1
|
Knowles CH and Martin JE: Slow transit
constipation: A model of human gut dysmotility. Review of possible
aetiologies. Neurogastroenterol Motil. 12:181–196. 2000. View Article : Google Scholar : PubMed/NCBI
|
2
|
Bassotti G, Chistolini F, Nzepa FS and
Morelli A: Colonic propulsive impairment in intractable
slow-transit constipation. Arch Surg. 138:1302–1304. 2003.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Bassotti G, Roberto GD, Sediari L and
Morelli A: Toward a definition of colonic inertia. World J
Gastroenterol. 10:2465–2467. 2004. View Article : Google Scholar : PubMed/NCBI
|
4
|
Furness JB, Nguyen TV, Nurgali K and
Shimizu Y: The enteric nervous system and its extrinsic
connections. Textbook of Gastroenterology. Yamada T, Alpers DH,
Kalloo AN, Kaplowitz N, Owyang C and Powell DW: 1. 5th edition.
Blackwell Publishing; Philadelphia, PA: pp. 15–39. 2003
|
5
|
Furness JB and Costa M: The Enteric
Nervous System. Churchill Livingstone; Edinburgh: 1987
|
6
|
Chevalier J, Derkinderen P, Gomes P,
Thinard R, Naveilhan P, Vanden Berghe P and Neunlist M:
Activity-dependent regulation of tyrosine hydroxylase expression in
the enteric nervous system. J Physiol. 586:1963–1975. 2008.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Ekblad E, Sjuve R, Arner A and Sundler F:
Enteric neuronal plasticity and a reduced number of interstitial
cells of Cajal in hypertrophic rat ileum. Gut. 42:836–844. 1998.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Bassotti G, Villanacci V, Maurer CA,
Fisogni S, Di Fabio F, Cadei M, Morelli A, Panagiotis T, Cathomas G
and Salerni B: The role of glial cells and apoptosis of enteric
neurones in the neuropathology of intractable slow transit
constipation. Gut. 55:41–46. 2006. View Article : Google Scholar
|
9
|
Bassotti G and Villanacci V: Slow transit
constipation: A functional disorder becomes an enteric neuropathy.
World J Gastroenterol. 12:4609–4613. 2006.PubMed/NCBI
|
10
|
Lee JI, Park H, Kamm MA and Talbot IC:
Decreased density of interstitial cells of Cajal and neuronal cells
in patients with slow-transit constipation and acquired megacolon.
J Gastroenterol Hepatol. 20:1292–1298. 2005. View Article : Google Scholar : PubMed/NCBI
|
11
|
Anitha M, Shahnavaz N, Qayed E, Joseph I,
Gossrau G, Mwangi S, Sitaraman SV, Greene JG and Srinivasan S: BMP2
promotes differentiation of nitrergic and catecholaminergic enteric
neurons through a Smad1-dependent pathway. Am J Physiol
Gastrointest Liver Physiol. 298:G375–G383. 2010. View Article : Google Scholar :
|
12
|
Katagiri T, Akiyama S, Namiki M, Komaki M,
Yamaguchi A, Rosen V, Wozney JM, Fujisawa-Sehara A and Suda T: Bone
morphogenetic protein-2 inhibits terminal differentiation of
myogenic cells by suppressing the transcriptional activity of MyoD
and myogenin. Exp Cell Res. 230:342–351. 1997. View Article : Google Scholar : PubMed/NCBI
|
13
|
Aoyama K, Yamane A, Suga T, Suzuki E,
Fukui T and Nakamura Y: Bone morphogenetic protein-2 functions as a
negative regulator in the differentiation of myoblasts, but not as
an inducer for the formations of cartilage and bone in mouse
embryonic tongue. BMC Dev Biol. 11:442011. View Article : Google Scholar : PubMed/NCBI
|
14
|
Liu A and Niswander LA: Bone morphogenetic
protein signalling and vertebrate nervous system development. Nat
Rev Neurosci. 6:945–954. 2005. View
Article : Google Scholar : PubMed/NCBI
|
15
|
Chalazonitis A, D'Autréaux F, Guha U, Pham
TD, Faure C, Chen JJ, Roman D, Kan L, Rothman TP, Kessler JA and
Gershon MD: Bone morphogenetic protein-2 and -4 limit the number of
enteric neurons but promote development of a TrkC-expressing
neuro-trophin-3-dependent subset. J Neurosci. 24:4266–4282. 2004.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Chen D, Zhao M and Mundy GR: Bone
morphogenetic proteins. Growth Factors. 22:233–241. 2004.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Kishigami S and Mishina Y: BMP signaling
and early embryonic patterning. Cytokine Growth Factor Rev.
16:265–278. 2005. View Article : Google Scholar : PubMed/NCBI
|
18
|
Roberts DJ, Johnson RL, Burke AC, Nelson
CE, Morgan BA and Tabin C: Sonic hedgehog is an endodermal signal
inducing Bmp-4 and Hox genes during induction and regionalization
of the chick hindgut. Development. 121:3163–3174. 1995.PubMed/NCBI
|
19
|
Goldstein AM, Brewer KC, Doyle AM, Nagy N
and Roberts DJ: BMP signaling is necessary for neural crest cell
migration and ganglion formation in the enteric nervous system.
Mech Dev. 122:821–833. 2005. View Article : Google Scholar : PubMed/NCBI
|
20
|
Kawabata M, Imamura T and Miyazono K:
Signal transduction by bone morphogenetic proteins. Cytokine Growth
Factor Rev. 9:49–61. 1998. View Article : Google Scholar : PubMed/NCBI
|
21
|
Hoodless PA, Haerry T, Abdollah S,
Stapleton M, O'Connor MB, Attisano L and Wrana JL: MADR1, a
MAD-related protein that functions in BMP2 signaling pathways.
Cell. 85:489–500. 1996. View Article : Google Scholar : PubMed/NCBI
|
22
|
Chalazonitis A, Pham TD, Li Z, Roman D,
Guha U, Gomes W, Kan L, Kessler JA and Gershon MD: Bone
morphogenetic protein regulation of enteric neuronal phenotypic
diversity: Relationship to timing of cell cycle exit. J Comp
Neurol. 509:474–492. 2008. View Article : Google Scholar : PubMed/NCBI
|
23
|
Chalazonitis A, D'Autreaux F, Pham TD,
Kessler JA and Gershon MD: Bone morphogenetic proteins regulate
enteric gliogenesis by modulating ErbB3 signaling. Dev Biol.
350:64–79. 2011. View Article : Google Scholar :
|
24
|
Rossi E, Villanacci V, Fisogni S, Morelli
A, Salerni B, Grigolato P and Bassotti G: Chromosomal study of
enteric glial cells and neurons by fluorescence in situ
hybridization in slow transit constipation. Neurogastroenterol
Motil. 19:578–584. 2007. View Article : Google Scholar : PubMed/NCBI
|
25
|
Tomita R, Fujisaki S, Ikeda T and Fukuzawa
M: Role of nitric oxide in the colon of patients with slow-transit
constipation. Dis Colon Rectum. 45:593–600. 2002. View Article : Google Scholar : PubMed/NCBI
|
26
|
Moncada S, Palmer RM and Higgs EA: Nitric
oxide: Physiology, pathophysiology, and pharmacology. Pharmacol
Rev. 43:109–142. 1991.PubMed/NCBI
|
27
|
Saur D, Paehge H, Schusdziarra V and
Allescher HD: Distinct expression of splice variants of neuronal
nitric oxide synthase in the human gastrointestinal tract.
Gastroenterology. 118:849–858. 2000. View Article : Google Scholar : PubMed/NCBI
|
28
|
Porter AJ, Wattchow DA, Hunter A and Costa
M: Abnormalities of nerve fibers in the circular muscle of patients
with slow transit constipation. Int J Colorectal Dis. 13:208–216.
1998. View Article : Google Scholar : PubMed/NCBI
|
29
|
Kwon SJ, Lee GT, Lee JH, Kim WJ and Kim
IY: Bone morphogenetic protein-6 induces the expression of
inducible nitric oxide synthase in macrophages. Immunology.
128(Suppl 1): e758–e765. 2009. View Article : Google Scholar : PubMed/NCBI
|
30
|
Fu M, Vohra BP, Wind D and Heuckeroth RO:
BMP signaling regulates murine enteric nervous system precursor
migration, neurite fasciculation, and patterning via altered Ncam1
polysialic acid addition. Dev Biol. 299:137–150. 2006. View Article : Google Scholar : PubMed/NCBI
|
31
|
Piek E, Heldin CH and Ten Dijke P:
Specificity, diversity, and regulation in TGF-beta superfamily
signaling. FASEB J. 13:2105–2124. 1999.PubMed/NCBI
|
32
|
Heldin CH, Miyazono K and Ten Dijke P:
TGF-beta signalling from cell membrane to nucleus through SMAD
proteins. Nature. 390:465–471. 1997. View
Article : Google Scholar : PubMed/NCBI
|