1
|
Hussain SF, Yang D, Suki D, Aldape K,
Grimm E and Heimberger AB: The role of human glioma-infiltrating
Mi-croglia/Macrophages in mediating antitumor immune responses.
Neuro Oncol. 8:261–279. 2006. View Article : Google Scholar : PubMed/NCBI
|
2
|
Charalambous C, Chen T and Hofman FM:
Characteristics of tumor-associated endothelial cells derived from
glioblastoma multiforme. Neurosurg Focus. 20:E222006. View Article : Google Scholar : PubMed/NCBI
|
3
|
Castro MG, Cowen R, Williamson IK, David
A, Jimenez-Dalmaroni MJ, Yuan X, Bigliari A, Williams JC, Hu J and
Lowenstein PR: Current and future strategies for the treatment of
malignant brain tumors. Pharmacol Ther. 98:71–108. 2003. View Article : Google Scholar : PubMed/NCBI
|
4
|
Binello E and Germano IM: Targeting glioma
stem cells: A novel framework for brain tumors. Cancer Sci.
102:1958–1966. 2011. View Article : Google Scholar : PubMed/NCBI
|
5
|
Suvà ML, Rheinbay E, Gillespie SM, Patel
AP, Wakimoto H, Rabkin SD, Riggi N, Chi AS, Cahill DP, Nahed BV, et
al: Reconstructing and reprogramming the tumor-propagating
potential of glioblastoma stem-like cells. Cell. 157:580–594. 2014.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Bao S, Wu Q, McLendon RE, Hao Y, Shi Q,
Hjelmeland AB, Dewhirst MW, Bigner DD and Rich JN: Glioma stem
cells promote radioresistance by preferential activation of the DNA
damage response. Nature. 444:756–760. 2006. View Article : Google Scholar : PubMed/NCBI
|
7
|
Menendez JA, Corominas-Faja B, Cuyàs E and
Alarcón T: Metabostemness: Metaboloepigenetic reprogramming of
cancer stem-cell functions. Oncoscience. 1:803–806. 2014.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
9
|
Vander Heiden MG, Cantley LC and Thompson
CB: Understanding the Warburg Effect: The metabolic requirements of
cell proliferation. Science. 324:1029–1033. 2009. View Article : Google Scholar : PubMed/NCBI
|
10
|
Brand KA and Hermfisse U: Aerobic
glycolysis by proliferating cells: A protective strategy against
reactive oxygen species. FASEB J. 11:388–395. 1997. View Article : Google Scholar : PubMed/NCBI
|
11
|
Menendez JA, Joven J, Cufí S,
Corominas-Faja B, Oliveras-Ferraros C, Cuyàs E, Martin-Castillo B,
Lopez-Bonet E, Alarcón T and Vazquez-Martin A: The warburg effect
version 2.0: Metabolic reprogramming of cancer stem cells. Cell
Cycle. 12:1166–1179. 2013. View
Article : Google Scholar : PubMed/NCBI
|
12
|
Vlashi E, Lagadec C, Vergnes L, Matsutani
T, Masui K, Poulou M, Popescu R, Della Donna L, Evers P, Dekmezian
C, et al: Metabolic state of glioma stem cells and nontumorigenic
cells. Proc Natl Acad Sci USA. 108:16062–16067. 2011. View Article : Google Scholar : PubMed/NCBI
|
13
|
Martin V, Turos-Cabal M, Sanchez-Sanchez
AM and Rodríguez C: Metabolism-redox interplay in tumor stem cell
signaling. Handbook of oxidative stress in cancer: Mechanistic
Aspects. pp1–22. 2021. View Article : Google Scholar
|
14
|
Lin H, Patel S, Affeck VS, Wilson I,
Turnbull DM, Joshi AR, Maxwell R and Stoll EA: Fatty acid oxidation
is Required for the respiration and proliferation of malignant
glioma cells. Neuro Oncol. 19:43–54. 2017. View Article : Google Scholar : PubMed/NCBI
|
15
|
Wang M and Kaufman RJ: The impact of the
endoplasmic reticulum protein-folding environment on cancer
development. Nat Rev Cancer. 14:581–597. 2014. View Article : Google Scholar : PubMed/NCBI
|
16
|
Rowland AA and Voeltz GK: Endoplasmic
reticulum-mitochondria contacts: Function of the junction. Nat Rev
Mol Cell Biol. 13:607–625. 2012. View
Article : Google Scholar : PubMed/NCBI
|
17
|
Cardenas C, Miller RA, Smith I, Bui T,
Molgo J, Müller M, Vais H, Cheung KH, Yang J, Parker I, et al:
Essential regulation of cell bioenergetics by constitutive InsP3
Receptor Ca2+ Transfer to Mitochondria. Cell. 142:270–283. 2010.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Arismendi-Morillo G, Castellano-Ramírez A
and Seyfried TN: Ultrastructural characterization of the
mitochon-dria-associated membranes abnormalities in human
astrocytomas: Functional and therapeutics implications. Ultrastruct
Pathol. 41:234–244. 2017. View Article : Google Scholar : PubMed/NCBI
|
19
|
Galli R, Binda E, Orfanelli U, Cipelletti
B, Gritti A, de Vitis S, Fiocco R, Foroni C, Dimeco F and Vescovi
A: Isolation and Characterization of Tumorigenic, Stem-like Neural
Precursors from Human Glioblastoma. Cancer Res. 64:7011–7021. 2004.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Singh SK, Hawkins C, Clarke ID, Squire JA,
Bayani J, Hide T, Henkelman RM, Cusimano MD and Dirks PB:
Identification of human brain tumour initiating cells. Nature.
432:396–401. 2004. View Article : Google Scholar : PubMed/NCBI
|
21
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Zheng H, Ying H, Wiedemeyer R, Yan H,
Quayle SN, Ivanova EV, Paik JH, Zhang H, Xiao Y, Perry SR, et al:
PLAGL2 regulates Wnt signaling to impede differentiation in neural
stem cells and gliomas. Cancer Cell. 17:497–509. 2010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Hong X, Chedid K and Kalkanis SN:
Glioblastoma cell line-derived spheres in serum containing medium
versus serum-free medium: A comparison of cancer stem cell
properties. Int J Oncol. 41:1693–1700. 2012. View Article : Google Scholar : PubMed/NCBI
|
24
|
Kim EJ, Jin X, Kim OR, Ham SW, Park SH and
Kim H: Glioma stem cells and their non-stem differentiated glioma
cells exhibit differences in mitochondrial structure and function.
Oncol Rep. 39:411–416. 2018.PubMed/NCBI
|
25
|
Gangemi RM, Griffero F, Marubbi D, Perera
M, Capra MC, Malatesta P, Ravetti GL, Zona GL, Daga A and Corte G:
SOX2 silencing in glioblastoma tumor-initiating cells causes stop
of proliferation and loss of tumorigenicity. Stem Cells. 27:40–48.
2009. View Article : Google Scholar : PubMed/NCBI
|
26
|
Lopez-Bertoni H, Johnson A, Rui Y, Lal B,
Sall S, Malloy M, Coulter JB, Lugo-Fagundo M, Shudir S, Khela H, et
al: Sox2 induces glioblastoma cell stemness and tumor propagation
by repressing TET2 and deregulating 5hmC and 5mC DNA modifications.
Signal Transduct Target Ther. 7:372022. View Article : Google Scholar : PubMed/NCBI
|
27
|
Contreras L, Drago I, Zampese E and Pozzan
T: Mitochondria: The calcium connection. Biochim Biophys Acta.
1797:607–618. 2010. View Article : Google Scholar : PubMed/NCBI
|
28
|
Kopp MC, Larburu N, Durairaj V. Adams CJ
and Ali MMU: UPR Proteins IRE1 and PERK Switch BiP from Chaperone
to ER Stress Sensor. Nat Struct Mol Biol. 26:1053–1062. 2019.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Anelli T, Bergamelli L, Margittai E,
Rimessi A, Fagioli C, Malgaroli A, Pinton P, Ripamonti M, Rizzuto R
and Sitia R: Ero1α Regulates Ca2+ fluxes at the endoplasmic
reticulum-mitochondria interface (MAM). Antioxid Redox Signal.
16:1077–1087. 2012. View Article : Google Scholar : PubMed/NCBI
|
30
|
Jung JW, Park SB, Lee SJ, Seo MS, Trosko
JE and Kang KS: Metformin represses self-renewal of the human
breast carcinoma stem cells via inhibition of estrogen
receptor-mediated OCT4 Expression. PLoS One. 6:e280682011.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Mayer MJ, Klotz LH and Venkateswaran V:
Metformin and prostate cancer stem cells: A novel therapeutic
target. Prostate Cancer Prostatic Dis. 18:303–309. 2015. View Article : Google Scholar : PubMed/NCBI
|
32
|
Snyder V, Reed-Newman TC, Arnold L, Thomas
SM and Anant S: Cancer stem cell metabolism and potential
therapeutic targets. Front Oncol. 8:2032018. View Article : Google Scholar : PubMed/NCBI
|
33
|
Cannino G, Ciscato F, Masgras I,
Sánchez-Martín C and Rasola A: Metabolic plasticity of tumor cell
mitochondria. Front Oncol. 8:3332018. View Article : Google Scholar : PubMed/NCBI
|
34
|
Filadi R and Pozzan T: Generation and
functions of second messengers microdomains. Cell Calcium.
58:405–414. 2015. View Article : Google Scholar : PubMed/NCBI
|
35
|
Tarasov AI, Griffiths EJ and Rutter GA:
Regulation of ATP production by mitochondrial Ca(2+). Cell Calcium.
52:28–35. 2012. View Article : Google Scholar : PubMed/NCBI
|
36
|
Debeb BG, Lacerda L, Larson R, Wolfe AR,
Krishnamurthy S, Reuben JM, Ueno NT, Gilcrease M and Woodward WA:
Histone deacetylase inhibitor-induced cancer stem cells exhibit
high pentose phosphate pathway metabolism. Oncotarget.
7:28329–28339. 2016. View Article : Google Scholar : PubMed/NCBI
|
37
|
Wang N, Wang C, Zhao H, He Y, Lan B, Sun L
and Gao Y: The MAMs structure and its role in cell death. Cells.
10:6572021. View Article : Google Scholar : PubMed/NCBI
|
38
|
Arif T, Krelin Y, Nakdimon I, Benharroch
D, Paul A, Dadon-Klein D and Shoshan-Barmatz V: VDAC1 is a
molecular target in glioblastoma, with its depletion leading to
reprogrammed metabolism and reversed oncogenic properties. Neuro
Oncol. 19:951–964. 2017. View Article : Google Scholar : PubMed/NCBI
|
39
|
Yun CO, Bhargava P, Na Y, Lee JS, Ryu J,
Kaul SC and Wadhwa R: Relevance of mortalin to cancer cell stemness
and cancer therapy. Sci Rep. 7:420162017. View Article : Google Scholar : PubMed/NCBI
|
40
|
Wei B, Cao J, Tian JH, Yu CY, Huang Q, Yu
JJ, Ma R, Wang J, Xu F and Wang LB: Mortalin maintains breast
cancer stem cells stemness via activation of Wnt/GSK3β/β-Catenin
signaling pathway. Am J Cancer Res. 11:2696–2716. 2021.PubMed/NCBI
|
41
|
Xu M, Zhang Y, Cui M, Wang X and Lin Z:
Mortalin contributes to colorectal cancer by promoting
proliferation and epithelial-mesenchymal transition. IUBMB Life.
72:771–781. 2020. View Article : Google Scholar : PubMed/NCBI
|
42
|
Takano S, Wadhwa R, Yoshii Y, Nose T, Kaul
SC and Mitsui Y: Elevated levels of mortalin expression in human
brain tumors. Exp Cell Res. 237:38–45. 1997. View Article : Google Scholar : PubMed/NCBI
|