A prognostic prediction system for hepatocellular carcinoma based on gene co‑expression network
- Authors:
- Published online on: April 17, 2019 https://doi.org/10.3892/etm.2019.7494
- Pages: 4506-4516
-
Copyright: © Guan et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
Abstract
Introduction
Hepatocellular carcinoma (HCC) is the sixth most common cancer type worldwide and the third most common cause of cancer-associated death (1). Viral hepatitis infection is the major cause of HCC (2). The prognosis of HCC is mainly dependent on tumor size and staging (3). Prognosis is typically poor as complete tumor resection only occurs in 10–20% of cases (4).
Recently, considerable efforts have been made to identify prognostic markers for HCC. It has been reported that the expression of survivin mRNA correlates with poor prognosis in patients with HCC (5). In addition, Akt phosphorylation is a risk factor for early disease recurrence and poor prognosis of HCC patients (6). Furthermore, Yes-associated protein was identified as an independent prognostic marker in HCC (7) and the overexpression of pituitary tumor transforming gene 1 (PTTG1) was reported to be associated with angiogenesis and poor prognosis in patients with HCC (8). Furthermore, the downregulation of phosphatidylethanolamine binding protein 1 is associated with aggressive tumor behavior and unfavorable clinical outcomes in HCC patients with hepatitis B infection (9). In addition, HCC patients overexpressing T-cell lymphoma invasion and metastasis 1 displayed a significantly shorter overall survival time (10). Finally, high expression of epidermal growth factor-like repeats and discoidin domains 3 also predicts poor prognosis in HCC patients (11).
Numerous novel prognostic models for HCC have been reported. Yamashita et al (12) proposed a classification system defined by epithelial cell adhesion molecule and α-fetoprotein, revealing novel prognostic subtypes of HCC. Calvisi et al (13) indicated that genome-wide hypomethylation and CpG hypermethylation are associated with biological features and the clinical outcome of HCC. The intratumoral balance of regulatory and cytotoxic T cells is a promising independent predictor for recurrence and survival of HCC after resection (14). Budhu et al (15) reported that a unique immune response signature (a refined 17-gene signature) of the liver microenvironment may be used to predict venous metastases, recurrence and prognosis in HCC. A Met-regulated expression signature significantly correlated with an increased vascular invasion rate, microvessel density and decreased mean survival of HCC patients (16). However, improved prognostic prediction systems are required to guide clinical treatments for HCC patients (17).
In the present study, a multi-step strategy was used to identify prognostic gene signatures in HCC (Fig. 1). Gene expression data from HCC datasets were analyzed and differentially expressed genes (DEGs) were identified. Furthermore, the prognostic genes were used to construct a gene co-expression network and a prognostic prediction system was established. In addition, functional and module analyses were performed for the gene co-expression network. The prediction model was further validated in another independent gene expression dataset. The created prognostic prediction system may be applied to predict the prognosis of HCC.
Materials and methods
Raw data and pre-treatment
The mRNA expression profiles of 421 samples (371 samples from patients with HCC and 50 samples from normal controls), along with their corresponding clinical information (contained in TXT files) were downloaded from The Cancer Genome Atlas (TCGA; gdc-portal.nci.nih.gov). These gene expression profiles had been generated by using the Illumina HiSeq 2000 RNA Sequencing platform (Illumina, Inc., San Diego, CA, USA). The genes in the TCGA dataset were annotated using information retrieved from the Human Genome Organization Gene Nomenclature Committee (HGNC; www.genenames.org), which establishes unique symbols and names for human loci.
The inclusion and exclusion criteria for the selection of microarray datasets were as follows: Human HCC; number of tumor samples, >100; number of control samples, >100; total number of tumor and control samples larger than that of the samples in TCGA dataset. Finally, the mRNA expression dataset GSE36376 was retrieved and raw data (TXT files) were downloaded from the Gene Expression Omnibus repository (GEO; www.ncbi.nlm.nih.gov/geo). This GEO dataset contained gene expression profiles of tumor liver tissues (n=240) and adjacent non-tumorous liver tissues (n=193). Data had been acquired based on the platform GPL10558 Illumina HumanHT-12 V4.0 expression bead chip (Illumina, Inc.). Probes were annotated to genes according to platform annotation profiles. Furthermore, the average expression value of a gene symbol mapped with multiple probes was calculated. The genes with low abundance (expression value <5) were removed and Log 2 conversion was applied for data using the R limma package (18). The microarray data were normalized by the quantile method (19).
Identification of DEGs and clustering analysis
The differences in gene expression levels between tumor and control samples in TCGA and GSE36376 datasets were analyzed using the limma package (18) of R. The false discovery rate (FDR) was calculated with the multtest package (20) of R. An FDR <0.05 and a |log2 (fold change)| >0.585 (i.e., absolute fold change >1.5) (21–23) were selected as the cut-off thresholds to identify DEGs. The overlapping DEGs between the TCGA and GSE36376 datasets were used for further analysis. The top 25 downregulated and upregulated DEGs in the latter subset were used for hierarchical clustering analysis by the pheatmap package (version 1.0.8; cran.r-project.org/package=pheatmap) (24) in R, based on the Encyclopedia of Distances (25), to intuitively identify the differences in gene expression levels among samples.
Screening of prognostic genes
In the TCGA dataset, the mRNA expression profiles and survival information were available for 330 patients. These data were used to screen prognostic genes from the overlapping DEGs using Cox regression (26) from the survival package of R. The genes with a log-rank P-value of <0.05 were considered to be prognostic. The top 6 prognostic genes ranked by-logRank (P-value) were used for stratification of patients in the Kaplan-Meier (K-M) survival analysis.
Construction of gene co-expression network
The expression data of prognostic genes were used to calculate the correlation coefficients (r) and the corresponding P-values between pairwise genes were determined using the cor function of R. The gene pairs with the |r|≥0.6 and P<0.05 were considered to be significantly co-expressed. A gene co-expression network was constructed with these co-expressed gene pairs and visualized by Cytoscape 2.8.0 (www.cytoscape.org) (27).
Functional annotation and functional module analysis
Gene Ontology (GO) functional and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed for the prognostic genes in the co-expression network using the cluster Profiler package of R (28).
After the enrichment analysis, the transcription factors (TFs) significantly associated with genes in the co-expression network were identified using the Database for Annotation and the Visualization and Integrated Discovery platform (DAVID; david.ncifcrf.gov) (29). The identified TFs were also integrated into the co-expression network. Functional modules were unveiled from the co-expression network using GraphWeb (biit.cs.ut.ee/graphweb) (30). Furthermore, GO functional enrichment analyses were performed for the genes in the modules.
Prognostic prediction system
The 330 HCC samples with survival information in the TCGA dataset were selected as a training set. These samples were divided into two groups: A favorable prognostic group (status is alive and time of follow-up ≥15 months; n=139) and a poor prognostic group (status is deceased and the time of survival <15 months; n=191) based on their survival status. Genes in the co-expression network were ranked by logRank (P-value) and then analyzed by Bayes discriminant analysis (31) using the discriminiant bayes function from package e1071 (32) of R. The optimal combination of genes with the highest discriminative ability between the favorable and poor prognostic groups was defined as prognostic prediction system. The K-M survival curves were plotted for samples from the TCGA dataset to assess the prediction accuracy.
Validation of the prognostic prediction system
The predictive value of the abovementioned prognostic prediction system was further assessed using another independent validation microarray dataset. The independent validation microarray dataset was selected according to the following inclusion and exclusion criteria: Human HCC; containing prognostic information; number of tumor samples, >100; number of tumor samples and control samples larger than that of samples in the TCGA dataset. Finally, the mRNA expression dataset GSE20140 was retrieved for validation and raw data (TXT files) were downloaded from GEO. This independent validation dataset contained 80 HCC samples and 540 hepatitis/cirrhotic liver samples with corresponding survival information. This prognostic prediction system was used to separate the GSE20140 samples into favorable and poor prognostic groups based on the prognostic score. Furthermore, the K-M survival curves were plotted for the GSE20140 samples to examine the predictive accuracy.
Results
DEGs
A total of 17,137 protein-coding mRNAs were annotated in the TCGA dataset based on the information from HGNC. After removal of low-abundance (expression value, <5) mRNAs, 12,370 mRNAs were retained and the expression density was significantly improved (Fig. 2). A total of 498 and 3,028 DEGs were identified from the TCGA and the GSE36376 dataset, respectively, and 177 of these were overlapping DEGs. The hierarchical clustering analysis indicated that, among these genes, the top 25 downregulated and upregulated DEGs were able to discriminate between HCC and control samples (Fig. 3).
Prognostic genes
A total of 161 prognostic genes (P<0.05) were identified. The top 6 prognostic mRNAs, ranked by -logRank in descending order, were stanniocalcin 2 (STC2), carbonic anhydrase 12 (CA12), cell division cycle 20 (CDC20), deoxyribonuclease 1 like 3 (DNASE1L3), glucosylceramidase β3 (GBA3) and metallothionein 1G (MT1G). The K-M survival curves of patients stratified by these 6 prognostic genes individually suggested that these molecular markers may be used to predict the prognosis of HCC patients (Fig. 4). Patients with high expression levels of STC2, CA12, CDC20, DNASE1L3, GBA3 and MT1G had a significantly shorter survival time.
Gene co-expression network
The constructed co-expression network for prognostic genes contained 1,017 edges and 93 nodes involving 41 upregulated and 52 downregulated genes (Fig. 5A). A total of 3 TFs, i.e., nuclear transcription factor Y, cooperates with myogenic proteins 1 and signal transducer and activator of transcription 5B were identified and integrated into the gene co-expression network (Fig. 5B). A total of 18 significant GO terms and 7 KEGG pathways were significantly enriched by the prognostic genes in the co-expression network (Fig. 6). The prognostic genes NIMA related kinase 2 (NEK2), cell division cycle 20 (CDC20), aurora kinase A (AURKA), pituitary tumor-transforming 1 (PTTG1), cell division cycle 25A (CDC25A), SPC24 component of NDC80 kinetochore complex (SPC24), family with sequence similarity 83 member D (FAM83D), cyclin B2 (CCNB2), BUB1 mitotic checkpoint serine/threonine kinase (BUB1), centromere protein W (CENPW), cell division cycle associated 5 (CDCA5), cyclin A2 (CCNA2) and cell division cycle associated 3 (CDCA3) were significantly associated with cell division (P=2.29×10−13) and mitotic nuclear division (P=2.76×10−12; Table I). A total of 7 prognostic genes, i.e. CDC7, PRC1, PTH1R, PDGFRA, CDC20, endothelial cell specific molecule 1 (ESM1) and VIPR1, were significantly associated with increased cell proliferation (P=3.56×10−2). Furthermore, CCNB1, FAM83D, CCNE1, PRC1, AURKA, stratifin (SFN), CCNA2, CDC25A and KIF20A were significantly associated with protein kinase binding (P=7.10×10−4). The pathway enrichment analysis revealed that most of the prognostic genes in the co-expression network were significantly involved in the cell cycle (P=4.51×10−9; Table II), including CCNB1, CDC7, CCNE1, CDC45, CCNB2, BUB1, CDC20, PTTG1, SFN, CCNA2 and CDC25A. The four prognostic genes CCNB1, CCNE1, CCNB2 and SFN were significantly associated with the p53 signaling pathway (P=9.25×10−3).
A total of 4 functional modules were revealed by GraphWeb (Fig. 5B). The prognostic genes in the purple module [chromatin licensing and DNA replication factor 1 (CDT1), CHAF1B, RAD51, CDCA5, CDCA8, CDC7, TRIP13, CDC25A, AURKB and CEP55] were mainly associated with the cell cycle (P=6.57×10−10). The prognostic genes in the blue module (CDC20, CCNB2, CDCA3, KIFC1, PBK, NCAPG, BUB1, DLGAP5 and CDKN3) were significantly associated with the mitotic cell cycle (P=3.71×10−10). Furthermore, the prognostic genes in the yellow module (CCNA2, PTTG1, PRC1, NEK2, SPC24 and AURKA) were significantly involved in cell division (P=8.71×10−6).
Prognostic prediction system
The prognostic prediction system was established based on Bayes discriminant analysis (Fig. 7A). Finally, a prognostic prediction system consisting of 55 signature genes and represented by 29 upregulated genes (including SPC24, TGM3, KIF20A, ESM1, CDC20, CDCA3, CCNE1, TNFRSF4, COL15A1, and CELSR3) and 26 downregulated genes (including CYP4A22, TMEM82, GLYAT, GBA3, APOF, SLC22A1, DNASE1L3, ECM1, CETP, and GLS2; Table III) was obtained. This system exhibited the highest discriminative ability to predict the survival of 330 samples in the TCGA dataset. The prognostic scoring system was established following the Bayes discriminant analysis method as previously described (33).
The samples were stratified into favorable and poor prognostic groups based on the score. If the prognostic score was between 0 and 3, the patient was defined as having a favorable prognosis, whereas a prognostic score between −3 and 0 was indicative of a poor prognosis. The distribution of the prognostic scores indicated that the prognostic scores of samples in the favorable and poor prognostic groups were obviously different (Fig. 7B). The survival ratio of patients in the favorable prognostic group was significantly higher than that of patients in the poor prognostic group, according to the K-M survival curves (Fig. 7C, P=8.16×10−8).
Validation of the prognostic prediction system
The predictive value of the identified prognostic scoring system was further validated using another independent GEO dataset, GSE20140. The samples in GSE20140 were divided into favorable and poor prognostic groups based on the prognostic score. The K-M survival curve indicated that patients in the favorable prognostic group survived significantly longer than those in the poor prognostic group (Fig. 7D; P=1.73×10−3).
Discussion
In the present study, 177 overlapping DEGs were identified from the gene expression data from the TCGA and GEO dataset (GSE36376). Of these, 161 genes were identified as being prognostic based on the analysis of survival. Of note, according to the K-M survival curves, the top 6 prognostic genes (STC2, CA12, CDC20, DNASE1L3, GBA3 and MT1G) were able to predict the prognosis of the HCC patients from the TCGA dataset. It was revealed that patients with high expression levels of STC2, CA12, CDC20, DNASE1L3, GBA3 and MT1G have a significantly shorter survival time. The STC2 protein, encoded by the STC2 gene, is an extracellular matrix protein involved in a number of physiological processes, including bone development, wound healing, angiogenesis and modulation of the inflammatory response (34). Previous studies have reported that HCC patients with expression of STC2 had a poorer prognosis according to the K-M survival curves, suggesting that STC2 expression may be a useful indicator of poor prognosis in HCC patients (35,36). CDC20 is a regulatory protein interacting with the anaphase-promoting complex cyclosome in the cell cycle and has important roles in the progression of multiple tumors (37,38). It has also been demonstrated that increased expression of CDC20 is associated with the development and progression of HCC (39). The expression of MT1G was reported to be negatively associated with aberrant promoter hypermethylation, and the data from TCGA suggested that hypermethylation of MT1G is linked with favorable survival of HCC patients (40). Therefore, the prognostic predictive value of STC2, CDC20 and MT1G in the present study was consistent with the results of previous studies. CA12 is a transmembrane enzyme that hydrates extracellular CO2, leading to the generation of membrane-impermeable H+ and HCO3− (41). It has been revealed that inhibition of CA12 with sulphonamide- or coumarin-based small-molecule inhibitors reversed the effects of tumor acidification, thereby inhibiting primary or metastatic tumor cell growth (42). CA12 may affect the capability of invasion and migration of breast cancer cells through the p38/mitogen-activated protein kinase pathway (43). DNase1l3 is an endonuclease encoded by DNASE1L3, and is necessary for cytokine secretion following inflammasome activity (44). GBA3 is a cytosolic β-glycosidase produced by mammals and has broad substrate specificity (45). However, few studies have reported on the roles of CA12, DNASE1L3 and GBA3 in the prognosis of HCC patients. Therefore, the associations of CA12, DNASE1L3 and GBA3 with HCC and their prognostic value require to be further studied.
Next, significantly co-expressed pairs were selected for the prognostic genes and a gene co-expression network involving 93 prognostic genes was constructed. From these, a prognostic prediction system consisting of 55 signature genes was established based on Bayes discriminant analysis. These 55 signature genes comprised 29 upregulated genes (including SPC24, TGM3, KIF20A, ESM1, CDC20, CDCA3, CCNE1, TNFRSF4, COL15A1, CELSR3 and CDT1) and 26 downregulated genes (including CYP4A22, TMEM82, GLYAT, GBA3, APOF, SLC22A1, DNASE1L3, ECM1, CETP and GLS2). The functional and module analysis of the co-expression network indicated that SPC24, ESM1, CDC20, CDCA3, CCNE1 and CDT1 were significantly associated with cell division, mitotic cell cycle and positive regulation of cell proliferation. SPC24 is an important component of the nuclear division cycle 80 kinetochore complexes. It has been reported that SPC24 is significantly upregulated in HCC and may be a prognostic biomarker for patients with HCC (46). ESM1 is a secreted protein that is mainly expressed in endothelial cells. The expression of ESM1 in HCC tissues is positively correlated with venous invasion (47). Upregulation of CDC20 is associated with the progression of HCC and may be a promising therapeutic target (39). Suppression of oncogene CCNE1, an important mediator in the G1/S-phase transition, exerts tumor-suppressive effects in HCC (48). CDT1 is involved in the formation of the pre-replication complex that is necessary for DNA replication. It has been reported that the expression of CDT1 in HCC tissue is clearly attenuated as compared with that in normal hepatic tissue (49). Taking all this into consideration, it may be speculated that SPC24, ESM1, CDC20, CDCA3, CCNE1 and CDT1 may have important roles in HCC by regulating functions associated with the cell cycle and cell proliferation.
Kinesin family member 20A (KIF20A) is significantly associated with protein kinase binding; it is a downstream target of glioma-associated oncogene 2, which is important for HCC proliferation and tumor growth. KIF20A has been reported to be upregulated in HCC and to be a predictor of poor prognosis (50). Therefore, KIF20A may promote HCC progression by protein kinase binding. A total of 4 prognostic genes, i.e., CCNB1, CCNE1, CCNB2 and SFN, were associated with p53 signaling. p53 is mostly known for its tumor suppressor properties and is also a major regulator of cell metabolism (51). Of note, the p53 signaling pathway was reported to be significantly dysregulated in HCC (52). Thus, CCNB1, CCNE1, CCNB2 and SFN may participate in the molecular mechanisms of HCC by regulating the p53 signaling pathway.
The predictive value of the prognostic prediction system was also validated in another independent GEO dataset, GSE20140. The K-M survival analysis suggested that the survival ratio of patients in the favorable prognostic group, based on the prognostic prediction score, was significantly larger than that of the patients in the poor prognostic group. Therefore, this prognostic prediction system may be applied to predict the prognosis of HCC. As a limitation of the present study, the expression levels of the important signature genes in the clinical samples were not detected by any experimental methods.
In conclusion, a predictive gene signature for HCC prognosis was identified via a multi-step strategy. The significant functions and pathways enriched by the genes in the co-expression network of the prognostic genes were also determined. A novel prognostic prediction system, consisting of 55 signature genes, that was able to predict the prognosis of HCC patients was established. In future studies, the expression levels of the important signature genes will be validated in clinical samples by experimental methods.
Acknowledgements
Not applicable.
Funding
No funding was received.
Availability of data and materials
The datasets used and/or analyzed during the present study are available from the corresponding author on reasonable request.
Authors' contributions
HL conceived and designed the study. LG performed data analyses and prepared the manuscript. QL and NL contributed significantly to the data analyses and manuscript revision. All authors read and approved the final manuscript.
Ethics approval and patient consent
Not applicable.
Patient consent for publication
Not applicable.
Competing interests
The authors declare that they have no competing interests.
References
Zhu RX, Seto WK, Lai CL and Yuen MF: Epidemiology of hepatocellular carcinoma in the asia-pacific region. Gut and liver. 10:332–339. 2016. View Article : Google Scholar : PubMed/NCBI | |
McGlynn KA and London WT: Epidemiology and natural history of hepatocellular carcinoma. Best Pract Res Clin Gastroenterol. 19:3–23. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ayuso C, Rimola J, Vilana R, Burrel M, Darnell A, García-Criado Á, Bianchi L, Belmonte E, Caparroz C, Barrufet M, et al: Diagnosis and staging of hepatocellular carcinoma (HCC): Current guidelines. Eur J Radiol. 101:72–81. 2018. View Article : Google Scholar : PubMed/NCBI | |
Laca L, Dedinska I, Miklusica J, Janik J, Palkoci B and Pindura M: Surgical treatment of hepatocellular carcinoma. Bratisl Lek Listy. 116:539–541. 2015.PubMed/NCBI | |
Ikeguchi M, Ueda T, Sakatani T, Hirooka Y and Kaibara N: Expression of survivin messenger RNA correlates with poor prognosis in patients with hepatocellular carcinoma. Diagn Mol Pathol. 11:33–40. 2002. View Article : Google Scholar : PubMed/NCBI | |
Nakanishi K, Sakamoto M, Yamasaki S, Todo S and Hirohashi S: Akt phosphorylation is a risk factor for early disease recurrence and poor prognosis in hepatocellular carcinoma. Cancer. 103:307–312. 2005. View Article : Google Scholar : PubMed/NCBI | |
Xu MZ, Yao TJ, Lee NP, Ng IO, Chan YT, Zender L, Lowe SW, Poon RT and Luk JM: Yes-associated protein is an independent prognostic marker in hepatocellular carcinoma. Cancer. 115:4576–4585. 2009. View Article : Google Scholar : PubMed/NCBI | |
Fujii T, Nomoto S, Koshikawa K, Yatabe Y, Teshigawara O, Mori T, Inoue S, Takeda S and Nakao A: Overexpression of pituitary tumor transforming gene 1 in HCC is associated with angiogenesis and poor prognosis. Hepatology. 43:1267–1275. 2006. View Article : Google Scholar : PubMed/NCBI | |
Xu YF, Yi Y, Qiu SJ, Gao Q, Li YW, Dai CX, Cai MY, Ju MJ, Zhou J, Zhang BH and Fan J: PEBP1 downregulation is associated to poor prognosis in HCC related to hepatitis B infection. J Hepatol. 53:872–879. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ding Y, Chen B, Wang S, Zhao L, Chen J, Ding Y, Chen L and Luo R: Overexpression of Tiam1 in hepatocellular carcinomas predicts poor prognosis of HCC patients. Int J Cancer. 124:653–658. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sun JC, Liang XT, Pan K, Wang H, Zhao JJ, Li JJ, Ma HQ, Chen YB and Xia JC: High expression level of EDIL3 in HCC predicts poor prognosis of HCC patients. World J Gastroenterol. 16:4611–4615. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yamashita T, Forgues M, Wang W, Kim JW, Ye Q, Jia H, Budhu A, Zanetti KA, Chen Y, Qin LX, et al: EpCAM and alpha-fetoprotein expression defines novel prognostic subtypes of hepatocellular carcinoma. Cancer Res. 68:1451–1461. 2008. View Article : Google Scholar : PubMed/NCBI | |
Calvisi DF, Ladu S, Gorden A, Farina M, Lee JS, Conner EA, Schroeder IS, Factor VM and Thorgeirsson SS: Molecular pathogenesis of human hepatocellular carcinoma: Mechanistic and prognostic significance of aberrant methylation. Cancer Res. 66:7632006.PubMed/NCBI | |
Gao Q, Qiu SJ, Fan J, Zhou J, Wang XY, Xiao YS, Xu Y, Li YW and Tang ZY: Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection. J Clin Oncol. 25:2586–2593. 2007. View Article : Google Scholar : PubMed/NCBI | |
Budhu A, Forgues M, Ye QH, Jia HL, He P, Zanetti KA, Kammula US, Chen Y, Qin LX, Tang ZY and Wang XW: Prediction of venous metastases, recurrence, and prognosis in hepatocellular carcinoma based on a unique immune response signature of the liver microenvironment. Cancer Cell. 10:99–111. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kaposi-Novak P, Lee JS, Gòmez-Quiroz L, Coulouarn C, Factor VM and Thorgeirsson SS: Met-regulated expression signature defines a subset of human hepatocellular carcinomas with poor prognosis and aggressive phenotype. J Clin Invest. 116:1582–1595. 2006. View Article : Google Scholar : PubMed/NCBI | |
Bruix J and Llovet JM: Prognostic prediction and treatment strategy in hepatocellular carcinoma (p 519–524). Hepatology. 35:519–524. 2010. View Article : Google Scholar | |
Smyth GK: Limma: Linear models for microarray data. Bioinformatics Comput Biol Solut Using R Bioconductor. pp397–420. 2005. View Article : Google Scholar | |
Rao Y, Lee Y, Jarjoura D, Ruppert AS, Liu CG, Hsu JC and Hagan JP: A comparison of normalization techniques for microRNA microarray data. Stat Appl Genet Mol Biol. 7:Article222008. View Article : Google Scholar : PubMed/NCBI | |
Pollard KS, Gilbert HN, Ge Y, Taylor S and Dudoit S: multtest: Resampling-based multiple hypothesis testing. 2018. | |
Liu H, Xu R, Liu X, Sun R and Wang Q: Bioinformatics analysis of gene expression in peripheral blood mononuclear cells from children with type 1 diabetes in 3 periods. Exp Clin Endocrinol Diabetes. 122:477–483. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Xu S, Chen L, Shen D, Cao Y, Tang R, Wang X, Ji C, Li Y, Cui X and Guo X: Profiling analysis reveals the potential contribution of peptides to human adipocyte differentiation. Proteomics Clin Appl. 16:e17001722018. View Article : Google Scholar | |
Varešlija D, Priedigkeit N, Fagan A, Purcell S, Cosgrove N, O'Halloran PJ, Ward E, Cocchiglia S, Hartmaier R, Castro CA, et al: Transcriptome characterization of matched primary breast and brain metastatic tumors to detect novel actionable targets. J Natl Cancer Inst. 28:2018. | |
Wang L, Cao C, Ma Q, Zeng Q, Wang H, Cheng Z, Zhu G, Qi J, Ma H, Nian H and Wang Y: RNA-seq analyses of multiple meristems of soybean: Novel and alternative transcripts, evolutionary and functional implications. BMC Plant Biol. 14:1692014. View Article : Google Scholar : PubMed/NCBI | |
Wang P, Wang Y, Hang B, Zou X and Mao JH: A novel gene expression-based prognostic scoring system to predict survival in gastric cancer. Oncotarget. 7:55343–55351. 2016.PubMed/NCBI | |
Smoot ME, Ono K, Ruscheinski J, Wang PL and Ideker T: Cytoscape 2.8: New features for data integration and network visualization. Bioinformatics. 27:431–432. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yu G, Wang LG, Han Y and He QY: ClusterProfiler: An R package for comparing biological themes among gene clusters. OMICS. 16:284–287. 2012. View Article : Google Scholar : PubMed/NCBI | |
Huang da W, Sherman BT and Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 4:44–57. 2009. View Article : Google Scholar : PubMed/NCBI | |
Reimand J, Tooming L, Peterson H, Adler P and Vilo J: GraphWeb: Mining heterogeneous biological networks for gene modules with functional significance. Nucleic Acids Res 36 (Web Server Issue). W452–W459. 2008. View Article : Google Scholar | |
Joutsijoki H, Haponen M, Rasku J, Aalto-Setälä K and Juhola M: Error-correcting output codes in classification of human induced pluripotent stem cell colony images. Biomed Res Int. 2016:30250572016. View Article : Google Scholar : PubMed/NCBI | |
Dimitriadou E, Hornik K, Leisch F and Meyer D: The e1071 package. Ethnos J Anthropol. 23:55–56. 2006. | |
Sun J and Zhao H: The application of sparse estimation of covariance matrix to quadratic discriminant analysis. BMC Bioinformatics. 16:482015. View Article : Google Scholar : PubMed/NCBI | |
Jellinek DA, Chang AC, Larsen MR, Wang X, Robinson PJ and Reddel RR: Stanniocalcin 1 and 2 are secreted as phosphoproteins from human fibrosarcoma cells. Biochem J. 350:453–461. 2000. View Article : Google Scholar : PubMed/NCBI | |
Wu F, Li TY, Su SC, Yu JS, Zhang HL, Tan GQ, Liu JW and Wang BL: STC2 as a novel mediator for Mus81-dependent proliferation and survival in hepatocellular carcinoma. Cancer Lett. 388:177–186. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang ZH, Wu YG, Qin CK, Rong ZH, Su ZX and Xian GZ: Stanniocalcin 2 expression predicts poor prognosis of hepatocellular carcinoma. Oncol Lett. 8:2160–2164. 2014. View Article : Google Scholar : PubMed/NCBI | |
Fung TK and Poon RY: A roller coaster ride with the mitotic cyclins. Semin Cell Dev Biol. 16:335–342. 2005. View Article : Google Scholar : PubMed/NCBI | |
Weinstein J, Jacobsen FW, Hsu-Chen J, Wu T and Baum LG: A novel mammalian protein, p55CDC, present in dividing cells is associated with protein kinase activity and has homology to the Saccharomyces cerevisiae cell division cycle proteins Cdc20 and Cdc4. Mol Cell Biol. 14:3350–3363. 1994. View Article : Google Scholar : PubMed/NCBI | |
Li J, Gao JZ, Du JL, Huang ZX and Wei LX: Increased CDC20 expression is associated with development and progression of hepatocellular carcinoma. Int J Oncol. 45:1547–1555. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zeng JD, Zhang N, Zhao GJ, Xu LX, Yang Y, Xu XY, Chen MK, Wang HY, Zheng SX and Li XX: MT1G is silenced by DNA methylation and contributes to the pathogenesis of hepatocellular carcinoma. J Cancer. 9:2807–2816. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kroemer G and Pouyssegur J: Tumor cell metabolism: Cancer's Achilles' heel. Cancer Cell. 13:472–482. 2008. View Article : Google Scholar : PubMed/NCBI | |
Neri D and Supuran CT: Interfering with pH regulation in tumours as a therapeutic strategy. Nat Rev Drug Discov. 10:767–777. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hsieh MJ, Chen KS, Chiou HL and Hsieh YS: Carbonic anhydrase XII promotes invasion and migration ability of MDA-MB-231 breast cancer cells through the p38 MAPK signaling pathway. Eur J Cell Biol. 89:598–606. 2010. View Article : Google Scholar : PubMed/NCBI | |
Shi G, Abbott KN, Wu W, Salter RD and Keyel PA: Dnase1L3 regulates inflammasome-dependent cytokine secretion. Front Immunol. 8:5222017. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Seino J, Tomotake H, Funakoshi Y, Hirayama H and Suzuki T: Co-expression of NEU2 and GBA3 causes a drastic reduction in cytosolic sialyl free N-glycans in human MKN45 stomach cancer cells-evidence for the physical interaction of NEU2 and GBA3. Biomolecules. 5:1499–1514. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhu P, Jin J, Yan L, Li J, Yu XZ, Liao W and He S: A novel prognostic biomarker SPC24 up-regulated in hepatocellular carcinoma. Oncotarget. 6:41383–41397. 2015. View Article : Google Scholar : PubMed/NCBI | |
He J, Ding C, He G and Huang Q: Relationship between expression of ESM-1 and MMP-3 and invasion and metastasis of human hepatocellular carcinoma. Med Sci J Central South China. 40:368–372. 2012.(In Chinese). | |
Zhang X, Hu S, Zhang X, Wang L, Zhang X, Yan B, Zhao J, Yang A and Zhang R: MicroRNA-7 arrests cell cycle in G1 phase by directly targeting CCNE1 in human hepatocellular carcinoma cells. Biochem Biophys Res Commun. 443:1078–1084. 2014. View Article : Google Scholar : PubMed/NCBI | |
Karavias D, Maroulis I, Papadaki H, Gogos C, Kakkos S, Karavias D and Bravou V: Overexpression of CDT1 Is a Predictor of Poor Survival in Patients with Hepatocellular Carcinoma. J Gastrointest Surg. 20:568–579. 2016. View Article : Google Scholar : PubMed/NCBI | |
Shi C, Huang D, Lu N, Chen D, Zhang M, Yan Y, Deng L, Lu Q, Lu H and Luo S: Aberrantly activated Gli2-KIF20A axis is crucial for growth of hepatocellular carcinoma and predicts poor prognosis. Oncotarget. 7:26206–26219. 2016.PubMed/NCBI | |
Tennant DA, Durán RV and Gottlieb E: Targeting metabolic transformation for cancer therapy. Nat Rev Cancer. 10:267–277. 2010. View Article : Google Scholar : PubMed/NCBI | |
Jin B, Wang W, Du G, Huang GZ, Han LT, Tang ZY, Fan DG, Li J and Zhang SZ: Identifying hub genes and dysregulated pathways in hepatocellular carcinoma. Eur Rev Med Pharmacol Sci. 19:592–601. 2015.PubMed/NCBI |