Bovine seminal ribonuclease selectively kills human multidrug-resistant neuroblastoma cells via induction of apoptosis.
- Authors:
- Published online on: November 1, 1999 https://doi.org/10.3892/ijo.15.5.1001
- Pages: 1001-1010
Metrics: Total
Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Abstract
Bovine seminal ribonuclease (BS-RNase) is a homologue of RNase A with specific antitumor activity. The cytotoxic action of this agent was examined in human neuroblastoma (NB) cell lines (SK-N-SH and UKF-NB-4) possessing the multidrug resistance (MDR) phenotype and NB cell lines (IMR-32, UKF-NB-1, UKF-NB-2 and UKF-NB-3) without MDR. Although MDR cells expressed large amounts of mdr-1 mRNA, contained functional P-glycoprotein and had 20- to 105-fold lower sensitivities to doxorubicin and vincristine than cells with non-MDR phenotypes, BS-RNase was equally toxic to all NB cells at concentrations employed (0.2 to 100 microg/ml). BS-RNase showed high selectivity for NB cells and was non-toxic to normal fibroblasts and epithelial cells. Ultrastructural investigation and annexin V assay showed that BS-RNase is a powerful inductor of apoptosis. The antitumoral effects of BS-RNase were also demonstrated in vivo using established subcutaneous xenografts in athymic (nude) mice of the MDR-1-bearing UKF-NB-4 cell line. Intratumoral injections (12.5 mg/kg) of BS-RNase over four weeks resulted in complete tumor regression and absence of tumor regrowth over a two-week observation period after cessation of treatment. The results show that BS-RNase selectively kills NB cells by inducing apoptosis and that this agent is active against mdr-1 expressing cells both in vitro and in vivo. BS-RNase fulfills important criteria for a candidate antitumor agent in NB patients with advanced disease.