Long non‑coding RNA TTN‑AS1 promotes breast cancer cell migration and invasion via sponging miR‑140‑5p
Retraction in: /10.3892/ol.2020.12018
- Authors:
- Published online on: December 17, 2019 https://doi.org/10.3892/ol.2019.11222
- Pages: 1255-1260
-
Copyright: © Xue et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
Abstract
Introduction
Breast cancer (BC) is the most frequently diagnosed malignancy and the second-leading cause of cancer-related death in female in the world (1). It is reported that 246,660 new cases of BC were diagnosed accounting for 29% of all cancers in women in the USA in 2016. Moreover, 40,450 cases were estimated to die due to BC in the same year (2). Despite the tremendous advances made in the diagnosis and therapeutic management of BC in the last decades, the prognosis for patients with BC remains poor due to the high rate of metastasis (3). Therefore, it is urgent to have a better understanding of molecular mechanism of pathogenesis in BC and improve the poor prognosis for BC patients.
Most of the genome is transcribed into non-coding RNA (ncRNA) molecules that do not code proteins. Long non-coding RNAs (lncRNAs) are transcriptions longer than 200 nucleotides and have been reported to exploit multiple modes of action in regulating gene expression and development of cancers. For example, by sponging miR-27b-3p, lncRNA KCNQ1OT1 facilitates cell proliferation and cell invasion in the progression of non-small cell lung cancer via modulating the expression of HSP90AA1 (4). By acting as a sponge to miR-101-3p, lncRNA SPRY4-IT1 promotes the progression of bladder cancer via upregulating the expression of EZH2 (5). lncRNA PVT1 promotes glucose metabolism, cell motility, cell proliferation and tumor progression in osteosarcoma by modulation of miR-497/HK2 axis (6). lncRNA MEG8 enhances epigenetic induction of the epithelial-mesenchymal transition in pancreatic cancer cells (7).
However, the clinical role and underlying mechanisms of TTN-AS1 in the development of BC remain unexplored. In the present study, we performed function and mechanism assays to explore whether TTN-AS1 is involved in the function of metastasis in BC.
Patients and methods
Patients and clinical samples
BC tissues of 56 cases and their adjacent tissues were collected from patients who received surgery at Linyi Cancer Hospital (Linyi, China) between 2015 and 2018. Written informed consent was achieved before surgical resection. No radiotherapy or chemotherapy was performed before surgery. All tissues were saved immediately at −80°C. This study was approved by the Ethics Committee of Linyi Cancer Hospital. Signed written informed consents were obtained from all participants before the study.
Cell culture
Human BC cell lines (MCF-7, LCC9, T-47D, SKBR3) and normal human breast cell line (MCF-10A) were from the American Type Culture Collection (ATCC). Culture medium consisted of 10% fetal bovine serum (FBS; Gibco; Thermo Fisher Scientific, Inc.), Dulbecco's modified Eagle's medium (DMEM) and 100 U/ml penicillin/streptomycin (Sigma-Aldrich; Merck KGaA). Cells were cultured in an incubator containing 5% CO2 at 37°C.
Cell transfection
Specific short-hairpin RNA (shRNA; Biosettia, Inc.) against TTN-AS1 was synthesized. Negative control shRNA was also synthesized. TTN-AS1 shRNA (sh-TTN-AS1) and negative control (control) were then used for transfection in LCC9 cells. After 48 h, real-time quantitative polymerase chain reaction (RT-qPCR) was used to detect transfection efficiency in these cells. Lentivirus (BioSettia, Inc.) against TTN-AS1 (TTN-AS1) was synthesized and then used for transfection in SKBR3 cells. Empty vector was used as control. Forty-eight hours later, RT-qPCR was used to detect transfection efficiency in the cells.
RNA extraction and RT-qPCR
Total RNA was extracted from cultured BC cells or patients' tumor tissues by using TRIzol reagent (TaKaRa, Bio, Inc.) and then reverse-transcribed to complementary deoxyribose nucleic acids (cDNAs) through reverse Transcription kit (TaKaRa, Bio, Inc.). Thermocycling conditions were: pre-denaturation at 95°C for 5 min, denaturation at 95°C for 10 sec, annealing at 60°C for 30 sec, a total of 35 cycles. The primers for RT-qPCR: TTN-AS1, forward: 5′-TCCTTAGGCATCACCTAGCC-3′ and reverse: 5′-GATGGAGGAAGTAGAGTCATTGG-3′; β-actin, forward: 5′-CCAACCGCGAGAAGATGA-3′ and reverse: 5′-CCAGAGGCGTACAGGGATAG-3′.
Scratch wound assay
Cells (1.0×104) were seeded into a 6-well plate. Three parallel lines were made on the back of each well. At confluent of ~90%, cells were scratched with a pipette tip and cultured in medium. Cells were photographed under a light microscope after 48 h. Each assay was independently repeated in triplicate.
Transwell assay
Insert (8 µm pore size) was provided by Corning, Inc. Cells (4×104) in 150 µl serum-free DMEM were transformed to top chamber of the insert coated with or without 50 µg Matrigel (BD Biosciences). The bottom chamber was filled with DMEM and FBS. Forty-eight hours later, the top surface of chambers was immersed for 10 min with precooledmethanol and was stained with crystal violet for 30 min.
Luciferase assay and RNA immunoprecipitation (RIP) assay
DIANA LncBASE Predicted v.2 was used to predict the potential target microRNAs and fragment sequences containing TTN-AS1 reaction sites. The TTN-AS1 3′-UTR wild-type (WT) sequence named TTN-AS1-WT was 5′-CUUUUCCAUCCUUAAACCACUU-3′ and the mutant sequence of TTN-AS1 3′-UTR missing the binding site with miR-140-5p named TTN-AS1-MUT was 5′-CUUUUCCAUCCUUUUUGGUGAU-3′. Luciferase reporter gene assay kits (Promega) were used to detect the luciferase activity of BC cells. The luciferase reporter gene vector was constructed, and BC cells were transfected.
For RIP assay, Magna RIP RNA-Binding Protein Immunoprecipitation kit (EMD Millipore) was performed according to the protocol. Then RT-qPCR was used to detect co-precipitated RNAs. Treated BC cells were collected and lysed using RIP lysis buffer containing protease inhibitor and RNase inhibitor. Cells were incubated with the RIP buffer containing magnetic beads coated with Ago2 antibodies (EMD Millipore). IgG acted as a negative control (input group). After incubation for 2 h at 4°C, co-precipitated RNAs were isolated and measured by RT-qPCR analysis.
Statistical analysis
All statistical analyses were performed by GraphPad Prism 5.0. The difference between two groups were compared by independent-sample t-test. The statistically significance was defined as P<0.05.
Results
TTN-AS1 expression level in BC tissues and cells
Firstly, TTN-AS1 expression was detected via RT-qPCR in 56 patient tissues and 4 BC cell lines. TTN-AS1 was significantly upregulated in BC tissue samples (Fig. 1A). TTN-AS1 expression level in BC cells was higher than that of MCF-10A (Fig. 1B).
Silence of TTN-AS1 inhibits cell migration and invasion in LCC9 BC cells
LCC9 BC cell line was chosen for the silencing of TTN-AS1. TTN-AS1 expression was detected by RT-qPCR (Fig. 2A). Moreover, results of wound healing assay showed that silence of TTN-AS1 significantly inhibited the ability of cell migration in BC cells (Fig. 2B). The outcome of transwell assay also revealed that the number of migrated cells was remarkably decreased after TTN-AS1 was silenced in BC cells (Fig. 2C). The number of invaded cells was remarkably decreased after TTN-AS1 was silenced in BC cells (Fig. 2D).
Overexpression of TTN-AS1 promoted cell migration and invasion in SKBR3 BC cells
In this study, SKBR3 BC cell line was chosen for the overexpression of TTN-AS1. Then TTN-AS1 expression was detected by RT-qPCR (Fig. 3A). Moreover, results of wound healing assay showed that overexpression of TTN-AS1 significantly promoted the ability of cell migration in BC cells (Fig. 3B). The transwell assay revealed that the number of migrated cells was remarkably increased after TTN-AS1 was overexpressed in BC cells (Fig. 3C). The outcome of transwell assay also revealed that the number of invaded cells was remarkably increased after TTN-AS1 was overexpressed in BC cells (Fig. 3D).
Interaction between miR-140-5p and TTN-AS1 in BC
DIANA LncBASE Predicted v.2 (http://carolina.imis.athena-innovation.gr/diana_tools/web/index.php?r=lncbasev2%2Findex-predicted) was used to find the miRNAs that contained complementary base with TTN-AS1. We selected miR-140-5p as it contained binding area of TTN-AS1 (Fig. 4A). RT-qPCR results showed that miR-140-5p was upregulated in sh-TTN-AS1 group compared with control group (Fig. 4B). Moreover, miR-140-5p was downregulated in TTN-AS1 group compared with empty vector group (Fig. 4C). Furthermore, results of luciferase assay showed that luciferase activity was significantly reduced through co-transfection of TTN-AS1-WT and miR-140-5p, while no significant changes of luciferase activity were observed through co-transfection of TTN-AS1-MUT and miR-140-5p (Fig. 4D). In addition, RIP assay identified that TTN-AS1 and miR-140-5p were significantly enriched in Ago2-containing beads compared to the input group (Fig. 4E).
Discussion
lncRNAs regulate gene expression through multiple mechanisms, mostly depending on subcellular localization and the nature of molecular interactors (DNA, RNA and proteins). The interaction between lncRNA - miRNA functional networks has drawn increased attention recently. By targeting miR-873, lncRNA NRF modulates programmed necrosis and myocardial injury during ischemia and reperfusion (8). Through negatively regulating miR-200b/a/429, lncRNA ILF3-AS1 enhances cell proliferation, cell migration and invasion in melanoma (9). By acting as a molecular sponge for miR-200s, depletion of lncRNA ZEB1-AS1 significantly suppresses cell proliferation and cell migration in osteosarcoma (10). lncRNA PCAT-1 facilitates cell invasion and metastasis in hepatocellular carcinoma via miR-129-5p-HMGB1 signaling pathway by directly binding to miR-129-5p (11).
Previous studies have proved that altered expression of many lncRNAs are closely associated with the progression of BC. Downregulation of lncRNA snaR inhibits proliferation, migration, and invasion of BC cells and may be a potential treatment for triple-negative BC (12). lncRNA OR3A4 facilitates cell proliferation and cell migration in BC through inducing epithelial-mesenchymal transition (13). lncRNA linc-ITGB1 functions as an oncogene in BC by inducing cell cycle arrest (14). lncRNA CAMTA1 enhances cell proliferation and cell mobility in BC by targeting miR-20b (15).
TTN-AS1 is a novel lncRNA reported to promote cell proliferation and cell migration in cervical cancer via sponging miR-573 (16). In our study, TTN-AS1 was found upregulated in BC tissues. Moreover, silencing of TTN-AS1 inhibited cell migration and invasion in BC cells, while overexpression of TTN-AS1 promoted cell migration and invasion in BC cells. The above results indicate that TTN-AS1 promoted metastasis of BC and might act as an oncogene.
To further identify the underlying mechanism of how TTN-AS1 affects BC cell migration and invasion, miR-140-5p was predicted as the potential binding microRNA of TTN-AS1 through bioinformatics analysis and experimental verification. miR-140-5p is dysregulated in various tumors. In addition, miR-140-5p has been reported to serve as a tumor suppressor in some tumor types. For example, miR-140-5p inhibits cell proliferation and cell migration in gastric cancer via regulation of YES1 (17). By targeting fibroblast growth factor 9 and transforming growth factor β receptor 1, miR-140-5p is able to depress tumor growth and metastasis in hepatocellular carcinoma (18). miR-140-5p suppresses tumor growth and cell metastasis in cervical cancer by targeting insulin-like growth factor 2 mRNA binding protein 1 (19). Moreover, miR-140-5p has also been reported to inhibit the invasion and angiogenesis of BC by targeting vascular endothelial growth factor-A (VEGFA) (20).
In the present study, miR-140-5p expression was upregulated after knockdown of TTN-AS1. Moreover, miR-140-5p expression was downregulated after overexpression of TTN-AS1. Furthermore, miR-140-5p directly bound to TTN-AS1 through a luciferase assay. miR-140-5p was significantly enriched by TTN-AS1 RIP assay. All the results above suggest that TTN-AS1 might promote metastasis of BC via sponging miR-140-5p.
In conclusion, above data identified that TTN-AS1 is remarkably upregulated in BC patients. Moreover, TTN-AS1 facilitated cell migration and invasion in BC through sponging miR-140-5p. These findings suggest that TTN-AS1 may contribute to therapy for BC as a candidate target.
Acknowledgements
Not applicable.
Funding
No funding was received.
Availability of data and materials
All data generated or analyzed during this study are included in this published article.
Authors' contributions
JX and QW designed the study and performed the experiments, JX and ZZ collected the data, XL and QR analyzed the data, JX and QW prepared the manuscript. All authors read and approved the final manuscript.
Ethics approval and consent to participate
This study was approved by the Ethics committee of Linyi Cancer Hospital (Linyi, China). Signed informed consents were obtained from the patients and/or guardians.
Patient consent for publication
Not applicable.
Competing interests
The authors declare no competing interests.
References
Siegel RL, Miller KD and Jemal A: Cancer statistics, 2015. CA Cancer J Clin. 65:5–29. 2015. View Article : Google Scholar : PubMed/NCBI | |
Luo X, Song Y, Tang L, Sun DH and Ji DG: lncRNA SNHG7 promotes development of breast cancer by regulating microRNA-186. Eur Rev Med Pharmacol Sci. 22:7788–7797. 2018.PubMed/NCBI | |
Siegel R, Naishadham D and Jemal A: Cancer statistics, 2013. CA Cancer J Clin. 63:11–30. 2013. View Article : Google Scholar : PubMed/NCBI | |
Dong Z, Yang P, Qiu X, Liang S, Guan B, Yang H, Li F, Sun L, Liu H, Zou G, et al: KCNQ1OT1 facilitates progression of non-small-cell lung carcinoma via modulating miRNA-27b-3p/HSP90AA1 axis. J Cell Physiol. 234:11304–11314. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liu D, Li Y, Luo G, Xiao X, Tao D, Wu X, Wang M, Huang C, Wang L, Zeng F, et al: lncRNA SPRY4-IT1 sponges miR-101-3p to promote proliferation and metastasis of bladder cancer cells through up-regulating EZH2. Cancer Lett. 388:281–291. 2017. View Article : Google Scholar : PubMed/NCBI | |
Song J, Wu X, Liu F, Li M, Sun Y, Wang Y, Wang C, Zhu K, Jia X, Wang B, et al: Long non-coding RNA PVT1 promotes glycolysis and tumor progression by regulating miR-497/HK2 axis in osteosarcoma. Biochem Biophys Res Commun. 490:217–224. 2017. View Article : Google Scholar : PubMed/NCBI | |
Terashima M, Ishimura A, Wanna-Udom S and Suzuki T: MEG8 long non-coding RNA contributes to epigenetic progression of the epithelial-mesenchymal transition of lung and pancreatic cancer cells. J Biol Chem. 293:18016–18030. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang K, Liu F, Liu CY, An T, Zhang J, Zhou LY, Wang M, Dong YH, Li N, Gao JN, et al: The long non-coding RNA NRF regulates programmed necrosis and myocardial injury during ischemia and reperfusion by targeting miR-873. Cell Death Differ. 23:1394–1405. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Liu S, Zhao X, Ma X, Gao G, Yu L, Yan D, Dong H and Sun W: Long noncoding RNA ILF3-AS1 promotes cell proliferation, migration, and invasion via negatively regulating miR-200b/a/429 in melanoma. Biosci Rep. 37(pii): BSR201710312017. View Article : Google Scholar : PubMed/NCBI | |
Liu C, Pan C, Cai Y and Wang H: Interplay between long non-coding RNA ZEB1-AS1 and miR-200s regulates osteosarcoma cell proliferation and migration. J Cell Biochem. 118:2250–2260. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang D, Cao J, Zhong Q, Zeng L, Cai C, Lei L, Zhang W and Liu F: Long non-coding RNA PCAT-1 promotes invasion and metastasis via the miR-129-5p-HMGB1 signaling pathway in hepatocellular carcinoma. Biomed Pharmacother. 95:1187–1193. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lee J, Jung JH, Chae YS, Park HY, Kim WW, Lee SJ, Jeong JH and Kang SH: Long non-coding RNA snaR regulates proliferation, migration and invasion of triple-negative breast cancer cells. Anticancer Res. 36:6289–6295. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liu G, Hu X and Zhou G: Long non-coding RNA OR3A4 promotes proliferation and migration in breast cancer. Biomed Pharmacother. 96:426–433. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yan M, Zhang L, Li G, Xiao S, Dai J and Cen X: Long non-coding RNA linc-ITGB1 promotes cell migration and invasion in human breast cancer. Biotechnol Appl Biochem. 64:5–13. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lu P, Gu Y, Li L, Wang F, Yang X and Yang Y: Long non-coding RNA CAMTA1 promotes proliferation and mobility of the human breast cancer cell line MDA-MB-231 via targeting miR-20b. Oncol Res. 26:625–635. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen P, Wang R, Yue Q and Hao M: Long non-coding RNA TTN-AS1 promotes cell growth and metastasis in cervical cancer via miR-573/E2F3. Biochem Biophys Res Commun. 503:2956–2962. 2018. View Article : Google Scholar : PubMed/NCBI | |
Fang Z, Yin S, Sun R, Zhang S, Fu M, Wu Y, Zhang T, Khaliq J and Li Y: miR-140-5p suppresses the proliferation, migration and invasion of gastric cancer by regulating YES1. Mol Cancer. 16:1392017. View Article : Google Scholar : PubMed/NCBI | |
Yang H, Fang F, Chang R and Yang L: MicroRNA-140-5p suppresses tumor growth and metastasis by targeting transforming growth factor β receptor 1 and fibroblast growth factor 9 in hepatocellular carcinoma. Hepatology. 58:205–217. 2013. View Article : Google Scholar : PubMed/NCBI | |
Su Y, Xiong J, Hu J, Wei X, Zhang X and Rao L: MicroRNA-140-5p targets insulin like growth factor 2 mRNA binding protein 1 (IGF2BP1) to suppress cervical cancer growth and metastasis. Oncotarget. 7:68397–68411. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lu Y, Qin T, Li J, Wang L, Zhang Q, Jiang Z and Mao J: MicroRNA-140-5p inhibits invasion and angiogenesis through targeting VEGF-A in breast cancer. Cancer Gene Ther. 24:386–392. 2017. View Article : Google Scholar : PubMed/NCBI |