Role of exosomal non‑coding RNAs in ovarian cancer (Review)
- Authors:
- Xinchen Wang
- Miao Yang
- Jiamei Zhu
- Yu Zhou
- Gencui Li
-
Affiliations: Department of Obstetrics and Gynecology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310000, P.R. China, Department of Life Sciences and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China, Department of Obstetrics and Gynecology, Jingjiang People's Hospital, Taizhou, Jiangsu 214500, P.R. China, Oriental Fortune Capital Post‑Doctoral Innovation Center, Shenzhen, Guangdong 518040, P.R. China - Published online on: August 7, 2024 https://doi.org/10.3892/ijmm.2024.5411
- Article Number: 87
This article is mentioned in:
Abstract
Yang C, Kim HS, Song G and Lim W: The potential role of exosomes derived from ovarian cancer cells for diagnostic and therapeutic approaches. J Cell Physiol. 234:21493–21503. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI | |
Stewart C, Ralyea C and Lockwood S: Ovarian cancer: An integrated review. Semin Oncol Nurs. 35:151–156. 2019. View Article : Google Scholar : PubMed/NCBI | |
Koshiyama M, Matsumura N and Konishi I: Subtypes of ovarian cancer and ovarian cancer screening. Diagnostics (Basel). 7:122017. View Article : Google Scholar : PubMed/NCBI | |
Lheureux S, Braunstein M and Oza AM: Epithelial ovarian cancer: Evolution of management in the era of precision medicine. CA Cancer J Clin. 69:280–304. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lisio MA, Fu L, Goyeneche A, Gao ZH and Telleria C: High-grade serous ovarian cancer: Basic sciences, clinical and therapeutic standpoints. Int J Mol Sci. 20:9522019. View Article : Google Scholar : PubMed/NCBI | |
Sierra J, Marrugo-Ramirez J, Rodríguez-Trujillo R, Mir M and Samitier J: Sensor-integrated microfluidic approaches for liquid biopsies applications in early detection of cancer. Sensors (Basel). 20:13172020. View Article : Google Scholar : PubMed/NCBI | |
Bellassai N, D'Agata R, Jungbluth V and Spoto G: Surface plasmon resonance for biomarker detection: Advances in non-invasive cancer diagnosis. Front Chem. 7:5702019. View Article : Google Scholar : PubMed/NCBI | |
Miao M, Miao Y, Zhu Y, Wang J and Zhou H: Advances in exosomes as diagnostic and therapeutic biomarkers for gynaecological malignancies. Cancers (Basel). 14:47432022. View Article : Google Scholar : PubMed/NCBI | |
Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, Reynolds AP, Sandstrom R, Qu H, Brody J, et al: Systematic localization of common disease-associated variation in regulatory DNA. Science. 337:1190–1195. 2012. View Article : Google Scholar : PubMed/NCBI | |
Morris KV and Mattick JS: The rise of regulatory RNA. Nat Rev Genet. 15:423–437. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hauptman N and Glavač D: Long non-coding RNA in cancer. Int J Mol Sci. 14:4655–4669. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, et al: Initial sequencing and analysis of the human genome. Nature. 409:860–921. 2001. View Article : Google Scholar : PubMed/NCBI | |
Beg A, Parveen R, Fouad H, Yahia ME and Hassanein AS: Role of different non-coding RNAs as ovarian cancer biomarkers. J Ovarian Res. 15:722022. View Article : Google Scholar : PubMed/NCBI | |
Fu G, Brkić J, Hayder H and Peng C: MicroRNAs in human placental development and pregnancy complications. Int J Mol Sci. 14:5519–5544. 2013. View Article : Google Scholar : PubMed/NCBI | |
Weber JA, Baxter DH, Zhang S, Huang DY, Huang KH, Lee MJ, Galas DJ and Wang K: The microRNA spectrum in 12 body fluids. Clin Chem. 56:1733–1741. 2010. View Article : Google Scholar : PubMed/NCBI | |
Théry C: Exosomes: Secreted vesicles and intercellular communications. F1000 Biol Rep. 3:152011. View Article : Google Scholar : PubMed/NCBI | |
Théry C, Zitvogel L and Amigorena S: Exosomes: Composition, biogenesis and function. Nat Rev Immunol. 2:569–579. 2002. View Article : Google Scholar : PubMed/NCBI | |
Iyer MK, Niknafs YS, Malik R, Singhal U, Sahu A, Hosono Y, Barrette TR, Prensner JR, Evans JR, Zhao S, et al: The landscape of long noncoding RNAs in the human transcriptome. Nat Genet. 47:199–208. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang KC and Chang HY: Molecular mechanisms of long noncoding RNAs. Mol Cell. 43:904–914. 2011. View Article : Google Scholar : PubMed/NCBI | |
Guo X, Gao Y, Song Q, Wei J, Wu J, Dong J, Chen L, Xu S, Wu D, Yang X, et al: Early assessment of circulating exosomal lncRNA-GC1 for monitoring neoadjuvant chemotherapy response in gastric cancer. Int J Surg. 109:1094–1104. 2023. View Article : Google Scholar : PubMed/NCBI | |
Obi P and Chen YG: The design and synthesis of circular RNAs. Methods. 196:85–103. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chen LL: The expanding regulatory mechanisms and cellular functions of circular RNAs. Nat Rev Mol Cell Biol. 21:475–490. 2020. View Article : Google Scholar : PubMed/NCBI | |
Pan BT, Teng K, Wu C, Adam M and Johnstone RM: Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J Cell Biol. 101:942–948. 1985. View Article : Google Scholar : PubMed/NCBI | |
Isaac R, Reis FCG, Ying W and Olefsky JM: Exosomes as mediators of intercellular crosstalk in metabolism. Cell Metab. 33:1744–1762. 2021. View Article : Google Scholar : PubMed/NCBI | |
Qi Y, Xu R, Song C, Hao M, Gao Y, Xin M, Liu Q, Chen H, Wu X, Sun R, et al: A comprehensive database of exosome molecular biomarkers and disease-gene associations. Sci Data. 11:2102024. View Article : Google Scholar : PubMed/NCBI | |
Kalluri R and McAndrews KM: The role of extracellular vesicles in cancer. Cell. 186:1610–1626. 2023. View Article : Google Scholar : PubMed/NCBI | |
Mannelli C: Tissue vs liquid biopsies for cancer detection: Ethical issues. J Bioeth Inq. 16:551–557. 2019. View Article : Google Scholar : PubMed/NCBI | |
Xie H and Kim RD: The application of circulating tumor DNA in the screening, surveillance, and treatment monitoring of colorectal cancer. Ann Surg Oncol. 28:1845–1858. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yang WL, Lu Z, Guo J, Fellman BM, Ning J, Lu KH, Menon U, Kobayashi M, Hanash SM, Celestino J, et al: Human epididymis protein 4 antigen-autoantibody complexes complement cancer antigen 125 for detecting early-stage ovarian cancer. Cancer. 126:725–736. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yu W, Hurley J, Roberts D, Chakrabortty SK, Enderle D, Noerholm M, Breakefield XO and Skog JK: Exosome-based liquid biopsies in cancer: Opportunities and challenges. Ann Oncol. 32:466–477. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kalluri R: The biology and function of exosomes in cancer. J Clin Invest. 126:1208–1215. 2016. View Article : Google Scholar : PubMed/NCBI | |
Spina V and Rossi D: Liquid biopsy in tissue-born lymphomas. Swiss Med Wkly. 149:w147092019.PubMed/NCBI | |
Lianidou ES, Mavroudis D, Sotiropoulou G, Agelaki S and Pantel K: What's new on circulating tumor cells? A meeting report. Breast Cancer Res. 12:3072010. View Article : Google Scholar : PubMed/NCBI | |
Shigeyasu K, Toden S, Zumwalt TJ, Okugawa Y and Goel A: Emerging role of MicroRNAs as liquid biopsy biomarkers in gastrointestinal cancers. Clin Cancer Res. 23:2391–2399. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ebrahimi N, Faghihkhorasani F, Fakhr SS, Moghaddam PR, Yazdani E, Kheradmand Z, Rezaei-Tazangi F, Adelian S, Mobarak H, Hamblin MR and Aref AR: Tumor-derived exosomal non-coding RNAs as diagnostic biomarkers in cancer. Cell Mol Life Sci. 79:5722022. View Article : Google Scholar : PubMed/NCBI | |
Kalluri R and LeBleu VS: The biology, function, and biomedical applications of exosomes. Science. 367:eaau69772020. View Article : Google Scholar : PubMed/NCBI | |
Li C, Ni YQ, Xu H, Xiang QY, Zhao Y, Zhan JK, He JY, Li S and Liu YS: Roles and mechanisms of exosomal non-coding RNAs in human health and diseases. Signal Transduct Target Ther. 6:3832021. View Article : Google Scholar : PubMed/NCBI | |
Jacobs IJ, Menon U, Ryan A, Gentry-Maharaj A, Burnell M, Kalsi JK, Amso NN, Apostolidou S, Benjamin E, Cruickshank D, et al: Ovarian cancer screening and mortality in the UK collaborative trial of ovarian cancer screening (UKCTOCS): A randomised controlled trial. Lancet. 387:945–956. 2016. View Article : Google Scholar : PubMed/NCBI | |
Anastasiadou E, Jacob LS and Slack FJ: Non-coding RNA networks in cancer. Nat Rev Cancer. 18:5–18. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lee RC, Feinbaum RL and Ambros V: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 75:843–854. 1993. View Article : Google Scholar : PubMed/NCBI | |
Gareev I, Beylerli O, Yang G, Sun J, Pavlov V, Izmailov A, Shi H and Zhao S: The current state of MiRNAs as biomarkers and therapeutic tools. Clin Exp Med. 20:349–359. 2020. View Article : Google Scholar : PubMed/NCBI | |
O'Brien J, Hayder H, Zayed Y and Peng C: Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne). 9:4022018. View Article : Google Scholar : PubMed/NCBI | |
Toden S and Goel A: Non-coding RNAs as liquid biopsy biomarkers in cancer. Br J Cancer. 126:351–360. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Qin YW, Brewer G and Jing Q: MicroRNA degradation and turnover: Regulating the regulators. Wiley Interdiscip Rev RNA. 3:593–600. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ha M and Kim VN: Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 15:509–524. 2014. View Article : Google Scholar : PubMed/NCBI | |
Denli AM, Tops BB, Plasterk RHA, Ketting RF and Hannon GJ: Processing of primary microRNAs by the Microprocessor complex. Nature. 432:231–235. 2004. View Article : Google Scholar : PubMed/NCBI | |
Han J, Lee Y, Yeom KH, Kim YK, Jin H and Kim VN: The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev. 18:3016–3027. 2004. View Article : Google Scholar : PubMed/NCBI | |
Yoda M, Kawamata T, Paroo Z, Ye X, Iwasaki S, Liu Q and Tomari Y: ATP-dependent human RISC assembly pathways. Nat Struct Mol Biol. 17:17–23. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ambros V: The functions of animal microRNAs. Nature. 431:350–355. 2004. View Article : Google Scholar : PubMed/NCBI | |
Broughton JP, Lovci MT, Huang JL, Yeo GW and Pasquinelli AE: Pairing beyond the seed supports MicroRNA targeting specificity. Mol Cell. 64:320–333. 2016. View Article : Google Scholar : PubMed/NCBI | |
Braun JE, Huntzinger E and Izaurralde E: The role of GW182 proteins in miRNA-mediated gene silencing. Adv Exp Med Biol. 768:147–163. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hayder H, O'Brien J, Nadeem U and Peng C: MicroRNAs: Crucial regulators of placental development. Reproduction. 155:R259–R271. 2018. View Article : Google Scholar : PubMed/NCBI | |
Christie M, Boland A, Huntzinger E, Weichenrieder O and Izaurralde E: Structure of the PAN3 pseudokinase reveals the basis for interactions with the PAN2 deadenylase and the GW182 proteins. Mol Cell. 51:360–373. 2013. View Article : Google Scholar : PubMed/NCBI | |
Vasudevan S and Steitz JA: AU-rich-element-mediated upregulation of translation by FXR1 and argonaute 2. Cell. 128:1105–1118. 2007. View Article : Google Scholar : PubMed/NCBI | |
Peng Y and Croce CM: The role of MicroRNAs in human cancer. Signal Transduct Target Ther. 1:150042016. View Article : Google Scholar : PubMed/NCBI | |
Zhang B, Pan X, Cobb GP and Anderson TA: microRNAs as oncogenes and tumor suppressors. Dev Biol. 302:1–12. 2007. View Article : Google Scholar : PubMed/NCBI | |
Chou CH, Chang NW, Shrestha S, Hsu SD, Lin YL, Lee WH, Yang CD, Hong HC, Wei TY, Tu SJ, et al: miRTarBase 2016: Updates to the experimentally validated miRNA-target interactions database. Nucleic Acids Res. 44(D1): D239–D247. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kang M, Tang B, Li J, Zhou Z, Liu K, Wang R, Jiang Z, Bi F, Patrick D, Kim D, et al: Identification of miPEP133 as a novel tumor-suppressor microprotein encoded by miR-34a pri-miRNA. Mol Cancer. 19:1432020. View Article : Google Scholar : PubMed/NCBI | |
Zhang WC, Chin TM, Yang H, Nga ME, Lunny DP, Lim EK, Sun LL, Pang YH, Leow YN, Malusay SR, et al: Tumour-initiating cell-specific miR-1246 and miR-1290 expression converge to promote non-small cell lung cancer progression. Nat Commun. 7:117022016. View Article : Google Scholar : PubMed/NCBI | |
Chai S, Ng KY, Tong M, Lau EY, Lee TK, Chan KW, Yuan YF, Cheung TT, Cheung ST, Wang XQ, et al: Octamer 4/ microRNA-1246 signaling axis drives Wnt/β-catenin activation in liver cancer stem cells. Hepatology. 64:2062–2076. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cooks T, Pateras IS, Jenkins LM, Patel KM, Robles AI, Morris J, Forshew T, Appella E, Gorgoulis VG and Harris CC: Mutant p53 cancers reprogram macrophages to tumor supporting macrophages via exosomal miR-1246. Nat Commun. 9:7712018. View Article : Google Scholar : PubMed/NCBI | |
Wang W, Jo H, Park S, Kim H, Kim SI, Han Y, Lee J, Seol A, Kim J, Lee M, et al: Integrated analysis of ascites and plasma extracellular vesicles identifies a miRNA-based diagnostic signature in ovarian cancer. Cancer Lett. 542:2157352022. View Article : Google Scholar : PubMed/NCBI | |
Kanlikilicer P, Bayraktar R, Denizli M, Rashed MH, Ivan C, Aslan B, Mitra R, Karagoz K, Bayraktar E, Zhang X, et al: Exosomal miRNA confers chemo resistance via targeting Cav1/p-gp/M2-type macrophage axis in ovarian cancer. EBioMedicine. 38:100–112. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yamashita R, Sato M, Kakumu T, Hase T, Yogo N, Maruyama E, Sekido Y, Kondo M and Hasegawa Y: Growth inhibitory effects of miR-221 and miR-222 in non-small cell lung cancer cells. Cancer Med. 4:551–564. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li J, Li Q, Huang H, Li Y, Li L, Hou W and You Z: Overexpression of miRNA-221 promotes cell proliferation by targeting the apoptotic protease activating factor-1 and indicates a poor prognosis in ovarian cancer. Int J Oncol. 50:1087–1096. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liu CH, Jing XN, Liu XL, Qin SY, Liu MW and Hou CH: Tumor-suppressor miRNA-27b-5p regulates the growth and metastatic behaviors of ovarian carcinoma cells by targeting CXCL1. J Ovarian Res. 13:922020. View Article : Google Scholar : PubMed/NCBI | |
Cancer Genome Atlas Research Network, . Integrated genomic analyses of ovarian carcinoma. Nature. 474:609–615. 2011. View Article : Google Scholar : PubMed/NCBI | |
Tothill RW, Tinker AV, George J, Brown R, Fox SB, Lade S, Johnson DS, Trivett MK, Etemadmoghadam D, Locandro B, et al: Novel molecular subtypes of serous and endometrioid ovarian cancer linked to clinical outcome. Clin Cancer Res. 14:5198–5208. 2008. View Article : Google Scholar : PubMed/NCBI | |
Liu R, Hu R, Zeng Y, Zhang W and Zhou HH: Tumour immune cell infiltration and survival after platinum-based chemotherapy in high-grade serous ovarian cancer subtypes: A gene expression-based computational study. EBioMedicine. 51:1026022020. View Article : Google Scholar : PubMed/NCBI | |
Yang Z, Wang W, Zhao L, Wang X, Gimple RC, Xu L, Wang Y, Rich JN and Zhou S: Plasma cells shape the mesenchymal identity of ovarian cancers through transfer of exosome-derived microRNAs. Sci Adv. 7:eabb07372021. View Article : Google Scholar : PubMed/NCBI | |
Brannan CI, Dees EC, Ingram RS and Tilghman SM: The product of the H19 gene may function as an RNA. Mol Cell Biol. 10:28–36. 1990. View Article : Google Scholar : PubMed/NCBI | |
Zhao L, Sun W, Zheng A, Zhang Y, Fang C and Zhang P: Ginsenoside Rg3 suppresses ovarian cancer cell proliferation and invasion by inhibiting the expression of lncRNA H19. Acta Biochim Pol. 68:575–582. 2021.PubMed/NCBI | |
Hartford CCR and Lal A: When long noncoding becomes protein coding. Mol Cell Biol. 40:e00528–19. 2020. View Article : Google Scholar : PubMed/NCBI | |
Quinn JJ and Chang HY: Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet. 17:47–62. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ransohoff JD, Wei Y and Khavari PA: The functions and unique features of long intergenic non-coding RNA. Nat Rev Mol Cell Biol. 19:143–157. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mattick JS, Amaral PP, Carninci P, Carpenter S, Chang HY, Chen LL, Chen R, Dean C, Dinger ME, Fitzgerald KA, et al: Long non-coding RNAs: Definitions, functions, challenges and recommendations. Nat Rev Mol Cell Biol. 24:430–447. 2023. View Article : Google Scholar : PubMed/NCBI | |
St Laurent G, Wahlestedt C and Kapranov P: The Landscape of long noncoding RNA classification. Trends Genet. 31:239–251. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Meng Q, Qian J, Li M, Gu C and Yang Y: Review: RNA-based diagnostic markers discovery and therapeutic targets development in cancer. Pharmacol Ther. 234:1081232022. View Article : Google Scholar : PubMed/NCBI | |
Kopp F and Mendell JT: Functional classification and experimental dissection of long noncoding RNAs. Cell. 172:393–407. 2018. View Article : Google Scholar : PubMed/NCBI | |
Graf J and Kretz M: From structure to function: Route to understanding lncRNA mechanism. Bioessays. 42:e20000272020. View Article : Google Scholar : PubMed/NCBI | |
Seetin MG and Mathews DH: RNA structure prediction: An overview of methods. Methods Mol Biol. 905:99–122. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lampropoulou DI, Papadimitriou M, Papadimitriou C, Filippou D, Kourlaba G, Aravantinos G and Gazouli M: The role of EMT-related lncRNAs in ovarian cancer. Int J Mol Sci. 24:100792023. View Article : Google Scholar : PubMed/NCBI | |
Liang H, Yu T, Han Y, Jiang H, Wang C, You T, Zhao X, Shan H, Yang R, Yang L, et al: LncRNA PTAR promotes EMT and invasion-metastasis in serous ovarian cancer by competitively binding miR-101-3p to regulate ZEB1 expression. Mol Cancer. 17:1192018. View Article : Google Scholar : PubMed/NCBI | |
Leung D, Price ZK, Lokman NA, Wang W, Goonetilleke L, Kadife E, Oehler MK, Ricciardelli C, Kannourakis G and Ahmed N: Platinum-resistance in epithelial ovarian cancer: An interplay of epithelial-mesenchymal transition interlinked with reprogrammed metabolism. J Transl Med. 20:5562022. View Article : Google Scholar : PubMed/NCBI | |
Kralj J, Pernar Kovač M, Dabelić S, Polančec DS, Wachtmeister T, Köhrer K and Brozovic A: Transcriptome analysis of newly established carboplatin-resistant ovarian cancer cell model reveals genes shared by drug resistance and drug-induced EMT. Br J Cancer. 128:1344–1359. 2023. View Article : Google Scholar : PubMed/NCBI | |
Teschendorff AE, Lee SH, Jones A, Fiegl H, Kalwa M, Wagner W, Chindera K, Evans I, Dubeau L, Orjalo A, et al: HOTAIR and its surrogate DNA methylation signature indicate carboplatin resistance in ovarian cancer. Genome Med. 7:1082015. View Article : Google Scholar : PubMed/NCBI | |
Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai MC, Hung T, Argani P, Rinn JL, et al: Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 464:1071–1076. 2010. View Article : Google Scholar : PubMed/NCBI | |
Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K, et al: A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell. 125:315–326. 2006. View Article : Google Scholar : PubMed/NCBI | |
Lee TI, Jenner RG, Boyer LA, Guenther MG, Levine SS, Kumar RM, Chevalier B, Johnstone SE, Cole MF, Isono K, et al: Control of developmental regulators by polycomb in human embryonic stem cells. Cell. 125:301–313. 2006. View Article : Google Scholar : PubMed/NCBI | |
Teschendorff AE, Menon U, Gentry-Maharaj A, Ramus SJ, Weisenberger DJ, Shen H, Campan M, Noushmehr H, Bell CG, Maxwell AP, et al: Age-dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer. Genome Res. 20:440–446. 2010. View Article : Google Scholar : PubMed/NCBI | |
Qiu JJ, Lin YY, Ye LC, Ding JX, Feng WW, Jin HY, Zhang Y, Li Q and Hua KQ: Overexpression of long non-coding RNA HOTAIR predicts poor patient prognosis and promotes tumor metastasis in epithelial ovarian cancer. Gynecol Oncol. 134:121–128. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yang S, Ji J, Wang M, Nie J and Wang S: Construction of ovarian cancer prognostic model based on the investigation of ferroptosis-related lncRNA. Biomolecules. 13:3062023. View Article : Google Scholar : PubMed/NCBI | |
Jin Y, Qiu J, Lu X, Ma Y and Li G: LncRNA CACNA1G-AS1 up-regulates FTH1 to inhibit ferroptosis and promote malignant phenotypes in ovarian cancer cells. Oncol Res. 31:169–179. 2023. View Article : Google Scholar : PubMed/NCBI | |
Cai L, Hu X, Ye L, Bai P, Jie Y and Shu K: Long non-coding RNA ADAMTS9-AS1 attenuates ferroptosis by Targeting microRNA-587/solute carrier family 7 member 11 axis in epithelial ovarian cancer. Bioengineered. 13:8226–8239. 2022. View Article : Google Scholar : PubMed/NCBI | |
Liu F, Cao L, Zhang Y, Xia X and Ji Y: LncRNA LIFR-AS1 overexpression suppressed the progression of serous ovarian carcinoma. J Clin Lab Anal. 36:e254702022. View Article : Google Scholar : PubMed/NCBI | |
Lin X, Feng D, Li P and Lv Y: LncRNA LINC00857 regulates the progression and glycolysis in ovarian cancer by modulating the Hippo signaling pathway. Cancer Med. 9:8122–8132. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sanger HL, Klotz G, Riesner D, Gross HJ and Kleinschmidt AK: Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl Acad Sci USA. 73:3852–3856. 1976. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Zheng Q, Bao C, Li S, Guo W, Zhao J, Chen D, Gu J, He X and Huang S: Circular RNA is enriched and stable in exosomes: A promising biomarker for cancer diagnosis. Cell Res. 25:981–984. 2015. View Article : Google Scholar : PubMed/NCBI | |
Meng X, Li X, Zhang P, Wang J, Zhou Y and Chen M: Circular RNA: An emerging key player in RNA world. Brief Bioinform. 18:547–557. 2017.PubMed/NCBI | |
Patop IL, Wüst S and Kadener S: Past, present, and future of circRNAs. EMBO J. 38:e1008362019. View Article : Google Scholar : PubMed/NCBI | |
Yao T, Chen Q, Fu L and Guo J: Circular RNAs: Biogenesis, properties, roles, and their relationships with liver diseases. Hepatol Res. 47:497–504. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lasda E and Parker R: Circular RNAs co-precipitate with extracellular vesicles: A possible mechanism for circRNA clearance. PLoS One. 11:e01484072016. View Article : Google Scholar : PubMed/NCBI | |
Ngo LH, Bert AG, Dredge BK, Williams T, Murphy V, Li W, Hamilton WB, Carey KT, Toubia J, Pillman KA, et al: Nuclear export of circular RNA. Nature. 627:212–220. 2024. View Article : Google Scholar : PubMed/NCBI | |
Pisignano G, Michael DC, Visal TH, Pirlog R, Ladomery M and Calin GA: Going circular: History, present, and future of circRNAs in cancer. Oncogene. 42:2783–2800. 2023. View Article : Google Scholar : PubMed/NCBI | |
Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, Marzluff WF and Sharpless NE: Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 19:141–157. 2013. View Article : Google Scholar : PubMed/NCBI | |
Shang Q, Yang Z, Jia R and Ge S: The novel roles of circRNAs in human cancer. Mol Cancer. 18:62019. View Article : Google Scholar : PubMed/NCBI | |
Ye D, Gong M, Deng Y, Fang S, Cao Y, Xiang Y and Shen Z: Roles and clinical application of exosomal circRNAs in the diagnosis and treatment of malignant tumors. J Transl Med. 20:1612022. View Article : Google Scholar : PubMed/NCBI | |
Su M, Xiao Y, Ma J, Tang Y, Tian B, Zhang Y, Li X, Wu Z, Yang D, Zhou Y, et al: Circular RNAs in cancer: Emerging functions in hallmarks, stemness, resistance and roles as potential biomarkers. Mol Cancer. 18:902019. View Article : Google Scholar : PubMed/NCBI | |
Cortes R and Forner MJ: Circular RNAS: Novel biomarkers of disease activity in systemic lupus erythematosus? Clin Sci (Lond). 133:1049–1052. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liu CX and Chen LL: Circular RNAs: Characterization, cellular roles, and applications. Cell. 185:2016–2034. 2022. View Article : Google Scholar : PubMed/NCBI | |
Lei M, Zheng G, Ning Q, Zheng J and Dong D: Translation and functional roles of circular RNAs in human cancer. Mol Cancer. 19:302020. View Article : Google Scholar : PubMed/NCBI | |
Zhao Q, Liu J, Deng H, Ma R, Liao JY, Liang H, Hu J, Li J, Guo Z, Cai J, et al: Targeting mitochondria-located circRNA SCAR alleviates NASH via reducing mROS output. Cell. 183:76–93.e22. 2020. View Article : Google Scholar : PubMed/NCBI | |
Huang D, Zhu X, Ye S, Zhang J, Liao J, Zhang N, Zeng X, Wang J, Yang B, Zhang Y, et al: Tumour circular RNAs elicit anti-tumour immunity by encoding cryptic peptides. Nature. 625:593–602. 2024. View Article : Google Scholar : PubMed/NCBI | |
Li H, Lin R, Zhang Y, Zhu Y, Huang S, Lan J, Lu N, Xie C, He S and Zhang W: N6-methyladenosine-modified circPLPP4 sustains cisplatin resistance in ovarian cancer cells via PIK3R1 upregulation. Mol Cancer. 23:52024. View Article : Google Scholar : PubMed/NCBI | |
Zhou X, Jiang J and Guo S: Hsa_circ_0004712 downregulation attenuates ovarian cancer malignant development by targeting the miR-331-3p/FZD4 pathway. J Ovarian Res. 14:1182021. View Article : Google Scholar : PubMed/NCBI | |
Camuzard O, Santucci-Darmanin S, Carle GF and Pierrefite-Carle V: Autophagy in the crosstalk between tumor and microenvironment. Cancer Lett. 490:143–153. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ye J, Wu D, Wu P, Chen Z and Huang J: The cancer stem cell niche: Cross talk between cancer stem cells and their microenvironment. Tumour Biol. 35:3945–3951. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, MacDonald DD, Jin DK, Shido K, Kerns SA, et al: VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature. 438:820–827. 2005. View Article : Google Scholar : PubMed/NCBI | |
Yue M, Hu S, Sun H, Tuo B, Jia B, Chen C, Wang W, Liu J, Liu Y, Sun Z and Hu J: Extracellular vesicles remodel tumor environment for cancer immunotherapy. Mol Cancer. 22:2032023. View Article : Google Scholar : PubMed/NCBI | |
Mei S, Chen X, Wang K and Chen Y: Tumor microenvironment in ovarian cancer peritoneal metastasis. Cancer Cell Int. 23:112023. View Article : Google Scholar : PubMed/NCBI | |
Lorusso D, Ceni V, Daniele G, Salutari V, Pietragalla A, Muratore M, Nero C, Ciccarone F and Scambia G: Newly diagnosed ovarian cancer: Which first-line treatment? Cancer Treat Rev. 91:1021112020. View Article : Google Scholar : PubMed/NCBI | |
Mo Y, Leung LL, Mak CSL, Wang X, Chan WS, Hui LMN, Tang HWM, Siu MKY, Sharma R, Xu D, et al: Tumor-secreted exosomal miR-141 activates tumor-stroma interactions and controls premetastatic niche formation in ovarian cancer metastasis. Mol Cancer. 22:42023. View Article : Google Scholar : PubMed/NCBI | |
Yi H, Ye J, Yang XM, Zhang LW, Zhang ZG and Chen YP: High-grade ovarian cancer secreting effective exosomes in tumor angiogenesis. Int J Clin Exp Pathol. 8:5062–5070. 2015.PubMed/NCBI | |
Leary N, Walser S, He Y, Cousin N, Pereira P, Gallo A, Collado-Diaz V, Halin C, Garcia-Silva S, Peinado H and Dieterich LC: Melanoma-derived extracellular vesicles mediate lymphatic remodelling and impair tumour immunity in draining lymph nodes. J Extracell Vesicles. 11:e121972022. View Article : Google Scholar : PubMed/NCBI | |
Chen G, Huang AC, Zhang W, Zhang G, Wu M, Xu W, Yu Z, Yang J, Wang B, Sun H, et al: Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature. 560:382–386. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kelleher RJ Jr, Balu-Iyer S, Loyall J, Sacca AJ, Shenoy GN, Peng P, Iyer V, Fathallah AM, Berenson CS, Wallace PK, et al: Extracellular vesicles present in human ovarian tumor microenvironments induce a phosphatidylserine-dependent arrest in the T-cell signaling cascade. Cancer Immunol Res. 3:1269–1278. 2015. View Article : Google Scholar : PubMed/NCBI | |
Arenaccio C, Chiozzini C, Columba-Cabezas S, Manfredi F, Affabris E, Baur A and Federico M: Exosomes from human immunodeficiency virus type 1 (HIV-1)-infected cells license quiescent CD4+ T lymphocytes to replicate HIV-1 through a Nef- and ADAM17-dependent mechanism. J Virol. 88:11529–11539. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lugini L, Cecchetti S, Huber V, Luciani F, Macchia G, Spadaro F, Paris L, Abalsamo L, Colone M, Molinari A, et al: Immune surveillance properties of human NK cell-derived exosomes. J Immunol. 189:2833–2842. 2012. View Article : Google Scholar : PubMed/NCBI | |
Luo H, Zhou Y, Zhang J, Zhang Y, Long S, Lin X, Yang A, Duan J, Yang N, Yang Z, et al: NK cell-derived exosomes enhance the anti-tumor effects against ovarian cancer by delivering cisplatin and reactivating NK cell functions. Front Immunol. 13:10876892023. View Article : Google Scholar : PubMed/NCBI | |
Shiao MS, Chang JM, Lertkhachonsuk AA, Rermluk N and Jinawath N: Circulating exosomal miRNAs as biomarkers in epithelial ovarian cancer. Biomedicines. 9:14332021. View Article : Google Scholar : PubMed/NCBI | |
Buys SS, Partridge E, Black A, Johnson CC, Lamerato L, Isaacs C, Reding DJ, Greenlee RT, Yokochi LA, Kessel B, et al: Effect of screening on ovarian cancer mortality: The prostate, lung, colorectal and ovarian (PLCO) cancer screening randomized controlled trial. JAMA. 305:2295–2303. 2011. View Article : Google Scholar : PubMed/NCBI | |
Moss EL, Hollingworth J and Reynolds TM: The role of CA125 in clinical practice. J Clin Pathol. 58:308–312. 2005. View Article : Google Scholar : PubMed/NCBI | |
Yokoi A, Yoshioka Y, Hirakawa A, Yamamoto Y, Ishikawa M, Ikeda SI, Kato T, Niimi K, Kajiyama H, Kikkawa F and Ochiya T: A combination of circulating miRNAs for the early detection of ovarian cancer. Oncotarget. 8:89811–89823. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang S and Song X, Wang K, Zheng B, Lin Q, Yu M, Xie L, Chen L and Song X: Plasma exosomal miR-320d, miR-4479, and miR-6763-5p as diagnostic biomarkers in epithelial ovarian cancer. Front Oncol. 12:9863432022. View Article : Google Scholar : PubMed/NCBI | |
Pan C, Stevic I, Müller V, Ni Q, Oliveira-Ferrer L, Pantel K and Schwarzenbach H: Exosomal microRNAs as tumor markers in epithelial ovarian cancer. Mol Oncol. 12:1935–1948. 2018. View Article : Google Scholar : PubMed/NCBI | |
Maeda K, Sasaki H, Ueda S, Miyamoto S, Terada S, Konishi H, Kogata Y, Ashihara K, Fujiwara S, Tanaka Y, et al: Serum exosomal microRNA-34a as a potential biomarker in epithelial ovarian cancer. J Ovarian Res. 13:472020. View Article : Google Scholar : PubMed/NCBI | |
Qiu JJ, Lin XJ, Tang XY, Zheng TT, Lin YY and Hua KQ: Exosomal metastasis-associated lung adenocarcinoma transcript 1 promotes angiogenesis and predicts poor prognosis in epithelial ovarian cancer. Int J Biol Sci. 14:1960–1973. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Su X, Li S, Liu Z, Wang Q and Zeng H: Low serum exosomal miR-484 expression predicts unfavorable prognosis in ovarian cancer. Cancer Biomark. 27:485–491. 2020. View Article : Google Scholar : PubMed/NCBI | |
Luo Y and Gui R: Circulating exosomal circFoxp1 confers cisplatin resistance in epithelial ovarian cancer cells. J Gynecol Oncol. 31:e752020. View Article : Google Scholar : PubMed/NCBI | |
Chowdhury S, Kennedy JJ, Ivey RG, Murillo OD, Hosseini N, Song X, Petralia F, Calinawan A, Savage SR, Berry AB, et al: Proteogenomic analysis of chemo-refractory high-grade serous ovarian cancer. Cell. 186:3476–3498.e35. 2023. View Article : Google Scholar : PubMed/NCBI | |
Martínez-Greene JA, Gómez-Chavarín M, Ramos-Godínez MDP and Martínez-Martínez E: Isolation of hepatic and adipose-tissue-derived extracellular vesicles using density gradient separation and size exclusion chromatography. Int J Mol Sci. 24:127042023. View Article : Google Scholar : PubMed/NCBI | |
Bai HH, Wang XF, Zhang BY and Liu W: A comparison of size exclusion chromatography-based tandem strategies for plasma exosome enrichment and proteomic analysis. Anal Methods. 15:6245–6251. 2023. View Article : Google Scholar : PubMed/NCBI | |
Takov K, Yellon DM and Davidson SM: Comparison of small extracellular vesicles isolated from plasma by ultracentrifugation or size-exclusion chromatography: Yield, purity and functional potential. J Extracell Vesicles. 8:15608092018. View Article : Google Scholar : PubMed/NCBI | |
Tian Y, Gong M, Hu Y, Liu H, Zhang W, Zhang M, Hu X, Aubert D, Zhu S, Wu L and Yan X: Quality and efficiency assessment of six extracellular vesicle isolation methods by nano-flow cytometry. J Extracell Vesicles. 9:16970282019. View Article : Google Scholar : PubMed/NCBI | |
Aliakbari F, Stocek NB, Cole-André M, Gomes J, Fanchini G, Pasternak SH, Christiansen G, Morshedi D, Volkening K and Strong MJ: A methodological primer of extracellular vesicles isolation and characterization via different techniques. Biol Methods Protoc. 9:bpae0092024. View Article : Google Scholar : PubMed/NCBI | |
Knarr M, Avelar RA, Sekhar SC, Kwiatkowski LJ, Dziubinski ML, McAnulty J, Skala S, Avril S, Drapkin R and DiFeo A: miR-181a initiates and perpetuates oncogenic transformation through the regulation of innate immune signaling. Nat Commun. 11:32312020. View Article : Google Scholar : PubMed/NCBI | |
Wu M, Qiu Q, Zhou Q, Li J, Yang J, Zheng C, Luo A, Li X, Zhang H, Cheng X, et al: circFBXO7/miR-96-5p/MTSS1 axis is an important regulator in the Wnt signaling pathway in ovarian cancer. Mol Cancer. 21:1372022. View Article : Google Scholar : PubMed/NCBI | |
Luo L, Gao YQ and Sun XF: Circular RNA ITCH suppresses proliferation and promotes apoptosis in human epithelial ovarian cancer cells by sponging miR-10a-α. Eur Rev Med Pharmacol Sci. 22:8119–8126. 2018.PubMed/NCBI | |
Ying X, Wu Q, Wu X, Zhu Q and Wang X, Jiang L, Chen X and Wang X: Epithelial ovarian cancer-secreted exosomal miR-222-3p induces polarization of tumor-associated macrophages. Oncotarget. 7:43076–43087. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cappellesso R, Tinazzi A, Giurici T, Simonato F, Guzzardo V, Ventura L, Crescenzi M, Chiarelli S and Fassina A: Programmed cell death 4 and microRNA 21 inverse expression is maintained in cells and exosomes from ovarian serous carcinoma effusions. Cancer Cytopathol. 122:685–693. 2014. View Article : Google Scholar : PubMed/NCBI | |
Meng X, Müller V, Milde-Langosch K, Trillsch F, Pantel K and Schwarzenbach H: Diagnostic and prognostic relevance of circulating exosomal miR-373, miR-200a, miR-200b and miR-200c in patients with epithelial ovarian cancer. Oncotarget. 7:16923–16935. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zavesky L, Jandakova E, Turyna R, Langmeierova L, Weinberger V and Minar L: Supernatant versus exosomal urinary microRNAs. Two fractions with different outcomes in gynaecological cancers. Neoplasma. 63:121–132. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhou J, Gong G, Tan H, Dai F, Zhu X, Chen Y, Wang J, Liu Y, Chen P, Wu X and Wen J: Urinary microRNA-30a-5p is a potential biomarker for ovarian serous adenocarcinoma. Oncol Rep. 33:2915–2923. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hong JS, Son T, Castro CM and Im H: CRISPR/Cas13a-based MicroRNA detection in tumor-derived extracellular vesicles. Adv Sci (Weinh). 10:e23017662023. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Zhou Q, Qiu Q, Hou L, Wu M, Li J, Li X, Lu B, Cheng X, Liu P, et al: CircPLEKHM3 acts as a tumor suppressor through regulation of the miR-9/BRCA1/DNAJB6/KLF4/AKT1 axis in ovarian cancer. Mol Cancer. 18:1442019. View Article : Google Scholar : PubMed/NCBI | |
Li L, Zhang F, Zhang J, Shi X, Wu H, Chao X, Ma S, Lang J, Wu M, Zhang D and Liang Z: Identifying serum small extracellular vesicle MicroRNA as a noninvasive diagnostic and prognostic biomarker for ovarian cancer. ACS Nano. 17:19197–19210. 2023. View Article : Google Scholar : PubMed/NCBI | |
Yu CC, Liao YW, Hsieh PL and Chang YC: Targeting lncRNA H19/miR-29b/COL1A1 axis impedes myofibroblast activities of precancerous oral submucous fibrosis. Int J Mol Sci. 22:22162021. View Article : Google Scholar : PubMed/NCBI | |
Záveský L, Jandáková E, Turyna R, Langmeierová L, Weinberger V, Záveská Drábková L, Hůlková M, Hořínek A, Dušková D, Feyereisl J, et al: Evaluation of cell-free urine microRNAs expression for the use in diagnosis of ovarian and endometrial cancers. A pilot study. Pathol Oncol Res. 21:1027–1035. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang LL, Sun KX, Wu DD, Xiu YL, Chen X, Chen S, Zong ZH, Sang XB, Liu Y and Zhao Y: DLEU1 contributes to ovarian carcinoma tumourigenesis and development by interacting with miR-490-3p and altering CDK1 expression. J Cell Mol Med. 21:3055–3065. 2017. View Article : Google Scholar : PubMed/NCBI | |
Dong L and Hui L: HOTAIR promotes proliferation, migration, and invasion of ovarian cancer SKOV3 cells through regulating PIK3R3. Med Sci Monit. 22:325–331. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Dun Y, Zhou S and Huang XH: LncRNA HOXD-AS1 promotes epithelial ovarian cancer cells proliferation and invasion by targeting miR-133a-3p and activating Wnt/β-catenin signaling pathway. Biomed Pharmacother. 96:1216–1221. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Tian Y, Zheng H, Ding Y and Wang X: An integrated analysis reveals the oncogenic function of lncRNA LINC00511 in human ovarian cancer. Cancer Med. 8:3026–3035. 2019. View Article : Google Scholar : PubMed/NCBI | |
An J, Lv W and Zhang Y: LncRNA NEAT1 contributes to paclitaxel resistance of ovarian cancer cells by regulating ZEB1 expression via miR-194. Onco Targets Ther. 10:5377–5390. 2017. View Article : Google Scholar : PubMed/NCBI | |
Cao Y, Shi H, Ren F, Jia Y and Zhang R: Long non-coding RNA CCAT1 promotes metastasis and poor prognosis in epithelial ovarian cancer. Exp Cell Res. 359:185–194. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yiwei T, Hua H, Hui G, Mao M and Xiang L: HOTAIR interacting with MAPK1 regulates ovarian cancer skov3 cell proliferation, migration, and invasion. Med Sci Monit. 21:1856–1863. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yan H, Silva MA, Li H, Zhu L, Li P, Li X, Wang X, Gao J, Wang P and Zhang Z: Long noncoding RNA DQ786243 interacts with miR-506 and promotes progression of ovarian cancer through targeting cAMP responsive element binding protein 1. J Cell Biochem. 119:9764–9780. 2018. View Article : Google Scholar : PubMed/NCBI | |
Duan M, Fang M, Wang C, Wang H and Li M: LncRNA EMX2OS induces proliferation, invasion and sphere formation of ovarian cancer cells via regulating the miR-654-3p/AKT3/PD-L1 axis. Cancer Manag Res. 12:2141–2154. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yang M, Zhai Z, Zhang Y and Wang Y: Clinical significance and oncogene function of long noncoding RNA HAGLROS overexpression in ovarian cancer. Arch Gynecol Obstet. 300:703–710. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Zhang W, Wang Y and Wang S: HOXD-AS1 promotes cell proliferation, migration and invasion through miR-608/FZD4 axis in ovarian cancer. Am J Cancer Res. 8:170–182. 2018.PubMed/NCBI | |
Jin Y, Feng SJ, Qiu S, Shao N and Zheng JH: LncRNA MALAT1 promotes proliferation and metastasis in epithelial ovarian cancer via the PI3K-AKT pathway. Eur Rev Med Pharmacol Sci. 21:3176–3184. 2017.PubMed/NCBI | |
Liu Y, Wang Y, Fu X and Lu Z: Long non-coding RNA NEAT1 promoted ovarian cancer cells' metastasis through regulation of miR-382-3p/ROCK1 axial. Cancer Sci. 109:2188–2198. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ding C, Wei R, Rodríguez RA and Del Mar Requena Mullor M: LncRNA PCAT-1 plays an oncogenic role in epithelial ovarian cancer by modulating cyclinD1/CDK4 expression. Int J Clin Exp Pathol. 12:2148–2156. 2019.PubMed/NCBI | |
Özeş AR, Miller DF, Özeş ON, Fang F, Liu Y, Matei D, Huang T and Nephew KP: NF-κB-HOTAIR axis links DNA damage response, chemoresistance and cellular senescence in ovarian cancer. Oncogene. 35:5350–5361. 2016. View Article : Google Scholar : PubMed/NCBI | |
Song R, Liu Z, Lu L, Liu F and Zhang B: Long noncoding RNA SCAMP1 targets miR-137/CXCL12 axis to boost cell invasion and angiogenesis in ovarian cancer. DNA Cell Biol. 39:1041–1050. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chen S, Wang LL, Sun KX, Xiu YL, Zong ZH, Chen X and Zhao Y: The role of the long non-coding RNA TDRG1 in epithelial ovarian carcinoma tumorigenesis and progression through miR-93/RhoC pathway. Mol Carcinog. 57:225–234. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mu Y, Li N and Cui YL: The lncRNA CCAT1 upregulates TGFβR1 via sponging miR-490-3p to promote TGFβ1-induced EMT of ovarian cancer cells. Cancer Cell Int. 18:1452018. View Article : Google Scholar : PubMed/NCBI | |
Li J, Li J, Huang Y, Deng X, Luo M, Wang X, Hu H, Liu C and Zhong M: Long noncoding RNA H19 promotes transforming growth factor-β-induced epithelial-mesenchymal transition by acting as a competing endogenous RNA of miR-370-3p in ovarian cancer cells. Onco Targets Ther. 11:427–440. 2018. View Article : Google Scholar : PubMed/NCBI | |
Xu M, Zhou K, Wu Y, Wang L and Lu S: Linc00161 regulated the drug resistance of ovarian cancer by sponging microRNA-128 and modulating MAPK1. Mol Carcinog. 58:577–587. 2019. View Article : Google Scholar : PubMed/NCBI | |
Pan L, Meng Q, Li H, Liang K and Li B: LINC00339 promotes cell proliferation, migration, and invasion of ovarian cancer cells via miR-148a-3p/ROCK1 axes. Biomed Pharmacother. 120:1094232019. View Article : Google Scholar : PubMed/NCBI | |
Zou A, Liu R and Wu X: Long non-coding RNA MALAT1 is up-regulated in ovarian cancer tissue and promotes SK-OV-3 cell proliferation and invasion. Neoplasma. 63:865–872. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chang L, Guo R, Yuan Z, Shi H and Zhang D: LncRNA HOTAIR regulates CCND1 and CCND2 expression by sponging miR-206 in ovarian cancer. Cell Physiol Biochem. 49:1289–1303. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sun Q, Li Q and Xie F: LncRNA-MALAT1 regulates proliferation and apoptosis of ovarian cancer cells by targeting miR-503-5p. Onco Targets Ther. 12:6297–6307. 2019. View Article : Google Scholar : PubMed/NCBI | |
An Q, Liu T, Wang MY, Yang YJ, Zhang ZD, Lin ZJ and Yang B: circKRT7-miR-29a-3p-COL1A1 axis promotes ovarian cancer cell progression. Onco Targets Ther. 13:8963–8976. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang F, Niu Y, Chen K, Yuan X, Qin Y, Zheng F, Cui Z, Lu W, Wu Y and Xia D: Extracellular vesicle-packaged circATP2B4 mediates M2 macrophage polarization via miR-532-3p/SREBF1 axis to promote epithelial ovarian cancer metastasis. Cancer Immunol Res. 11:199–216. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wu Y, Xu M, Feng Z, Wu H, Wu J, Ha X, Wu Y, Chen S, Xu F, Wen H, et al: AUF1-induced circular RNA hsa_circ_0010467 promotes platinum resistance of ovarian cancer through miR-637/LIF/STAT3 axis. Cell Mol Life Sci. 80:2562023. View Article : Google Scholar : PubMed/NCBI | |
Li H, Luo F, Jiang X, Zhang W, Xiang T, Pan Q, Cai L, Zhao J, Weng D, Li Y, et al: CircITGB6 promotes ovarian cancer cisplatin resistance by resetting tumor-associated macrophage polarization toward the M2 phenotype. J Immunother Cancer. 10:e0040292022. View Article : Google Scholar : PubMed/NCBI | |
Zou T, Wang PL, Gao Y and Liang WT: Circular RNA_LARP4 is lower expressed and serves as a potential biomarker of ovarian cancer prognosis. Eur Rev Med Pharmacol Sci. 22:7178–7182. 2018.PubMed/NCBI |