1
|
Ferlay J, Soerjomataram I, Ervik M,
Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D and
Bray F (eds): GLOBOCAN 2012: Estimated Cancer Incidence, Mortality
and Prevalence Worldwide in 2012. IARC CancerBase No. 11.
International Agency for Research on Cancer, Lyon, 2013.
|
2
|
Tsuchiya A, Sakamoto M, Yasuda J, Chuma M,
Ohta T, Ohki M, Yasugi T, Taketani Y and Hirohashi S: Expression
profiling in ovarian clear cell carcinoma: Identification of
hepatocyte nuclear factor-1 beta as a molecular marker and a
possible molecular target for therapy of ovarian clear cell
carcinoma. Am J Pathol. 163:2503–2512. 2003.PubMed/NCBI View Article : Google Scholar
|
3
|
Shigetomi H, Sudo T, Shimada K, Uekuri C,
Tsuji Y, Kanayama S, Naruse K, Yamada Y, Konishi N and Kobayashi H:
Inhibition of cell death and induction of G2 arrest accumulation in
human ovarian clear cells by HNF-1β transcription factor:
Chemosensitivity is regulated by checkpoint kinase CHK1. Int J
Gynecol Cancer. 24:838–843. 2014.PubMed/NCBI View Article : Google Scholar
|
4
|
Ito F, Yoshimoto C, Yamada Y, Sudo T and
Kobayashi H: The HNF-1β-USP28-Claspin pathway upregulates DNA
damage-induced Chk1 activation in ovarian clear cell carcinoma.
Oncotarget. 9:17512–17522. 2018.PubMed/NCBI View Article : Google Scholar
|
5
|
Senkel S, Lucas B, Klein-Hitpass L and
Ryffel GU: Identification of target genes of the transcription
factor HNF1beta and HNF1alpha in a human embryonic kidney cell
line. Biochim Biophys Acta. 1731:179–190. 2005.PubMed/NCBI View Article : Google Scholar
|
6
|
Tanaka T, Tomaru Y, Nomura Y, Miura H,
Suzuki M and Hayashizaki Y: Comprehensive search for
HNF-1beta-regulated genes in mouse hepatoma cells perturbed by
transcription regulatory factor-targeted RNAi. Nucleic Acids Res.
32:2740–2750. 2004.PubMed/NCBI View Article : Google Scholar
|
7
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real time quantitative PCR and
the 2 (Delta Delta C(T)) method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
8
|
Johnston ST, Shah ET, Chopin LK, Sean
McElwain DL and Simpson MJ: Estimating cell diffusivity and cell
proliferation rate by interpreting IncuCyte ZOOM™ assay data using
the Fisher-Kolmogorov model. BMC Syst Biol. 9(38)2015.PubMed/NCBI View Article : Google Scholar
|
9
|
Wilson W III and Baldwin AS: Maintenance
of constitutive IkappaB kinase activity by glycogen synthase
kinase-3α/β in pancreatic cancer. Cancer Res. 68:8156–8163.
2008.PubMed/NCBI View Article : Google Scholar
|
10
|
Ougolkov AV, Fernandez-Zapico ME, Savoy
DN, Urrutia RA and Billadeau DD: Glycogen synthase kinase-3beta
participates in nuclear factor kappaB-mediated gene transcription
and cell survival in pancreatic cancer cells. Cancer Res.
65:2076–2081. 2005.PubMed/NCBI View Article : Google Scholar
|
11
|
Kajihara H, Yamada Y, Kanayama S, Furukawa
N, Noguchi T, Haruta S, Yoshida S, Sado T, Oi H and Kobayashi H:
Clear cell carcinoma of the ovary: Potential pathogenic mechanisms
(Review). Oncol Rep. 23:1193–1203. 2010.PubMed/NCBI View Article : Google Scholar
|
12
|
Yamaguchi K, Mandai M, Toyokuni S,
Hamanishi J, Higuchi T, Takakura K and Fujii S: Contents of
endometriotic cysts, especially the high concentration of free
iron, are a possible cause of carcinogenesis in the cysts through
the iron-induced persistent oxidative stress. Clin Cancer Res.
14:32–40. 2008.PubMed/NCBI View Article : Google Scholar
|
13
|
Niiro E, Kawahara N, Yamada Y, Yoshimoto
C, Shimada K, Sudo T and Kobayashi H: Immunohistochemical
expression of CD44v9 and 8-OHdG in ovarian endometrioma and the
benign endometriotic lesions adjacent to clear cell carcinoma. J
Obstet Gynaecol Res. 45:2260–2266, Epub ahead of print.
2019.PubMed/NCBI View Article : Google Scholar
|
14
|
Yamada Y, Shigetomi H, Onogi A, Haruta S,
Kawaguchi R, Yoshida S, Furukawa N, Nagai A, Tanase Y, Tsunemi T,
et al: Redox-active iron-induced oxidative stress in the
pathogenesis of clear cell carcinoma of the ovary. Int J Gynecol
Cancer. 21:1200–1207. 2011.PubMed/NCBI View Article : Google Scholar
|
15
|
Shigetomi H, Higashiura Y, Kajihara H and
Kobayashi H: A potential link of oxidative stress and cell cycle
regulation for development of endometriosis. Gynecol Endocrinol.
28:897–902. 2012.PubMed/NCBI View Article : Google Scholar
|
16
|
Schmidt KN, Amstad P, Cerutti P and
Baeuerle PA: The roles of hydrogen peroxide and superoxide as
messengers in the activation of transcription factor NF-κ B. Chem
Biol. 2:13–22. 1995.PubMed/NCBI View Article : Google Scholar
|
17
|
Zhang Y, Huang N, Yan F, Jin H, Zhou S,
Shi J and Jin F: Diabetes mellitus and Alzheimer's disease: GSK-3β
as a potential link. Behav Brain Res. 339:57–65. 2018.PubMed/NCBI View Article : Google Scholar
|
18
|
Llorens-Martín M, Jurado J, Hernández F
and Avila J: GSK-3β, a pivotal kinase in Alzheimer disease. Front
Mol Neurosci. 7(46)2014.PubMed/NCBI View Article : Google Scholar
|
19
|
Llorens-Martín M, Blazquez-Llorca L,
Benavides-Piccione R, Rabano A, Hernandez F, Avila J and DeFelipe
J: Selective alterations of neurons and circuits related to early
memory loss in Alzheimer's disease. Front Neuroanat.
8(38)2014.PubMed/NCBI View Article : Google Scholar
|
20
|
Llorens-Martín M, Fuster-Matanzo A,
Teixeira CM, Jurado-Arjona J, Ulloa F, Defelipe J, Rábano A,
Hernández F, Soriano E and Avila J: Alzheimer disease-like cellular
phenotype of newborn granule neurons can be reversed in
GSK-3β-overexpressing mice. Mol Psychiatry. 18:395–95.
2013.PubMed/NCBI View Article : Google Scholar
|
21
|
Llorens-Martín M, Fuster-Matanzo A,
Teixeira CM, Jurado-Arjona J, Ulloa F, Defelipe J, Rábano A,
Hernández F, Soriano E and Avila J: GSK-3β overexpression causes
reversible alterations on postsynaptic densities and dendritic
morphology of hippocampal granule neurons in vivo. Mol Psychiatry.
18:451–460. 2013.PubMed/NCBI View Article : Google Scholar
|
22
|
Lim NK, Hung LW, Pang TY, Mclean CA,
Liddell JR, Hilton JB, Li QX, White AR, Hannan AJ and Crouch PJ:
Localized changes to glycogen synthase kinase-3 and collapsin
response mediator protein-2 in the Huntington's disease affected
brain. Hum Mol Genet. 23:4051–4063. 2014.PubMed/NCBI View Article : Google Scholar
|
23
|
Gray JE, Infante JR, Brail LH, Simon GR,
Cooksey JF, Jones SF, Farrington DL, Yeo A, Jackson KA, Chow KH, et
al: A first-in-human phase I dose-escalation, pharmacokinetic, and
pharmacodynamic evaluation of intravenous LY2090314, a glycogen
synthase kinase 3 inhibitor, administered in combination with
pemetrexed and carboplatin. Invest New Drugs. 33:1187–1196.
2015.PubMed/NCBI View Article : Google Scholar
|
24
|
Rizzieri DA, Cooley S, Odenike O, Moonan
L, Chow KH, Jackson K, Wang X, Brail L and Borthakur G: An
open-label phase 2 study of glycogen synthase kinase-3 inhibitor
LY2090314 in patients with acute leukemia. Leuk Lymphoma.
57:1800–1806. 2016.PubMed/NCBI View Article : Google Scholar
|
25
|
Wang Z, Smith KS, Murphy M, Piloto O,
Somervaille TC and Cleary ML: Glycogen synthase kinase 3 in MLL
leukaemia maintenance and targeted therapy. Nature. 455:1205–1209.
2008.PubMed/NCBI View Article : Google Scholar
|
26
|
Suzuki E, Kajita S, Takahashi H, Matsumoto
T, Tsuruta T and Saegusa M: Transcriptional upregulation of HNF-1β
by NF-κB in ovarian clear cell carcinoma modulates susceptibility
to apoptosis through alteration in bcl-2 expression. Lab Invest.
95:962–972. 2015.PubMed/NCBI View Article : Google Scholar
|