, Lee SY, Park SJ, Lee ES, Park JH, Yun CH, Chung JU, Lee KJ, et al: Wnt/β-catenin small-molecule inhibitor CWP232228 preferentially inhibits the growth of breast cancer stem-like cells. Cancer Res. 75:1691–1702. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Emami KH, Nguyen C, Ma H, Kim DH, Jeong KW, Eguchi M, Moon RT, Teo JL, Kim HY, Moon SH, et al: A small molecule inhibitor of β-catenin/CREB-binding protein transcription [corrected]. Proc Natl Acad Sci USA. 101:12682–12687. 2004. View Article : Google Scholar | |
|
Fang L, Zhu Q, Neuenschwander M, Specker E, Wulf-Goldenberg A, Weis WI, von Kries JP and Birchmeier W: A small-molecule antagonist of the β-catenin/TCF4 interaction blocks the self-renewal of cancer stem cells and suppresses tumorigenesis. Cancer Res. 76:891–901. 2016. View Article : Google Scholar | |
|
Hwang SY, Deng X, Byun S, Lee C, Lee SJ, Suh H, Zhang J, Kang Q, Zhang T, Westover KD, et al: Direct targeting of β-catenin by a small molecule stimulates proteasomal degradation and suppresses oncogenic Wnt/β-catenin signaling. Cell Rep. 16:28–36. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Sukhdeo K, Mani M, Zhang Y, Dutta J, Yasui H, Rooney MD, Carrasco DE, Zheng M, He H, Tai YT, et al: Targeting the β-catenin/TCF transcriptional complex in the treatment of multiple myeloma. Proc Natl Acad Sci USA. 104:7516–7521. 2007. View Article : Google Scholar | |
|
Lenz HJ and Kahn M: Safely targeting cancer stem cells via selective catenin coactivator antagonism. Cancer Sci. 105:1087–1092. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Takada K, Zhu D, Bird GH, Sukhdeo K, Zhao JJ, Mani M, Lemieux M, Carrasco DE, Ryan J, Horst D, et al: Targeted disruption of the BCL9/β-catenin complex inhibits oncogenic Wnt signaling. Sci Transl Med. 4:148ra1172012. View Article : Google Scholar | |
|
Henderson WR Jr, Chi EY, Ye X, Nguyen C, Tien YT, Zhou B, Borok Z, Knight DA and Kahn M: Inhibition of Wnt/beta-catenin/CREB binding protein (CBP) signaling reverses pulmonary fibrosis. Proc Natl Acad Sci USA. 107:14309–14314. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou L, Li Y, Hao S, Zhou D, Tan RJ, Nie J, Hou FF, Kahn M and Liu Y: Multiple genes of the renin-angiotensin system are novel targets of Wnt/β-catenin signaling. J Am Soc Nephrol. 26:107–120. 2015. View Article : Google Scholar | |
|
Gajewski TF, Schreiber H and Fu YX: Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol. 14:1014–1022. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Son B, Lee S, Youn H, Kim E, Kim W and Youn B: The role of tumor microenvironment in therapeutic resistance. Oncotarget. 8:3933–3945. 2017. | |
|
Spranger S, Bao R and Gajewski TF: Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature. 523:231–235. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Malladi S, Macalinao DG, Jin X, He L, Basnet H, Zou Y, de Stanchina E and Massagué J: Metastatic latency and immune evasion through autocrine Inhibition of WNT. Cell. 165:45–60. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Xu WD, Wang J, Yuan TL, Li YH, Yang H, Liu Y, Zhao Y and Herrmann M: Interactions between canonical Wnt signaling pathway and MAPK pathway regulate differentiation, maturation and function of dendritic cells. Cell Immunol. 310:170–177. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Naskar D, Maiti G, Chakraborty A, Roy A, Chattopadhyay D and Sen M: Wnt5a-Rac1-NF-κB homeostatic circuitry sustains innate immune functions in macrophages. J Immunol. 192:4386–4397. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
D'Amico L, Mahajan S, Capietto AH, Yang Z, Zamani A, Ricci B, Bumpass DB, Meyer M, Su X, Wang-Gillam A, et al: Dickkopf-related protein 1 (Dkk1) regulates the accumulation and function of myeloid derived suppressor cells in cancer. J Exp Med. 213:827–840. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Staal FJ and Arens R: Wnt signaling as master regulator of T-lymphocyte responses: Implications for transplant therapy. Transplantation. 100:2584–2592. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Swafford D and Manicassamy S: Wnt signaling in dendritic cells: Its role in regulation of immunity and tolerance. Discov Med. 19:303–310. 2015.PubMed/NCBI | |
|
Holtzhausen A, Zhao F, Evans KS, Tsutsui M, Orabona C, Tyler DS and Hanks BA: Melanoma-derived Wnt5a promotes local dendritic-cell expression of IDO and immunotolerance: Opportunities for pharmacologic enhancement of immunotherapy. Cancer Immunol Res. 3:1082–1095. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Hanks BA: Immune evasion pathways and the design of dendritic cell-based cancer vaccines. Discov Med. 21:135–142. 2016.PubMed/NCBI | |
|
Kaur A, Webster MR and Weeraratna AT: In the Wnt-er of life: Wnt signalling in melanoma and ageing. Br J Cancer. 115:1273–1279. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Law NC, Weck J, Kyriss B, Nilson JH and Hunzicker-Dunn M: Lhcgr expression in granulosa cells: Roles for PKA-phosphorylated β-catenin, TCF3, and FOXO1. Mol Endocrinol. 27:1295–1310. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Z and Habener JF: Glucagon-like peptide-1 activation of TCF7L2-dependent Wnt signaling enhances pancreatic beta cell proliferation. J Biol Chem. 283:8723–8735. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Bellei B, Pitisci A, Catricalà C, Larue L and Picardo M: Wnt/β-catenin signaling is stimulated by α-melanocyte-stimulating hormone in melanoma and melanocyte cells: Implication in cell differentiation. Pigment Cell Melanoma Res. 24:309–325. 2011. View Article : Google Scholar | |
|
Furuyashiki T and Narumiya S: Stress responses: The contribution of prostaglandin E(2) and its receptors. Nat Rev Endocrinol. 7:163–175. 2011. View Article : Google Scholar | |
|
Brudvik KW, Paulsen JE, Aandahl EM, Roald B and Taskén K: Protein kinase A antagonist inhibits β-catenin nuclear translocation, c-Myc and COX-2 expression and tumor promotion in Apc(Min/+) mice. Mol Cancer. 10:1492011. View Article : Google Scholar | |
|
Jansen SR, Holman R, Hedemann I, Frankes E, Elzinga CR, Timens W, Gosens R, de Bont ES and Schmidt M: Prostaglandin E2 promotes MYCN non-amplified neuroblastoma cell survival via β-catenin stabilization. J Cell Mol Med. 19:210–226. 2015. View Article : Google Scholar | |
|
Estus TL, Choudhary S and Pilbeam CC: Prostaglandin-mediated inhibition of PTH-stimulated β-catenin signaling in osteoblasts by bone marrow macrophages. Bone. 85:123–130. 2016. View Article : Google Scholar : PubMed/NCBI |