MOLECULAR MARKERS AS INTERMEDIATE END-POINTS IN CHEMOPREVENTION OF COLON-CANCER - MODULATION OF RAS ACTIVATION BY SULINDAC AND PHENYLHEXYLISOTHIOCYANATE DURING COLON CARCINOGENESIS
- Authors:
- Published online on: November 1, 1994 https://doi.org/10.3892/ijo.5.5.1009
- Pages: 1009-1018
Metrics: Total
Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Abstract
Recent evidence suggests that activation of ras proto-oncogenes and inactivation of suppressor genes induce malignant phenotype in colonic cells. Thus the identification of clonal population of cells expressing activated ras may lead to a valuable intermediate biomarker to detect premalignant lesions amenable to chemoprevention. Previously, we demonstrated that sulindac inhibited the carcinogen-induced colon tumor development whereas phenylhexylisothiocyanate (PHITC) promoted the tumor outcome. The present study was conducted to investigate the effect of sulindac and PHITC on azoxymethane (AOM)induced activation of ras proto-oncogenes in order to explore the plausibility of using ras as an intermediate biomarker in chemoprevention of colon cancer. Male F344 rats were fed the AIN-76A diet containing 0, 320 ppm sulindac or 640 ppm PHITC and administered s.c. AOM dissolved in normal saline at a dose rate of 15 mg/kg body wt/week for 2 weeks. Vehicle control groups received s.c. equal volume of normal saline. Animals were sacrificed 52 weeks after AOM or saline treatment and their colonic mucosa and tumors were analyzed for mutations in codon 12 and 13 of K-ras and the expression of ras p21. As an alternative non-invasive approach, we developed a simple and sensitive one-step mutant-enriched PCR method to detect these genetic lesions in stools collected at 16, and again at 24 weeks after AOM treatment. AOM-induced G to A transitions were observed at the second nucleotide of 12th codon of K-ras substituting amino acid asp with wild-type gly. Sulindac not only suppressed the selective amplification of initiated cells possessing AOM-induced mutated K-ras codon 12, but significantly inhibited the AOM-induced expression of total and mutant ras-p21. PHITC did not exert any inhibitory effect on AOM-induced ras activation. Results indicated a strong correlation between ras activation and tumor outcome. Data suggest that ras activation may be a useful intermediate molecular marker in chemoprevention of colon cancer.