Increased anticancer activity of the thymidylate synthase inhibitor BGC9331 combined with the topoisomerase I inhibitor SN-38 in human colorectal and breast cancer cells: Induction of apoptosis and ROCK cleavage through caspase-3-dependent and -independent mechanisms
- Authors:
- Published online on: August 1, 2005 https://doi.org/10.3892/ijo.27.2.553
- Pages: 553-561
Metrics: Total
Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Abstract
The folate analogue BGC9331 is a new thymidylate synthase (TS) inhibitor showing a broad spectrum of cyto-toxic activity against several human solid tumors, including colorectal cancer. In this study, we investigated the anticancer activity of BGC9331 either alone or combined with 5-fluorouracil (5-FU), MTA (multi-target antifolate), oxali-platin and SN-38, the active metabolite of the topoisomerase I inhibitor CPT-11. The antiproliferative activity of each drug and BGC9331-based combinations was investigated in the HT-29 human colorectal cancer cell line and its HT-29/5-FU counterparts selected for resistance to 5-FU. BGC9331 combined with MTA or SN-38 induced synergistic responses in HT-29 cells. Treatment of HT-29 cells with either BGC9331 or SN-38 increased caspase-3 activity and the percentage of apoptotic cells from 3 to 13%. Both drugs also augmented the proteolytic cleavage of the Rho-kinase ROCK-1 that was attenuated by the caspase-3 pathway inhibitor z-DEVD-fmk. BGC9331 combined with SN-38 further increased the percentage of apoptotic cells to 25%, and inhibited cell cycle progression and cell proliferation by 65%. This was accompanied by proteolytic activation of ROCK-1, through both caspase-3-dependent and -independent mechanisms, as shown in caspase-3-deficient MCF-7 breast cancer cells. These encouraging results warrant further preclinical investigations and clinical trials on the use of BGC9331 combined with SN-38/CPT-11 in treatment of patients with advanced colorectal or gastric cancers.