Extracellular signal-regulated kinase induces cyclin D1 and Cdk-2 expression and phosphorylation of retinoblastoma in hepatocellular carcinoma
- Authors:
- Published online on: December 1, 2004 https://doi.org/10.3892/ijo.25.6.1839
- Pages: 1839-1847
Metrics: Total
Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies in Southeast Asia. Hyperphosphorylation of retinoblastoma (pRB) by cyclin/CDKs in G1/S transition is required for its inactivation and cell cycle progression. In the present study, we report that phosphorylation of pRB at Ser780 and Ser795 was detected in 71% (33 of 46) and 63% (29 of 46) of HCCs examined respectively. pRB protein was undetectable in 13% (6 of 46) of HCCs examined. Phosphorylated pRB was localized in the nuclei of hepatocarcinoma cells. Benign hepatocytes exhibited very weakly or no nuclear staining for phosphorylated pRB. Over-expression of E2F-1, cyclin D1, Cdk-2, Cdk-4 and cyclin A was found in 64% (30 of 46), 43% (26 of 46), 28% (11 of 46), 71% (33 of 46) and 63% (29 of 46) of HCCs examined respectively and this was correlated with elevation of ERK. Treatment of HepG2 cells with MEK1/2 inhibitor U0126 resulted in cell cycle arrest, downregulation of cyclin D1 and Cdk-2 expression and inhibition of pRB phosphorylation at Ser780 and Ser795. Ectopic expression of activated MEK1 in HepG2 cells increased cyclin D1 and Cdk-2 expression, phosphorylation of pRB at Ser780 and Ser795, and percentage of cells in S phase. Our data indicate that activated ERK plays an important role in cyclin D1 and Cdk-2 expression and phosphorylation of pRB at Ser780 and Ser795 in liver cancer cells.