Aberrant alternative splicing in cancer: Splicing events and their regulatory mechanisms (Review)
- Authors:
- Yaxuan Sun
- Xiaohui Hu
-
Affiliations: Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China, Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China - Published online on: August 2, 2024 https://doi.org/10.3892/ijo.2024.5678
- Article Number: 90
This article is mentioned in:
Abstract
Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, Kingsmore SF, Schroth GP and Burge CB: Alternative isoform regulation in human tissue transcriptomes. Nature. 456:470–476. 2008. View Article : Google Scholar : PubMed/NCBI | |
Turunen JJ, Niemelä EH, Verma B and Frilander MJ: The significant other: Splicing by the minor spliceosome. Wiley Interdiscip Rev RNA. 4:61–76. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wang GS and Cooper TA: Splicing in disease: Disruption of the splicing code and the decoding machinery. Nat Rev Genet. 8:749–761. 2007. View Article : Google Scholar : PubMed/NCBI | |
Urbanski LM, Leclair N and Anczuków O: Alternative-splicing defects in cancer: Splicing regulators and their downstream targets, guiding the way to novel cancer therapeutics. Wiley Interdiscip Rev RNA. 9:e14762018. View Article : Google Scholar : PubMed/NCBI | |
Pradella D, Naro C, Sette C and Ghigna C: EMT and stemness: Flexible processes tuned by alternative splicing in development and cancer progression. Mol Cancer. 16:82017. View Article : Google Scholar : PubMed/NCBI | |
Bradley RK and Anczuków O: RNA splicing dysregulation and the hallmarks of cancer. Nat Rev Cancer. 23:135–155. 2023. View Article : Google Scholar : PubMed/NCBI | |
Lee SC and Abdel-Wahab O: Therapeutic targeting of splicing in cancer. Nat Med. 22:976–986. 2016. View Article : Google Scholar : PubMed/NCBI | |
Marzese DM, Manughian-Peter AO, Orozco JIJ and Hoon DSB: Alternative splicing and cancer metastasis: Prognostic and therapeutic applications. Clin Exp Metastasis. 35:393–402. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cherry S and Lynch KW: Alternative splicing and cancer: Insights, opportunities, and challenges from an expanding view of the transcriptome. Genes Dev. 34:1005–1016. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lyu J and Cheng C: Regulation of alternative splicing during epithelial-mesenchymal transition. Cells Tissues Organs. 211:238–251. 2022. View Article : Google Scholar : PubMed/NCBI | |
Will CL and Lührmann R: Spliceosome structure and function. Cold Spring Harb Perspect Biol. 3:a0037072011. View Article : Google Scholar : PubMed/NCBI | |
Choi S, Cho N, Kim EM and Kim KK: The role of alternative pre-mRNA splicing in cancer progression. Cancer Cell Int. 23:2492023. View Article : Google Scholar : PubMed/NCBI | |
Öther-Gee Pohl S and Myant KB: Alternative RNA splicing in tumour heterogeneity, plasticity and therapy. Dis Model Mech. 15:dmm0492332022. View Article : Google Scholar : PubMed/NCBI | |
Wang N, Hu Y and Wang Z: Regulation of alternative splicing: Functional interplay with epigenetic modifications and its implication to cancer. Wiley Interdiscip Rev RNA. Sep 12–2023.(Epub ahead of print). | |
Zhu ZM, Huo FC, Zhang J, Shan HJ and Pei DS: Crosstalk between m6A modification and alternative splicing during cancer progression. Clin Transl Med. 13:e14602023. View Article : Google Scholar : PubMed/NCBI | |
Achour C, Bhattarai DP, Groza P, Román ÁC and Aguilo F: METTL3 regulates breast cancer-associated alternative splicing switches. Oncogene. 42:911–925. 2023. View Article : Google Scholar : PubMed/NCBI | |
Xiao W, Adhikari S, Dahal U, Chen YS, Hao YJ, Sun BF, Sun HY, Li A, Ping XL, Lai WY, et al: Nuclear m(6)A Reader YTHDC1 Regulates mRNA Splicing. Mol Cell. 61:507–519. 2016. View Article : Google Scholar : PubMed/NCBI | |
Itoh N, Yonehara S, Ishii A, Yonehara M, Mizushima S, Sameshima M, Hase A, Seto Y and Nagata S: The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell. 66:233–243. 1991. View Article : Google Scholar : PubMed/NCBI | |
Ruberti G, Cascino I, Papoff G and Eramo A: Fas splicing variants and their effect on apoptosis. Adv Exp Med Biol. 406:125–134. 1996. View Article : Google Scholar : PubMed/NCBI | |
Paronetto MP, Bernardis I, Volpe E, Bechara E, Sebestyén E, Eyras E and Valcárcel J: Regulation of FAS exon definition and apoptosis by the Ewing sarcoma protein. Cell Rep. 7:1211–1226. 2014. View Article : Google Scholar : PubMed/NCBI | |
Izquierdo JM, Majós N, Bonnal S, Martínez C, Castelo R, Guigó R, Bilbao D and Valcárcel J: Regulation of Fas alternative splicing by antagonistic effects of TIA-1 and PTB on exon definition. Mol Cell. 19:475–484. 2005. View Article : Google Scholar : PubMed/NCBI | |
Corsini L, Bonnal S, Basquin J, Hothorn M, Scheffzek K, Valcárcel J and Sattler M: U2AF-homology motif interactions are required for alternative splicing regulation by SPF45. Nat Struct Mol Biol. 14:620–629. 2007. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Conaway L, Rutherford Bethard J, Al-Ayoubi AM, Thompson Bradley A, Zheng H, Weed SA and Eblen ST: Phosphorylation of the alternative mRNA splicing factor 45 (SPF45) by Clk1 regulates its splice site utilization, cell migration and invasion. Nucleic Acids Res. 41:4949–4962. 2013. View Article : Google Scholar : PubMed/NCBI | |
Al-Ayoubi AM, Zheng H, Liu Y, Bai T and Eblen ST: Mitogen-activated protein kinase phosphorylation of splicing factor 45 (SPF45) regulates SPF45 alternative splicing site utilization, proliferation, and cell adhesion. Mol Cell Biol. 32:2880–2893. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bonnal S, Martínez C, Förch P, Bachi A, Wilm M and Valcárcel J: RBM5/Luca-15/H37 regulates Fas alternative splice site pairing after exon definition. Mol Cell. 32:81–95. 2008. View Article : Google Scholar : PubMed/NCBI | |
Choi N, Jang HN, Oh J, Ha J, Park H, Zheng X, Lee S and Shen H: SRSF6 regulates the alternative splicing of the apoptotic fas gene by targeting a novel RNA Sequence. Cancers (Basel). 14:19902022. View Article : Google Scholar : PubMed/NCBI | |
Oh H, Lee E, Jang HN, Lee J, Moon H, Sheng Z, Jun Y, Loh TJ, Cho S, Zhou J, et al: hnRNP A1 contacts exon 5 to promote exon 6 inclusion of apoptotic Fas gene. Apoptosis. 18:825–835. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sehgal L, Mathur R, Braun FK, Wise JF, Berkova Z, Neelapu S, Kwak LW and Samaniego F: FAS-antisense 1 lncRNA and production of soluble versus membrane Fas in B-cell lymphoma. Leukemia. 28:2376–2387. 2014. View Article : Google Scholar : PubMed/NCBI | |
Fu Y and Wang Y: SRSF7 knockdown promotes apoptosis of colon and lung cancer cells. Oncol Lett. 15:5545–5552. 2018.PubMed/NCBI | |
Liu W, Lin YT, Yan XL, Ding YL, Wu YL, Chen WN and Lin X: Hepatitis B virus core protein inhibits Fas-mediated apoptosis of hepatoma cells via regulation of mFas/FasL and sFas expression. FASEB J. 29:1113–1123. 2015. View Article : Google Scholar : PubMed/NCBI | |
Esmailzadeh S, Huang Y, Su MW, Zhou Y and Jiang X: BIN1 tumor suppressor regulates Fas/Fas ligand-mediated apoptosis through c-FLIP in cutaneous T-cell lymphoma. Leukemia. 29:1402–1413. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ge K, DuHadaway J, Du W, Herlyn M, Rodeck U and Prendergast GC: Mechanism for elimination of a tumor suppressor: Aberrant splicing of a brain-specific exon causes loss of function of Bin1 in melanoma. Proc Natl Acad Sci USA. 96:9689–9694. 1999. View Article : Google Scholar : PubMed/NCBI | |
Ghaneie A, Zemba-Palko V, Itoh H, Itoh K, Sakamuro D, Nakamura S, Soler AP and Prendergast GC: Bin1 attenuation in breast cancer is correlated to nodal metastasis and reduced survival. Cancer Biol Ther. 6:192–194. 2007. View Article : Google Scholar : PubMed/NCBI | |
Anczuków O, Rosenberg AZ, Akerman M, Das S, Zhan L, Karni R, Muthuswamy SK and Krainer AR: The splicing factor SRSF1 regulates apoptosis and proliferation to promote mammary epithelial cell transformation. Nat Struct Mol Biol. 19:220–228. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Liu T, Wang M, Lv W, Wang Y, Jia Y, Zhang R and Liu L: SRSF1-dependent alternative splicing attenuates BIN1 expression in non-small cell lung cancer. J Cell Biochem. 121:946–953. 2020. View Article : Google Scholar : PubMed/NCBI | |
Naro C, Barbagallo F, Chieffi P, Bourgeois CF, Paronetto MP and Sette C: The centrosomal kinase NEK2 is a novel splicing factor kinase involved in cell survival. Nucleic Acids Res. 42:3218–3227. 2014. View Article : Google Scholar : PubMed/NCBI | |
Golan-Gerstl R, Cohen M, Shilo A, Suh SS, Bakàcs A, Coppola L and Karni R: Splicing factor hnRNP A2/B1 regulates tumor suppressor gene splicing and is an oncogenic driver in glioblastoma. Cancer Res. 71:4464–4472. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hu Z, Dong L, Li S, Li Z, Qiao Y, Li Y, Ding J, Chen Z, Wu Y, Wang Z, et al: Splicing Regulator p54(nrb)/Non-POU Domain-containing octamer-binding protein enhances carcinogenesis through oncogenic isoform switch of MYC box-dependent interacting protein 1 in hepatocellular carcinoma. Hepatology. 72:548–568. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ge Y, Schuster MB, Pundhir S, Rapin N, Bagger FO, Sidiropoulos N, Hashem N and Porse BT: The splicing factor RBM25 controls MYC activity in acute myeloid leukemia. Nat Commun. 10:1722019. View Article : Google Scholar : PubMed/NCBI | |
Singh R, Letai A and Sarosiek K: Regulation of apoptosis in health and disease: The balancing act of BCL-2 family proteins. Nat Rev Mol Cell Biol. 20:175–193. 2019. View Article : Google Scholar : PubMed/NCBI | |
Motoyama N, Wang F, Roth KA, Sawa H, Nakayama K, Nakayama K, Negishi I, Senju S, Zhang Q, Fujii S, et al: Massive cell death of immature hematopoietic cells and neurons in Bcl-x-deficient mice. Science. 267:1506–1510. 1995. View Article : Google Scholar : PubMed/NCBI | |
Boise LH, González-García M, Postema CE, Ding L, Lindsten T, Turka LA, Mao X, Nuñez G and Thompson CB: bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell. 74:597–608. 1993. View Article : Google Scholar : PubMed/NCBI | |
Merdzhanova G, Edmond V, De Seranno S, Van den Broeck A, Corcos L, Brambilla C, Brambilla E, Gazzeri S and Eymin B: E2F1 controls alternative splicing pattern of genes involved in apoptosis through upregulation of the splicing factor SC35. Cell Death Differ. 15:1815–1823. 2008. View Article : Google Scholar : PubMed/NCBI | |
Inoue A, Yamamoto N, Kimura M, Nishio K, Yamane H and Nakajima K: RBM10 regulates alternative splicing. FEBS Lett. 588:942–947. 2014. View Article : Google Scholar : PubMed/NCBI | |
Nanjo S, Wu W, Karachaliou N, Blakely CM, Suzuki J, Chou YT, Ali SM, Kerr DL, Olivas VR, Shue J, et al: Deficiency of the splicing factor RBM10 limits EGFR inhibitor response in EGFR-mutant lung cancer. J Clin Invest. 132:e1450992022. View Article : Google Scholar : PubMed/NCBI | |
Fuentes-Fayos AC, Pérez-Gómez JM, G-García ME, Jiménez-Vacas JM, Blanco-Acevedo C, Sánchez-Sánchez R, Solivera J, Breunig JJ, Gahete MD, Castaño JP and Luque RM: SF3B1 inhibition disrupts malignancy and prolongs survival in glioblastoma patients through BCL2L1 splicing and mTOR/ß-catenin pathways imbalances. J Exp Clin Cancer Res. 41:392022. View Article : Google Scholar : PubMed/NCBI | |
Yadav S, Pant D, Samaiya A, Kalra N, Gupta S and Shukla S: ERK1/2-EGR1-SRSF10 axis mediated alternative splicing plays a critical role in head and neck cancer. Front Cell Dev Biol. 9:7136612021. View Article : Google Scholar : PubMed/NCBI | |
Lv Y, Zhang W, Zhao J, Sun B, Qi Y, Ji H, Chen C, Zhang J, Sheng J, Wang T, et al: SRSF1 inhibits autophagy through regulating Bcl-x splicing and interacting with PIK3C3 in lung cancer. Signal Transduct Target Ther. 6:1082021. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Chen D, Qian H, Tsai YS, Shao S, Liu Q, Dominguez D and Wang Z: The splicing factor RBM4 controls apoptosis, proliferation, and migration to suppress tumor progression. Cancer Cell. 26:374–389. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bielli P, Bordi M, Di Biasio V and Sette C: Regulation of BCL-X splicing reveals a role for the polypyrimidine tract binding protein (PTBP1/hnRNP I) in alternative 5′ splice site selection. Nucleic Acids Res. 42:12070–12081. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Guo J, Che X and Jia R: PCBP1 inhibits the expression of oncogenic STAT3 isoform by targeting alternative splicing of STAT3 exon 23. Int J Biol Sci. 15:1177–1186. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhou A, Ou AC, Cho A, Benz EJ Jr and Huang SC: Novel splicing factor RBM25 modulates Bcl-x pre-mRNA 5′ splice site selection. Mol Cell Biol. 28:5924–5936. 2008. View Article : Google Scholar : PubMed/NCBI | |
Revil T, Pelletier J, Toutant J, Cloutier A and Chabot B: Heterogeneous nuclear ribonucleoprotein K represses the production of pro-apoptotic Bcl-xS splice isoform. J Biol Chem. 284:21458–21467. 2009. View Article : Google Scholar : PubMed/NCBI | |
Liang X, Shi H, Yang L, Qiu C, Lin S, Qi Y, Li J, Zhao A and Liu J: Inhibition of polypyrimidine tract-binding protein 3 induces apoptosis and cell cycle arrest, and enhances the cytotoxicity of 5-fluorouracil in gastric cancer cells. Br J Cancer. 116:903–911. 2017. View Article : Google Scholar : PubMed/NCBI | |
Almeida LO, Garcia CB, Matos-Silva FA, Curti C and Leopoldino AM: Accumulated SET protein up-regulates and interacts with hnRNPK, increasing its binding to nucleic acids, the Bcl-xS repression, and cellular proliferation. Biochem Biophys Res Commun. 445:196–202. 2014. View Article : Google Scholar : PubMed/NCBI | |
Iervolino A, Santilli G, Trotta R, Guerzoni C, Cesi V, Bergamaschi A, Gambacorti-Passerini C, Calabretta B and Perrotti D: hnRNP A1 nucleocytoplasmic shuttling activity is required for normal myelopoiesis and BCR/ABL leukemogenesis. Mol Cell Biol. 22:2255–2266. 2002. View Article : Google Scholar : PubMed/NCBI | |
Vhuiyan MI, Pak ML, Park MA, Thomas D, Lakowski TM, Chalfant CE and Frankel A: PRMT2 interacts with splicing factors and regulates the alternative splicing of BCL-X. J Biochem. 162:17–25. 2017.PubMed/NCBI | |
Chen ZY, Cai L, Zhu J, Chen M, Chen J, Li ZH, Liu XD, Wang SG, Bie P, Jiang P, et al: Fyn requires HnRNPA2B1 and Sam68 to synergistically regulate apoptosis in pancreatic cancer. Carcinogenesis. 32:1419–1426. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bielli P, Busà R, Di Stasi SM, Munoz MJ, Botti F, Kornblihtt AR and Sette C: The transcription factor FBI-1 inhibits SAM68-mediated BCL-X alternative splicing and apoptosis. EMBO Rep. 15:419–427. 2014. View Article : Google Scholar : PubMed/NCBI | |
Singh R, Gupta SC, Peng WX, Zhou N, Pochampally R, Atfi A, Watabe K, Lu Z and Mo YY: Regulation of alternative splicing of Bcl-x by BC200 contributes to breast cancer pathogenesis. Cell Death Dis. 7:e22622016. View Article : Google Scholar : PubMed/NCBI | |
Shapiro BA, Vu NT, Shultz MD, Shultz JC, Mietla JA, Gouda MM, Yacoub A, Dent P, Fisher PB, Park MA and Chalfant CE: Melanoma Differentiation-associated Gene 7/IL-24 exerts cytotoxic effects by altering the alternative splicing of Bcl-x Pre-mRNA via the SRC/PKCδ signaling axis. J Biol Chem. 291:21669–21681. 2016. View Article : Google Scholar : PubMed/NCBI | |
Shultz JC, Vu N, Shultz MD, Mba MU, Shapiro BA and Chalfant CE: The Proto-oncogene PKCι regulates the alternative splicing of Bcl-x pre-mRNA. Mol Cancer Res. 10:660–669. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zong L, Hattori N, Yasukawa Y, Kimura K, Mori A, Seto Y and Ushijima T: LINC00162 confers sensitivity to 5-Aza-2′-deoxycytidine via modulation of an RNA splicing protein, HNRNPH1. Oncogene. 38:5281–5293. 2019. View Article : Google Scholar : PubMed/NCBI | |
DeOcesano-Pereira C, Amaral MS, Parreira KS, Ayupe AC, Jacysyn JF, Amarante-Mendes GP, Reis EM and Verjovski-Almeida S: Long non-coding RNA INXS is a critical mediator of BCL-XS induced apoptosis. Nucleic Acids Res. 42:8343–8355. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bae J, Leo CP, Hsu SY and Hsueh AJ: MCL-1S, a splicing variant of the antiapoptotic BCL-2 family member MCL-1, encodes a proapoptotic protein possessing only the BH3 domain. J Biol Chem. 275:25255–25261. 2000. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Guo M, Wei H and Chen Y: Targeting MCL-1 in cancer: Current status and perspectives. J Hematol Oncol. 14:672021. View Article : Google Scholar : PubMed/NCBI | |
Shieh JJ, Liu KT, Huang SW, Chen YJ and Hsieh TY: Modification of alternative splicing of Mcl-1 pre-mRNA using antisense morpholino oligonucleotides induces apoptosis in basal cell carcinoma cells. J Invest Dermatol. 129:2497–2506. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kim DW, Kim JH, Park M, Yeom JH, Go H, Kim S, Han MS, Lee K and Bae J: Modulation of biological processes in the nucleus by delivery of DNA oligonucleotides conjugated with gold nanoparticles. Biomaterials. 32:2593–2604. 2011. View Article : Google Scholar : PubMed/NCBI | |
Tyson-Capper A and Gautrey H: Regulation of Mcl-1 alternative splicing by hnRNP F, H1 and K in breast cancer cells. RNA Biol. 15:1448–1457. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gautrey HL and Tyson-Capper AJ: Regulation of Mcl-1 by SRSF1 and SRSF5 in cancer cells. PLoS One. 7:e514972012. View Article : Google Scholar : PubMed/NCBI | |
Moore MJ, Wang Q, Kennedy CJ and Silver PA: An alternative splicing network links cell-cycle control to apoptosis. Cell. 142:625–636. 2010. View Article : Google Scholar : PubMed/NCBI | |
Duan Y, Jia Y, Wang J, Liu T, Cheng Z, Sang M, Lv W, Qin J and Liu L: Long noncoding RNA DGCR5 involves in tumorigenesis of esophageal squamous cell carcinoma via SRSF1-mediated alternative splicing of Mcl-1. Cell Death Dis. 12:5872021. View Article : Google Scholar : PubMed/NCBI | |
Kędzierska H, Popławski P, Hoser G, Rybicka B, Rodzik K, Sokół E, Bogusławska J, Tański Z, Fogtman A, Koblowska M and Piekiełko-Witkowska A: Decreased Expression of SRSF2 splicing factor inhibits apoptotic pathways in renal cancer. Int J Mol Sci. 17:15982016. View Article : Google Scholar : PubMed/NCBI | |
Gao Y and Koide K: Chemical perturbation of Mcl-1 pre-mRNA splicing to induce apoptosis in cancer cells. ACS Chem Biol. 8:895–900. 2013. View Article : Google Scholar : PubMed/NCBI | |
Pearson JM, Tan SF, Sharma A, Annageldiyev C, Fox TE, Abad JL, Fabrias G, Desai D, Amin S, Wang HG, et al: Ceramide Analogue SACLAC modulates sphingolipid levels and MCL-1 splicing to induce apoptosis in acute myeloid leukemia. Mol Cancer Res. 18:352–363. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lin JC, Lin CY, Tarn WY and Li FY: Elevated SRPK1 lessens apoptosis in breast cancer cells through RBM4-regulated splicing events. RNA. 20:1621–1631. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Hu Z, Guo Q, Yang L, Pang Y and Wang W: MiR-23b functions as an oncogenic miRNA by downregulating Mcl-1S in lung cancer cell line A549. J Biochem Mol Toxicol. 34:e224942020. View Article : Google Scholar : PubMed/NCBI | |
Kollinerová S, Dostál Z and Modrianský M: MicroRNA hsa-miR-29b potentiates etoposide toxicity in HeLa cells via down-regulation of Mcl-1. Toxicol In Vitro. 40:289–296. 2017. View Article : Google Scholar : PubMed/NCBI | |
Khan DH, Gonzalez C, Tailor N, Hamedani MK, Leygue E and Davie JR: Dynamic histone acetylation of H3K4me3 nucleosome regulates MCL1 Pre-mRNA splicing. J Cell Physiol. 231:2196–2204. 2016. View Article : Google Scholar : PubMed/NCBI | |
Duffy MJ, Synnott NC, O'Grady S and Crown J: Targeting p53 for the treatment of cancer. Semin Cancer Biol. 79:58–67. 2022. View Article : Google Scholar : PubMed/NCBI | |
Sigalas I, Calvert AH, Anderson JJ, Neal DE and Lunec J: Alternatively spliced mdm2 transcripts with loss of p53 binding domain sequences: Transforming ability and frequent detection in human cancer. Nat Med. 2:912–917. 1996. View Article : Google Scholar : PubMed/NCBI | |
Wu J, Lu G and Wang X: MDM4 alternative splicing and implication in MDM4 targeted cancer therapies. Am J Cancer Res. 11:5864–5880. 2021.PubMed/NCBI | |
Rallapalli R, Strachan G, Cho B, Mercer WE and Hall DJ: A novel MDMX transcript expressed in a variety of transformed cell lines encodes a truncated protein with potent p53 repressive activity. J Biol Chem. 274:8299–8308. 1999. View Article : Google Scholar : PubMed/NCBI | |
Pavlyukov MS, Yu H, Bastola S, Minata M, Shender VO, Lee Y, Zhang S, Wang J, Komarova S, Wang J, et al: Apoptotic cell-derived extracellular vesicles promote malignancy of glioblastoma via intercellular transfer of splicing factors. Cancer Cell. 34:119–135.e10. 2018. View Article : Google Scholar : PubMed/NCBI | |
Deka B, Chandra P, Yadav P, Rehman A, Kumari S, Kunnumakkara AB and Singh KK: RNPS1 functions as an oncogenic splicing factor in cervical cancer cells. IUBMB life. 75:514–529. 2023. View Article : Google Scholar : PubMed/NCBI | |
Yano K, Takahashi RU, Shiotani B, Abe J, Shidooka T, Sudo Y, Yamamoto Y, Kan S, Sakagami H and Tahara H: PRPF19 regulates p53-dependent cellular senescence by modulating alternative splicing of MDM4 mRNA. J Biol Chem. 297:1008822021. View Article : Google Scholar : PubMed/NCBI | |
Bieging-Rolett KT, Kaiser AM, Morgens DW, Boutelle AM, Seoane JA, Van Nostrand EL, Zhu C, Houlihan SL, Mello SS, Yee BA, et al: Zmat3 is a key splicing regulator in the p53 tumor suppression program. Mol Cell. 80:452–469.e9. 2020. View Article : Google Scholar : PubMed/NCBI | |
Siebring-van Olst E, Blijlevens M, de Menezes RX, van der Meulen-Muileman IH, Smit EF and van Beusechem VW: A genome-wide siRNA screen for regulators of tumor suppressor p53 activity in human non-small cell lung cancer cells identifies components of the RNA splicing machinery as targets for anticancer treatment. Mol Oncol. 11:534–551. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jiang ZH, Zhang WJ, Rao Y and Wu JY: Regulation of Ich-1 pre-mRNA alternative splicing and apoptosis by mammalian splicing factors. Proc Natl Acad Sci USA. 95:9155–9160. 1998. View Article : Google Scholar : PubMed/NCBI | |
Côté J, Dupuis S and Wu JY: Polypyrimidine track-binding protein binding downstream of caspase-2 alternative exon 9 represses its inclusion. J Biol Chem. 276:8535–8543. 2001. View Article : Google Scholar : PubMed/NCBI | |
Fushimi K, Ray P, Kar A, Wang L, Sutherland LC and Wu JY: Up-regulation of the proapoptotic caspase 2 splicing isoform by a candidate tumor suppressor, RBM5. Proc Natl Acad Sci USA. 105:15708–15713. 2008. View Article : Google Scholar : PubMed/NCBI | |
Horiuchi T, Himeji D, Tsukamoto H, Harashima S, Hashimura C and Hayashi K: Dominant expression of a novel splice variant of caspase-8 in human peripheral blood lymphocytes. Biochem Biophys Res Commun. 272:877–881. 2000. View Article : Google Scholar : PubMed/NCBI | |
Himeji D, Horiuchi T, Tsukamoto H, Hayashi K, Watanabe T and Harada M: Characterization of caspase-8L: A novel isoform of caspase-8 that behaves as an inhibitor of the caspase cascade. Blood. 99:4070–4078. 2002. View Article : Google Scholar : PubMed/NCBI | |
Stacey SN, Kehr B, Gudmundsson J, Zink F, Jonasdottir A, Gudjonsson SA, Sigurdsson A, Halldorsson BV, Agnarsson BA, Benediktsdottir KR, et al: Insertion of an SVA-E retrotransposon into the CASP8 gene is associated with protection against prostate cancer. Hum Mol Genet. 25:1008–1018. 2016. View Article : Google Scholar : PubMed/NCBI | |
Stacey SN, Helgason H, Gudjonsson SA, Thorleifsson G, Zink F, Sigurdsson A, Kehr B, Gudmundsson J, Sulem P, Sigurgeirsson B, et al: New basal cell carcinoma susceptibility loci. Nat Commun. 6:68252015. View Article : Google Scholar : PubMed/NCBI | |
Li P, Zhou L, Zhao T, Liu X, Zhang P, Liu Y, Zheng X and Li Q: Caspase-9: Structure, mechanisms and clinical application. Oncotarget. 8:23996–24008. 2017. View Article : Google Scholar : PubMed/NCBI | |
Srinivasula SM, Ahmad M, Guo Y, Zhan Y, Lazebnik Y, Fernandes-Alnemri T and Alnemri ES: Identification of an endogenous dominant-negative short isoform of caspase-9 that can regulate apoptosis. Cancer Res. 59:999–1002. 1999.PubMed/NCBI | |
Seol DW and Billiar TR: A caspase-9 variant missing the catalytic site is an endogenous inhibitor of apoptosis. J Biol Chem. 274:2072–2076. 1999. View Article : Google Scholar : PubMed/NCBI | |
Massiello A and Chalfant CE: SRp30a (ASF/SF2) regulates the alternative splicing of caspase-9 pre-mRNA and is required for ceramide-responsiveness. J Lipid Res. 47:892–897. 2006. View Article : Google Scholar : PubMed/NCBI | |
Shultz JC, Goehe RW, Wijesinghe DS, Murudkar C, Hawkins AJ, Shay JW, Minna JD and Chalfant CE: Alternative splicing of caspase 9 is modulated by the phosphoinositide 3-kinase/Akt pathway via phosphorylation of SRp30a. Cancer Res. 70:9185–9196. 2010. View Article : Google Scholar : PubMed/NCBI | |
Goehe RW, Shultz JC, Murudkar C, Usanovic S, Lamour NF, Massey DH, Zhang L, Camidge DR, Shay JW, Minna JD and Chalfant CE: hnRNP L regulates the tumorigenic capacity of lung cancer xenografts in mice via caspase-9 pre-mRNA processing. J Clin Invest. 120:3923–3939. 2010. View Article : Google Scholar : PubMed/NCBI | |
Vu NT, Park MA, Shultz JC, Goehe RW, Hoeferlin LA, Shultz MD, Smith SA, Lynch KW and Chalfant CE: hnRNP U enhances caspase-9 splicing and is modulated by AKT-dependent phosphorylation of hnRNP L. J Biol Chem. 288:8575–8584. 2013. View Article : Google Scholar : PubMed/NCBI | |
Perurena N, Situ L and Cichowski K: Combinatorial strategies to target RAS-driven cancers. Nat Rev Cancer. 24:316–337. 2024. View Article : Google Scholar : PubMed/NCBI | |
Rásó E: Splice variants of RAS-translational significance. Cancer Metastasis Rev. 39:1039–1049. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ebert R, Wiseman RW, Barrett JC, Reiss E, Rollich G and Schiffmann D: Characterization of the Syrian hamster c-Ha-ras gene and intron-D-exon transcript. Mol Carcinog. 5:254–258. 1992. View Article : Google Scholar : PubMed/NCBI | |
Cohen JB, Broz SD and Levinson AD: Expression of the H-ras proto-oncogene is controlled by alternative splicing. Cell. 58:461–472. 1989. View Article : Google Scholar : PubMed/NCBI | |
Huang MY and Cohen JB: The alternative H-ras protein p19 displays properties of a negative regulator of p21Ras. Oncol Res. 9:611–621. 1997.PubMed/NCBI | |
Camats M, Guil S, Kokolo M and Bach-Elias M: P68 RNA helicase (DDX5) alters activity of cis- and trans-acting factors of the alternative splicing of H-Ras. PLoS One. 3:e29262008. View Article : Google Scholar : PubMed/NCBI | |
Guil S, Gattoni R, Carrascal M, Abián J, Stévenin J and Bach-Elias M: Roles of hnRNP A1, SR proteins, and p68 helicase in c-H-ras alternative splicing regulation. Mol Cell Biol. 23:2927–2941. 2003. View Article : Google Scholar : PubMed/NCBI | |
De P, Rozeboom BJ, Aske JC and Dey N: Active RAC1 promotes tumorigenic phenotypes and therapy resistance in solid tumors. Cancers (Basel). 12:15412020. View Article : Google Scholar : PubMed/NCBI | |
Jordan P, Brazåo R, Boavida MG, Gespach C and Chastre E: Cloning of a novel human Rac1b splice variant with increased expression in colorectal tumors. Oncogene. 18:6835–6839. 1999. View Article : Google Scholar : PubMed/NCBI | |
Singh A, Karnoub AE, Palmby TR, Lengyel E, Sondek J and Der CJ: Rac1b, a tumor associated, constitutively active Rac1 splice variant, promotes cellular transformation. Oncogene. 23:9369–9380. 2004. View Article : Google Scholar : PubMed/NCBI | |
Gonçalves V, Matos P and Jordan P: Antagonistic SR proteins regulate alternative splicing of tumor-related Rac1b downstream of the PI3-kinase and Wnt pathways. Hum Mol Genet. 18:3696–3707. 2009. View Article : Google Scholar : PubMed/NCBI | |
Gonçalves V, Henriques AF, Pereira JF, Neves Costa A, Moyer MP, Moita LF, Gama-Carvalho M, Matos P and Jordan P: Phosphorylation of SRSF1 by SRPK1 regulates alternative splicing of tumor-related Rac1b in colorectal cells. RNA. 20:474–482. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang F, Fu X, Chen P, Wu P, Fan X, Li N, Zhu H, Jia TT, Ji H, Wang Z, et al: SPSB1-mediated HnRNP A1 ubiquitylation regulates alternative splicing and cell migration in EGF signaling. Cell Res. 27:540–558. 2017. View Article : Google Scholar : PubMed/NCBI | |
Pelisch F, Khauv D, Risso G, Stallings-Mann M, Blaustein M, Quadrana L, Radisky DC and Srebrow A: Involvement of hnRNP A1 in the matrix metalloprotease-3-dependent regulation of Rac1 pre-mRNA splicing. J Cell Biochem. 113:2319–2329. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mehner C, Miller E, Khauv D, Nassar A, Oberg AL, Bamlet WR, Zhang L, Waldmann J, Radisky ES, Crawford HC and Radisky DC: Tumor cell-derived MMP3 orchestrates Rac1b and tissue alterations that promote pancreatic adenocarcinoma. Mol Cancer Res. 12:1430–1439. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cichon MA, Nelson CM and Radisky DC: Regulation of epithelial-mesenchymal transition in breast cancer cells by cell contact and adhesion. Cancer Inform. 14 (Suppl 3):S1–S13. 2015. | |
Hollander D, Donyo M, Atias N, Mekahel K, Melamed Z, Yannai S, Lev-Maor G, Shilo A, Schwartz S, Barshack I, et al: A network-based analysis of colon cancer splicing changes reveals a tumorigenesis-favoring regulatory pathway emanating from ELK1. Genome Res. 26:541–553. 2016. View Article : Google Scholar : PubMed/NCBI | |
Seiz JR, Klinke J, Scharlibbe L, Lohfink D, Heipel M, Ungefroren H, Giehl K and Menke A: Different signaling and functionality of Rac1 and Rac1b in the progression of lung adenocarcinoma. Biol Chem. 401:517–531. 2020. View Article : Google Scholar : PubMed/NCBI | |
Deng G, Zhou X, Chen L, Yao Y, Li J, Zhang Y, Luo C, Sun L and Tang J: High expression of ESRP1 regulated by circ-0005585 promotes cell colonization in ovarian cancer. Cancer Cell Int. 20:1742020. View Article : Google Scholar : PubMed/NCBI | |
Manco M, Ala U, Cantarella D, Tolosano E, Medico E, Altruda F and Fagoonee S: The RNA-Binding Protein ESRP1 modulates the expression of RAC1b in colorectal cancer cells. Cancers (Basel). 13:40922021. View Article : Google Scholar : PubMed/NCBI | |
Elhasnaoui J, Ferrero G, Miano V, Franchitti L, Tarulli I, Coscujuela Tarrero L, Cutrupi S and De Bortoli M: A regulatory axis between epithelial splicing regulatory proteins and estrogen receptor α modulates the alternative transcriptome of luminal breast cancer. Int J Mol Sci. 23:78352022. View Article : Google Scholar : PubMed/NCBI | |
Wu H, Larribère L, Sun Q, Novak D, Sachindra S, Granados K, Umansky V and Utikal J: Loss of neural crest-associated gene FOXD1 impairs melanoma invasion and migration via RAC1B downregulation. Int J Cancer. 143:2962–2972. 2018. View Article : Google Scholar : PubMed/NCBI | |
Xing S, Li Z, Ma W, Shen S, Wei H, Li ST, Shu Y, Sun L, Zhong X, Huangfu Y, et al: DIS3L2 promotes progression of hepatocellular carcinoma via hnRNP U-mediated alternative splicing. Cancer Res. 79:4923–4936. 2019. View Article : Google Scholar : PubMed/NCBI | |
Pereira JFS, Bessa C, Matos P and Jordan P: Pro-Inflammatory cytokines trigger the overexpression of tumour-related splice variant RAC1B in polarized colorectal cells. Cancers (Basel). 14:13932022. View Article : Google Scholar : PubMed/NCBI | |
Ungefroren H, Thürling I, Färber B, Kowalke T, Fischer T, De Assis LVM, Braun R, Castven D, Oster H, Konukiewitz B, et al: The quasimesenchymal pancreatic ductal epithelial cell line PANC-1-A useful model to study clonal heterogeneity and EMT subtype shifting. Cancers (Basel). 14:20572022. View Article : Google Scholar : PubMed/NCBI | |
Schackmann RC, Tenhagen M, van de Ven RA and Derksen PW: p120-catenin in cancer-mechanisms, models and opportunities for intervention. J Cell Sci. 126:3515–3525. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ohkubo T and Ozawa M: The transcription factor Snail downregulates the tight junction components independently of E-cadherin downregulation. J Cell Sci. 117:1675–1685. 2004. View Article : Google Scholar : PubMed/NCBI | |
Deloria AJ, Höflmayer D, Kienzl P, Łopatecka J, Sampl S, Klimpfinger M, Braunschmid T, Bastian F, Lu L, Marian B, et al: Epithelial splicing regulatory protein 1 and 2 paralogues correlate with splice signatures and favorable outcome in human colorectal cancer. Oncotarget. 7:73800–73816. 2016. View Article : Google Scholar : PubMed/NCBI | |
Scheper GC, Parra JL, Wilson M, Van Kollenburg B, Vertegaal AC, Han ZG and Proud CG: The N and C termini of the splice variants of the human mitogen-activated protein kinase-interacting kinase Mnk2 determine activity and localization. Mol Cell Biol. 23:5692–5705. 2003. View Article : Google Scholar : PubMed/NCBI | |
Maimon A, Mogilevsky M, Shilo A, Golan-Gerstl R, Obiedat A, Ben-Hur V, Lebenthal-Loinger I, Stein I, Reich R, Beenstock J, et al: Mnk2 alternative splicing modulates the p38-MAPK pathway and impacts Ras-induced transformation. Cell Rep. 7:501–513. 2014. View Article : Google Scholar : PubMed/NCBI | |
Stead RL and Proud CG: Rapamycin enhances eIF4E phosphorylation by activating MAP kinase-interacting kinase 2a (Mnk2a). FEBS Lett. 587:2623–2628. 2013. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Gong Z, Li K, Zhang Q, Xu Z and Xu Y: SRPK1/2 and PP1α exert opposite functions by modulating SRSF1-guided MKNK2 alternative splicing in colon adenocarcinoma. J Exp Clin Cancer Res. 40:752021. View Article : Google Scholar : PubMed/NCBI | |
Noguchi T, Inoue H and Tanaka T: The M1- and M2-type isozymes of rat pyruvate kinase are produced from the same gene by alternative RNA splicing. J Biol Chem. 261:13807–13812. 1986. View Article : Google Scholar : PubMed/NCBI | |
Zahra K, Dey T, Ashish, Mishra SP and Pandey U: Pyruvate Kinase M2 and Cancer: The Role of PKM2 in promoting tumorigenesis. Front Oncol. 10:1592020. View Article : Google Scholar : PubMed/NCBI | |
David CJ, Chen M, Assanah M, Canoll P and Manley JL: HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer. Nature. 463:364–368. 2010. View Article : Google Scholar : PubMed/NCBI | |
Chen M, David CJ and Manley JL: Concentration-dependent control of pyruvate kinase M mutually exclusive splicing by hnRNP proteins. Nat Struct Mol Biol. 19:346–354. 2012. View Article : Google Scholar : PubMed/NCBI | |
Sun Y, Zhao X, Zhou Y and Hu Y: miR-124, miR-137 and miR-340 regulate colorectal cancer growth via inhibition of the Warburg effect. Oncol Rep. 28:1346–1352. 2012. View Article : Google Scholar : PubMed/NCBI | |
Su CH, Hung KY, Hung SC and Tarn WY: RBM4 regulates neuronal differentiation of mesenchymal stem cells by modulating alternative splicing of pyruvate kinase M. Mol Cell Biol. 37:e004662017. View Article : Google Scholar : PubMed/NCBI | |
Chen D, Wang Y, Lu R, Jiang X, Chen X, Meng N, Chen M, Xie S and Yan GR: E3 ligase ZFP91 inhibits hepatocellular carcinoma metabolism reprogramming by regulating PKM splicing. Theranostics. 10:8558–8572. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yan Q, Zeng P, Zhou X, Zhao X, Chen R, Qiao J, Feng L, Zhu Z, Zhang G and Chen C: RBMX suppresses tumorigenicity and progression of bladder cancer by interacting with the hnRNP A1 protein to regulate PKM alternative splicing. Oncogene. 40:2635–2650. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhu HE, Li T, Shi S, Chen DX, Chen W and Chen H: ESCO2 promotes lung adenocarcinoma progression by regulating hnRNPA1 acetylation. J Exp Clin Cancer Res. 40:642021. View Article : Google Scholar : PubMed/NCBI | |
Gu Z, Xia J, Xu H, Frech I, Tricot G and Zhan F: NEK2 promotes aerobic glycolysis in multiple myeloma through regulating splicing of pyruvate kinase. J Hematol Oncol. 10:172017. View Article : Google Scholar : PubMed/NCBI | |
Calabretta S, Bielli P, Passacantilli I, Pilozzi E, Fendrich V, Capurso G, Fave GD and Sette C: Modulation of PKM alternative splicing by PTBP1 promotes gemcitabine resistance in pancreatic cancer cells. Oncogene. 35:2031–2039. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sugiyama T, Taniguchi K, Matsuhashi N, Tajirika T, Futamura M, Takai T, Akao Y and Yoshida K: MiR-133b inhibits growth of human gastric cancer cells by silencing pyruvate kinase muscle-splicer polypyrimidine tract-binding protein 1. Cancer Sci. 107:1767–1775. 2016. View Article : Google Scholar : PubMed/NCBI | |
Choksi A, Parulekar A, Pant R, Shah VK, Nimma R, Firmal P, Singh S, Kundu GC, Shukla S and Chattopadhyay S: Tumor suppressor SMAR1 regulates PKM alternative splicing by HDAC6-mediated deacetylation of PTBP1. Cancer Metab. 9:162021. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Chatterjee D, Jeon HY, Akerman M, Vander Heiden MG, Cantley LC and Krainer AR: Exon-centric regulation of pyruvate kinase M alternative splicing via mutually exclusive exons. J Mol Cell Biol. 4:79–87. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kuranaga Y, Sugito N, Shinohara H, Tsujino T, Taniguchi K, Komura K, Ito Y, Soga T and Akao Y: SRSF3, a Splicer of the PKM gene, regulates cell growth and maintenance of cancer-specific energy metabolism in colon cancer cells. Int J Mol Sci. 19:30122018. View Article : Google Scholar : PubMed/NCBI | |
Jia G, Wang Y, Lin C, Lai S, Dai H, Wang Z, Dai L, Su H, Song Y, Zhang N, et al: LNCAROD enhances hepatocellular carcinoma malignancy by activating glycolysis through induction of pyruvate kinase isoform PKM2. J Exp Clin Cancer Res. 40:2992021. View Article : Google Scholar : PubMed/NCBI | |
Xueqing H, Jun Z, Yueqiang J, Xin L, Liya H, Yuanyuan F, Yuting Z, Hao Z, Hua W, Jian L and Tiejun Y: IGF2BP3 may contributes to lung tumorigenesis by regulating the alternative splicing of PKM. Front Bioeng Biotechnol. 8:6792020. View Article : Google Scholar : PubMed/NCBI | |
Zhao J, Li J, Hassan W, Xu D, Wang X and Huang Z: Sam68 promotes aerobic glycolysis in colorectal cancer by regulating PKM2 alternative splicing. Ann Transl Med. 8:4592020. View Article : Google Scholar : PubMed/NCBI | |
Singh S, Narayanan SP, Biswas K, Gupta A, Ahuja N, Yadav S, Panday RK, Samaiya A, Sharan SK and Shukla S: Intragenic DNA methylation and BORIS-mediated cancer-specific splicing contribute to the Warburg effect. Proc Natl Acad Sci USA. 114:11440–11445. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gertler F and Condeelis J: Metastasis: Tumor cells becoming MENAcing. Trends Cell Biol. 21:81–90. 2011. View Article : Google Scholar : PubMed/NCBI | |
Warzecha CC, Shen S, Xing Y and Carstens RP: The epithelial splicing factors ESRP1 and ESRP2 positively and negatively regulate diverse types of alternative splicing events. RNA Biol. 6:546–562. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wang W, Taufalele PV, Millet M, Homsy K, Smart K, Berestesky ED, Schunk CT, Rowe MM, Bordeleau F and Reinhart-King CA: Matrix stiffness regulates tumor cell intravasation through expression and ESRP1-mediated alternative splicing of MENA. Cell Rep. 42:1123382023. View Article : Google Scholar : PubMed/NCBI | |
Li S, Shen L, Huang L, Lei S, Cai X, Breitzig M, Zhang B, Yang A, Ji W, Huang M, et al: PTBP1 enhances exon11a skipping in Mena pre-mRNA to promote migration and invasion in lung carcinoma cells. Biochim Biophys Acta Gene Regul Mech. 1862:858–869. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lovci MT, Ghanem D, Marr H, Arnold J, Gee S, Parra M, Liang TY, Stark TJ, Gehman LT, Hoon S, et al: Rbfox proteins regulate alternative mRNA splicing through evolutionarily conserved RNA bridges. Nat Struct Mol Biol. 20:1434–1442. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yoshida T, Kim JH, Carver K, Su Y, Weremowicz S, Mulvey L, Yamamoto S, Brennan C, Mei S, Long H, et al: CLK2 is an oncogenic kinase and splicing regulator in breast cancer. Cancer Res. 75:1516–1526. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Bennett BD, Luo S, Inoue K, Grimm SA, Schroth GP, Bushel PR, Kinyamu HK and Archer TK: LIN28A modulates splicing and gene expression programs in breast cancer cells. Mol Cell Biol. 35:3225–3243. 2015. View Article : Google Scholar : PubMed/NCBI | |
Uemura T, Shepherd S, Ackerman L, Jan LY and Jan YN: Numb, a gene required in determination of cell fate during sensory organ formation in Drosophila embryos. Cell. 58:349–360. 1989. View Article : Google Scholar : PubMed/NCBI | |
Choi HY, Seok J, Kang GH, Lim KM and Cho SG: The role of NUMB/NUMB isoforms in cancer stem cells. BMB Rep. 54:335–343. 2021. View Article : Google Scholar : PubMed/NCBI | |
Colaluca IN, Tosoni D, Nuciforo P, Senic-Matuglia F, Galimberti V, Viale G, Pece S and Di Fiore PP: NUMB controls p53 tumour suppressor activity. Nature. 451:76–80. 2008. View Article : Google Scholar : PubMed/NCBI | |
Karaczyn A, Bani-Yaghoub M, Tremblay R, Kubu C, Cowling R, Adams TL, Prudovsky I, Spicer D, Friesel R, Vary C and Verdi JM: Two novel human NUMB isoforms provide a potential link between development and cancer. Neural Dev. 5:312010. View Article : Google Scholar : PubMed/NCBI | |
Misquitta-Ali CM, Cheng E, O'Hanlon D, Liu N, McGlade CJ, Tsao MS and Blencowe BJ: Global profiling and molecular characterization of alternative splicing events misregulated in lung cancer. Mol Cell Biol. 31:138–150. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bechara EG, Sebestyén E, Bernardis I, Eyras E and Valcárcel J: RBM5, 6, and 10 differentially regulate NUMB alternative splicing to control cancer cell proliferation. Mol Cell. 52:720–733. 2013. View Article : Google Scholar : PubMed/NCBI | |
Rajendran D, Zhang Y, Berry DM and McGlade CJ: Regulation of Numb isoform expression by activated ERK signaling. Oncogene. 35:5202–5213. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Sun H, Zhao Y, Liu Q, Liu Y, Hou Y and Jin W: NSrp70 suppresses metastasis in triple-negative breast cancer by modulating Numb/TβR1/EMT axis. Oncogene. 41:3409–3422. 2022. View Article : Google Scholar : PubMed/NCBI | |
Qie S and Diehl JA: Cyclin D1, cancer progression, and opportunities in cancer treatment. J Mol Med (Berl). 94:1313–1326. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lu F, Gladden AB and Diehl JA: An alternatively spliced cyclin D1 isoform, cyclin D1b, is a nuclear oncogene. Cancer Res. 63:7056–7061. 2003.PubMed/NCBI | |
Jeon S, Kim Y, Jeong YM, Bae JS and Jung CK: CCND1 Splice Variant as A novel diagnostic and predictive biomarker for thyroid cancer. Cancers (Basel). 10:4372018. View Article : Google Scholar : PubMed/NCBI | |
Betticher DC, Thatcher N, Altermatt HJ, Hoban P, Ryder WD and Heighway J: Alternate splicing produces a novel cyclin D1 transcript. Oncogene. 11:1005–1011. 1995.PubMed/NCBI | |
Olshavsky NA, Comstock CE, Schiewer MJ, Augello MA, Hyslop T, Sette C, Zhang J, Parysek LM and Knudsen KE: Identification of ASF/SF2 as a critical, allele-specific effector of the cyclin D1b oncogene. Cancer Res. 70:3975–3984. 2010. View Article : Google Scholar : PubMed/NCBI | |
Paronetto MP, Cappellari M, Busà R, Pedrotti S, Vitali R, Comstock C, Hyslop T, Knudsen KE and Sette C: Alternative splicing of the cyclin D1 proto-oncogene is regulated by the RNA-binding protein Sam68. Cancer Res. 70:229–239. 2010. View Article : Google Scholar : PubMed/NCBI | |
Aigner P, Just V and Stoiber D: STAT3 isoforms: Alternative fates in cancer? Cytokine. 118:27–34. 2019. View Article : Google Scholar : PubMed/NCBI | |
Caldenhoven E, van Dijk TB, Solari R, Armstrong J, Raaijmakers JA, Lammers JW, Koenderman L and de Groot RP: STAT3beta, a splice variant of transcription factor STAT3, is a dominant negative regulator of transcription. J Biol Chem. 271:13221–13227. 1996. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Wang X and Jia R: Poly(rC) binding protein 1 represses the translation of STAT3 through 5′ UTR. Curr Gene Ther. 22:397–405. 2022. View Article : Google Scholar : PubMed/NCBI | |
Andreoli V, Gehrau RC and Bocco JL: Biology of Krüppel-like factor 6 transcriptional regulator in cell life and death. IUBMB Life. 62:896–905. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hu K, Ma C, Ma R, Zheng Q, Wang Y, Zhang N and Sun Z: Roles of Krüppel-like factor 6 splice variant 1 in the development, diagnosis, and possible treatment strategies for non-small cell lung cancer. Am J Cancer Res. 12:4468–4482. 2022.PubMed/NCBI | |
Narla G, Difeo A, Reeves HL, Schaid DJ, Hirshfeld J, Hod E, Katz A, Isaacs WB, Hebbring S, Komiya A, et al: A germline DNA polymorphism enhances alternative splicing of the KLF6 tumor suppressor gene and is associated with increased prostate cancer risk. Cancer Res. 65:1213–1222. 2005. View Article : Google Scholar : PubMed/NCBI | |
Yea S, Narla G, Zhao X, Garg R, Tal-Kremer S, Hod E, Villanueva A, Loke J, Tarocchi M, Akita K, et al: Ras promotes growth by alternative splicing-mediated inactivation of the KLF6 tumor suppressor in hepatocellular carcinoma. Gastroenterology. 134:1521–1531. 2008. View Article : Google Scholar : PubMed/NCBI | |
López-Cánovas JL, Del Rio-Moreno M, García-Fernandez H, Jiménez-Vacas JM, Moreno-Montilla MT, Sánchez-Frias ME, Amado V, L-López F, Fondevila MF, Ciria R, et al: Splicing factor SF3B1 is overexpressed and implicated in the aggressiveness and survival of hepatocellular carcinoma. Cancer Lett. 496:72–83. 2021. View Article : Google Scholar : PubMed/NCBI | |
Harper SJ and Bates DO: VEGF-A splicing: The key to anti-angiogenic therapeutics? Nat Rev Cancer. 8:880–887. 2008. View Article : Google Scholar : PubMed/NCBI | |
Nowak DG, Woolard J, Amin EM, Konopatskaya O, Saleem MA, Churchill AJ, Ladomery MR, Harper SJ and Bates DO: Expression of pro- and anti-angiogenic isoforms of VEGF is differentially regulated by splicing and growth factors. J Cell Sci. 121:3487–3495. 2008. View Article : Google Scholar : PubMed/NCBI | |
Mavrou A, Brakspear K, Hamdollah-Zadeh M, Damodaran G, Babaei-Jadidi R, Oxley J, Gillatt DA, Ladomery MR, Harper SJ, Bates DO and Oltean S: Serine-arginine protein kinase 1 (SRPK1) inhibition as a potential novel targeted therapeutic strategy in prostate cancer. Oncogene. 34:4311–4319. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gammons MV, Lucas R, Dean R, Coupland SE, Oltean S and Bates DO: Targeting SRPK1 to control VEGF-mediated tumour angiogenesis in metastatic melanoma. Br J Cancer. 111:477–485. 2014. View Article : Google Scholar : PubMed/NCBI | |
Pruszko M, Milano E, Forcato M, Donzelli S, Ganci F, Di Agostino S, De Panfilis S, Fazi F, Bates DO, Bicciato S, et al: The mutant p53-ID4 complex controls VEGFA isoforms by recruiting lncRNA MALAT1. EMBO Rep. 18:1331–1351. 2017. View Article : Google Scholar : PubMed/NCBI | |
Xu J, Huang L, Bao T, Duan K, Cheng Y, Zhang H, Zhang Y, Li J, Li Q and Li F: CircCDR1as mediates PM(2.5)-induced lung cancer progression by binding to SRSF1. Ecotoxicol Environ Saf. 249:1143672023. View Article : Google Scholar : PubMed/NCBI | |
Merdzhanova G, Gout S, Keramidas M, Edmond V, Coll JL, Brambilla C, Brambilla E, Gazzeri S and Eymin B: The transcription factor E2F1 and the SR protein SC35 control the ratio of pro-angiogenic versus antiangiogenic isoforms of vascular endothelial growth factor-A to inhibit neovascularization in vivo. Oncogene. 29:5392–5403. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hamdollah Zadeh MA, Amin EM, Hoareau-Aveilla C, Domingo E, Symonds KE, Ye X, Heesom KJ, Salmon A, D'Silva O, Betteridge KB, et al: Alternative splicing of TIA-1 in human colon cancer regulates VEGF isoform expression, angiogenesis, tumour growth and bevacizumab resistance. Mol Oncol. 9:167–178. 2015. View Article : Google Scholar : PubMed/NCBI | |
Dou XQ, Chen XJ, Wen MX, Zhang SZ, Zhou Q and Zhang SQ: Alternative splicing of VEGFA is regulated by RBM10 in endometrial cancer. Kaohsiung J Med Sci. 36:13–19. 2020. View Article : Google Scholar : PubMed/NCBI | |
Tiong KH, Mah LY and Leong CO: Functional roles of fibroblast growth factor receptors (FGFRs) signaling in human cancers. Apoptosis. 18:1447–1468. 2013. View Article : Google Scholar : PubMed/NCBI | |
Orr-Urtreger A, Bedford MT, Burakova T, Arman E, Zimmer Y, Yayon A, Givol D and Lonai P: Developmental localization of the splicing alternatives of fibroblast growth factor receptor-2 (FGFR2). Dev Biol. 158:475–486. 1993. View Article : Google Scholar : PubMed/NCBI | |
Ranieri D, Nanni M, Persechino F, Torrisi MR and Belleudi F: Role of PKCε in the epithelial-mesenchymal transition induced by FGFR2 isoform switch. Cell Commun Signal. 18:762020. View Article : Google Scholar : PubMed/NCBI | |
Carstens RP, McKeehan WL and Garcia-Blanco MA: An intronic sequence element mediates both activation and repression of rat fibroblast growth factor receptor 2 pre-mRNA splicing. Mol Cell Biol. 18:2205–2217. 1998. View Article : Google Scholar : PubMed/NCBI | |
Carstens RP, Wagner EJ and Garcia-Blanco MA: An intronic splicing silencer causes skipping of the IIIb exon of fibroblast growth factor receptor 2 through involvement of polypyrimidine tract binding protein. Mol Cell Biol. 20:7388–7400. 2000. View Article : Google Scholar : PubMed/NCBI | |
Hovhannisyan RH, Warzecha CC and Carstens RP: Characterization of sequences and mechanisms through which ISE/ISS-3 regulates FGFR2 splicing. Nucleic Acids Res. 34:373–385. 2006. View Article : Google Scholar : PubMed/NCBI | |
Warzecha CC, Sato TK, Nabet B, Hogenesch JB and Carstens RP: ESRP1 and ESRP2 are epithelial cell-type-specific regulators of FGFR2 splicing. Mol Cell. 33:591–601. 2009. View Article : Google Scholar : PubMed/NCBI | |
Baraniak AP, Chen JR and Garcia-Blanco MA: Fox-2 mediates epithelial cell-specific fibroblast growth factor receptor 2 exon choice. Mol Cell Biol. 26:1209–1222. 2006. View Article : Google Scholar : PubMed/NCBI | |
Puppo M, Bucci G, Rossi M, Giovarelli M, Bordo D, Moshiri A, Gorlero F, Gherzi R and Briata P: miRNA-Mediated KHSRP silencing rewires distinct post-transcriptional programs during TGF-β-Induced Epithelial-to-Mesenchymal Transition. Cell Rep. 16:967–978. 2016. View Article : Google Scholar : PubMed/NCBI | |
Prudovsky IA, Savion N, LaVallee TM and Maciag T: The nuclear trafficking of extracellular fibroblast growth factor (FGF)-1 correlates with the perinuclear association of the FGF receptor-1alpha isoforms but not the FGF receptor-1beta isoforms. J Biol Chem. 271:14198–14205. 1996. View Article : Google Scholar : PubMed/NCBI | |
Wendt MK, Taylor MA, Schiemann BJ, Sossey-Alaoui K and Schiemann WP: Fibroblast growth factor receptor splice variants are stable markers of oncogenic transforming growth factor β1 signaling in metastatic breast cancers. Breast Cancer Res. 16:R242014. View Article : Google Scholar : PubMed/NCBI | |
Jin W and Cote GJ: Enhancer-dependent splicing of FGFR1 alpha-exon is repressed by RNA interference-mediated down-regulation of SRp55. Cancer Res. 64:8901–8905. 2004. View Article : Google Scholar : PubMed/NCBI | |
Zhao M, Zhuo ML, Zheng X, Su X and Meric-Bernstam F: FGFR1β is a driver isoform of FGFR1 alternative splicing in breast cancer cells. Oncotarget. 10:30–44. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jin W, Bruno IG, Xie TX, Sanger LJ and Cote GJ: Polypyrimidine tract-binding protein down-regulates fibroblast growth factor receptor 1 alpha-exon inclusion. Cancer Res. 63:6154–6157. 2003.PubMed/NCBI | |
Cazes A, Childers BG, Esparza E and Lowy AM: The MST1R/RON tyrosine kinase in cancer: Oncogenic functions and therapeutic strategies. Cancers (Basel). 14:20372022. View Article : Google Scholar : PubMed/NCBI | |
Zhou D, Huang L, Zhou Y, Wei T, Yang L and Li C: RON and RONΔ160 promote gastric cancer cell proliferation, migration, and adaption to hypoxia via interaction with β-catenin. Aging (Albany NY). 11:2735–2748. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhou YQ, He C, Chen YQ, Wang D and Wang MH: Altered expression of the RON receptor tyrosine kinase in primary human colorectal adenocarcinomas: generation of different splicing RON variants and their oncogenic potential. Oncogene. 22:186–197. 2003. View Article : Google Scholar : PubMed/NCBI | |
Moon H, Cho S, Loh TJ, Oh HK, Jang HN, Zhou J, Kwon YS, Liao DJ, Jun Y, Eom S, et al: SRSF2 promotes splicing and transcription of exon 11 included isoform in Ron proto-oncogene. Biochim Biophys Acta. 1839:1132–1140. 2014. View Article : Google Scholar : PubMed/NCBI | |
Matsumoto E, Akiyama K, Saito T, Matsumoto Y, Kobayashi KI, Inoue J, Yamamoto Y and Suzuki T: AMP-activated protein kinase regulates alternative pre-mRNA splicing by phosphorylation of SRSF1. Biochem J. 477:2237–2248. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ghigna C, Giordano S, Shen H, Benvenuto F, Castiglioni F, Comoglio PM, Green MR, Riva S and Biamonti G: Cell motility is controlled by SF2/ASF through alternative splicing of the Ron protooncogene. Mol Cell. 20:881–890. 2005. View Article : Google Scholar : PubMed/NCBI | |
Zhou D, Zhu X, Wu X, Zheng J, Tou L and Zhou Y: The effect of splicing MST1R in gastric cancer was enhanced by lncRNA FENDRR. Exp Ther Med. 22:7982021. View Article : Google Scholar : PubMed/NCBI | |
Gupta A, Yadav S, Pt A, Mishra J, Samaiya A, Panday RK and Shukla S: The HNRNPA2B1-MST1R-Akt axis contributes to epithelial-to-mesenchymal transition in head and neck cancer. Lab Invest. 100:1589–1601. 2020. View Article : Google Scholar : PubMed/NCBI | |
Bonomi S, di Matteo A, Buratti E, Cabianca DS, Baralle FE, Ghigna C and Biamonti G: HnRNP A1 controls a splicing regulatory circuit promoting mesenchymal-to-epithelial transition. Nucleic Acids Res. 41:8665–8679. 2013. View Article : Google Scholar : PubMed/NCBI | |
Vashishtha V, Jinghan N and Yadav A: Antagonistic role of GSK3 isoforms in glioma survival. J Cancer. 9:1846–1855. 2018. View Article : Google Scholar : PubMed/NCBI | |
Moon H, Jang HN, Liu Y, Choi N, Oh J, Ha J, Kim HH, Zheng X and Shen H: RRM but not the Asp/Glu domain of hnRNP C1/C2 is required for splicing regulation of Ron exon 11 pre-mRNA. BMB Rep. 52:641–646. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lefave CV, Squatrito M, Vorlova S, Rocco GL, Brennan CW, Holland EC, Pan YX and Cartegni L: Splicing factor hnRNPH drives an oncogenic splicing switch in gliomas. EMBO J. 30:4084–4097. 2011. View Article : Google Scholar : PubMed/NCBI | |
Randazzo O, Cascioferro SM, Pecoraro C, Iddouch WA, Avan A, Parrino B, Carbone D, Perricone U, Peters GJ, Diana P and Giovannetti E: SF3B1 modulators affect key genes in metastasis and drug influx: A new approach to fight pancreatic cancer chemoresistance. Cancer Drug Resist. 4:904–922. 2021.PubMed/NCBI | |
Yan M, Schwaederle M, Arguello D, Millis SZ, Gatalica Z and Kurzrock R: HER2 expression status in diverse cancers: Review of results from 37,992 patients. Cancer Metastasis Rev. 34:157–164. 2015. View Article : Google Scholar : PubMed/NCBI | |
Jackson C, Browell D, Gautrey H and Tyson-Capper A: Clinical Significance of HER-2 Splice variants in breast cancer progression and drug resistance. Int J Cell Biol. 2013:9735842013. View Article : Google Scholar : PubMed/NCBI | |
Gautrey H, Jackson C, Dittrich AL, Browell D, Lennard T and Tyson-Capper A: SRSF3 and hnRNP H1 regulate a splicing hotspot of HER2 in breast cancer cells. RNA Biol. 12:1139–1151. 2015. View Article : Google Scholar : PubMed/NCBI | |
Silipo M, Gautrey H, Satam S, Lennard T and Tyson-Capper A: How is Herstatin, a tumor suppressor splice variant of the oncogene HER2, regulated? RNA Biol. 14:536–543. 2017. View Article : Google Scholar : PubMed/NCBI | |
Das S and Krainer AR: Emerging functions of SRSF1, splicing factor and oncoprotein, in RNA metabolism and cancer. Mol Cancer Res. 12:1195–1204. 2014. View Article : Google Scholar : PubMed/NCBI | |
Maltseva D and Tonevitsky A: RNA-binding proteins regulating the CD44 alternative splicing. Front Mol Biosci. 10:13261482023. View Article : Google Scholar : PubMed/NCBI |