GATA-4 promotes the differentiation of P19 cells into cardiac myocytes
- Authors:
- Published online on: September 1, 2010 https://doi.org/10.3892/ijmm_00000474
- Pages: 365-372
Metrics:
Total
Views: 0 (Spandidos Publications: | PMC Statistics:
)
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics:
)
Abstract
The aim of this study was to investigate the effects of GATA-4 on the differentiation of P19 cells into cardiomyocytes and to examine the relationship between GATA-4 and cardiomyocytes. We constructed vectors to overexpress and silence GATA-4. These vectors, as well as empty ones were transfected into P19 cells. Subsequently, reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blot analysis were performed. The morphology of P19 cells during differentiation was observed using an inverted microscope. Total RNA was extracted from P19 cells. We used real-time PCR to evaluate the expression levels of 6 genes: GATA-4, GATA-6, transthyretin (TTR), α-fetoprotein (AFP), Nkx2.5, and α-myosin heavy chain (α-MHC). The gene expression pattern of these 6 genes is graphically shown for each group. The GATA-4 mRNA level in cells overexpressing GATA-4 was notably higher than that in the controls, whereas the levels in the controls were notably higher than those in the GATA-4-silenced P19 cells. The cell lines overexpressing GATA-4 expressed higher levels of Nkx2.5 and α-MHC than the controls. However, the controls expressed higher levels of AFP, GATA-6 and TTR than the cells overexpressing GATA-4. The RNAi group expressed lower levels of TTR, Nkx2.5, and α-MHC than the controls, but there were no differences in the RNAi group and the controls with regard to the expression levels of AFP and GATA-6. The gene expression pattern in the cells overexpressing GATA-4 was biased toward the Nkx2.5 and α-MHC. On the other hand, the gene expression pattern in GATA-4-silenced cells and the controls was biased toward the TTR and AFP. The overexpression of GATA-4 enhances the differentiation of P19 cells into cardiac myocytes, whereas its down-regulation suppresses this trend.