Integrated bioinformatics analysis of the association between apolipoprotein E expression and patient prognosis in papillary thyroid carcinoma
- Authors:
- Published online on: January 17, 2020 https://doi.org/10.3892/ol.2020.11316
- Pages: 2295-2305
-
Copyright: © Jiang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
Abstract
Introduction
Papillary thyroid carcinoma (PTC) is one of the most prevalent thyroid malignancies; the morbidity and mortality ranks ninth and sixth, respectively, with 567,000 new cases diagnosed and 41,000 cancer-related deaths in 2018, worldwide (1). In recent years, the widespread application of thyroid ultrasonography and ultrasound-guided fine needle aspiration has improved the diagnosis of PTC in an asymptomatic population (2). Most patients have PTC that is curable, with a 5-year survival rate >95%. However, a few cases of PTC might occur with invasive features such as tumor recurrence, cervical lymph node involvement and/or distant metastasis, which are associated with poor prognosis (3,4). Therefore, biomarkers that can predict poor outcomes are urgently needed as these would assist clinicians in taking early and appropriate measures for optimal therapeutic benefit.
Current studies have indicated the involvement of various molecular events in the deterioration of PTC (5,6), including BRAF and RAS mutations, rearrangements of RET protooncogene and the excessive activation of the mitogen-activated protein kinase signal transduction pathway (7–10). To date, multiple microRNAs (miRs) and long non-coding RNAs (lncRNAs) have been identified as potential molecular biomarkers, including miR-146b-5p and lncRNA HOTTIP, which have been confirmed to participate in the invasion and metastasis of PTC (11–14). Nevertheless, the majority of these findings are derived from preclinical studies, and large-scale studies of prognostic biomarkers of PTC are lacking.
The development of bioinformatic analysis and the emergence of public database sorting have facilitated the identification of prognostic biomarkers of multiple types of cancer based on large cohorts, including kinesin family member 4A for colorectal cancer (15), miR-106a in breast cancer (16) and kirre-like nephrin family adhesion molecule 1 in melanoma (17). In the present study, the Gene Expression Omnibus (GEO) database (18) was used to mine differentially expressed genes (DEGs) between PTC tissues and adjacent normal tissues of PTC. Subsequently, multiple bioinformatics methods, including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genome (KEGG) enrichment analysis, construction of a protein-protein interaction (PPI) network and network topological analysis were employed to identify hub genes in DEGs which potentially related to the initiation and progression of PTC. In addition, association of the expression of hub genes with prognosis as well as clinical stage of patients with PTC was validated using The Cancer Genome Atlas (TCGA) database and survival analysis.
Materials and methods
Microarray data
In total, 4 gene expression datasets of PTC [GSE3678 and GSE3467 (19), GSE60542 (20), and GSE97001 (21)] were downloaded from the GEO database. The GSE3678 dataset contained 7 PTC samples and 7 paired adjacent normal thyroid tissues. The GSE3467 dataset was comprised of 9 PTC samples and 9 paired adjacent normal thyroid tissues. The GSE60542 dataset included 33 PTC samples and 29 paired adjacent normal thyroid tissues. GSE97001 was composed of 4 PTC samples and 4 paired adjacent normal thyroid tissues.
DEG analysis
The R language limma package (version 3.4.2) (22) (http://www.bioconductor.org/packages/release/bioc/html/limma.html) was used to analyze the DEGs among samples. The adjusted P<0.05 and |log2fold change|>1 were taken as the cut-off values. Subsequently, the 4 expression datasets were integrated using the Robust Rank Aggregation (RRA) method (https://cran.r-project.org/web/packages/RankAggreg/RankAggreg.pdf).
GO and KEGG enrichment analyses of DEGs
To assess the potential molecular mechanisms of DEGs in PTC, the Database for Annotation, Visualization and Integrated Discovery (DAVID) online tool (23) was utilized for GO analysis (24) to annotate genes and to define the functions of DEGs into 3 domains: Cellular component, biological process and molecular function. Subsequently, KEGG enrichment analysis was conducted to understand the signaling pathways in which DEGs genes were involved (25).
PPI network construction and topological analysis
The DEG-related PPI network was established using the STRING database (26), followed using visualization by Cytoscape software (version 3.6.1; http://github.com/cytoscape/cytoscape/releases/3.6.1/). Significant genes in the network were subsequently filtered using the Cytoscape plugin cytoHubba (27), which sorts the nodes in the network in accordance with the topological parameters of each node. The hub genes were selected from the intersection of the top 55 DEGs from 12 algorithms by cytoHubba (28).
Validation of DEGs and association with clinicopathological characteristics using a TGCA dataset
Clinical data and RNA-sequencing data on patients with thyroid cancer were downloaded from TCGA database (29). There were 510 thyroid cancer (THCA) samples and 58 normal samples in the TCGA-THCA cohort. Pathological classifications of non-papillary carcinoma specimens were first excluded, and samples with pathological parameters and follow-up data remained, leaving 493 patients with PTC and 58 normal thyroid samples. Additionally, the expression value of the RNA sequencing data, downloaded as transcripts per million (TPM), was analyzed. The coexpression network of hub genes was identified base on STRING network and CytoScape software was in cBioportal (http://www.cbioportal.org/).
Statistical analysis
R software version 3.4.2 (R Foundation) or GraphPad Prism version 7.0 software (GraphPad, Inc.) were used for statistical analysis. The differential expression of hub genes between normal and PTC tissue were analysed using the Wilcoxon test, and the Kaplan-Meier curves and log-rank test were used for survival analysis of hub genes. P<0.05 was considered to indicate a statistically significant difference. The ‘Survminer’ package (https://cran.r-project.org/web/packages/survminer/index.html) for R was applied to determine the optimal cut-off value to divide patients into 2 groups based on either high or low gene expression, based on receiver operating characteristic. Pearson's χ2 test or Fisher's exact test were employed to determine the association between DEGs and clinicopathological characteristics of patients with PTC. Moreover, overall survival (OS) and disease-free survival (DFS) were calculated using the R package survival (https://cran.r-project.org/web/packages/survival/index.html). The cut-off value of significant GO terms and KEGG pathway was P<0.05. Univariate Cox proportional hazard models were utilized to explore the prognostic value of the significant DEGs. Subsequently, multivariate Cox regression was used for the identification of independent predictors of PTC.
Results
Identification of DEGs between PTC and paracancerous tissue A total of 4 datasets were identified in the GEO database: GSE3678, GSE3467, GSE60542 and GSE97001
The characteristics of these studies are presented in Table I. A total of 134 upregulated genes and 106 downregulated genes were identified using the RRA method. The top 50 most significantly upregulated and downregulated genes are clustered in a heatmap (Fig. 1).
Pathway enrichment analysis using GO and KEGG
GO is considered as the international standard classification system for gene function. A total of 240 DEGs were identified. As shown in Fig. 2A, ‘Cellular oxidant detoxification’, ‘extracellular exosome’, ‘cell adhesion’, ‘extracellular matrix’, ‘collagen binding’ and ‘protease binding’ was enrichment based on GO analysis. KEGG analysis was undertaken using the DAVID tool, which revealed the most significantly enriched pathways included thyroid hormone synthesis, pathways in cancer, focal adhesion, metabolic pathways, apoptosis and the PPAR and PI3K/AKT signaling pathways in KEGG (Fig. 2B).
PPI network analysis
A PPI network of DEGs was first constructed using the STRING database, followed by data visualization by Cytoscape (Fig. 3A). To further mine the significant nodes in the network, topological analysis of each node was performed using the Cytoscape plugin cytoHubba. The 6 most significant genes identified in the PPI network were apolipoprotein E (APOE), hemoglobin subunit α1 (HBA1), angiotensin II receptor type 1 (AGTR1), collagen type I α1 (COL1A1), galectin 3 (LGALS3) and TIMP metallopeptidase inhibitor 1 (TIMP1). The co-expression network of these 6 hub genes based on the TCGA-THCA cohort dataset was constructed using the cBioportal tool (http://www.cbioportal.org/) (Fig. 3B).
Verification of the association of 6 hub genes with prognosis for patients with PTC
A total of 493 patients with PTC and 58 normal thyroid samples were identified in the TCGA-THCA dataset. To validate the reliability of the 6 significant genes identified in the GEO database, the expression level of these genes was assessed in the TCGA database by including 493 PTC samples and 58 normal thyroid tissues. As shown in Fig. 4, the expression trends of these genes were in line with previous GEO analysis (Fig. 1). To identify the association between the 6 hub genes and prognosis for patients with PTC, samples from the TCGA database were further categorized into high and low expression groups. As shown in Fig. 5, the expression levels of 4 genes, APOE, COL1A1, LGALS3 and TIMP1, were significantly associated with OS. As shown in Fig. 6, all 6 significant genes were associated with DFS in patients with PTC. Among these genes, APOE had the most significant association with OS (P=0.00067) and DFS (P=0.00220), suggesting that APOE may play a critical role in PTC progression and is significantly associated with prognosis.
Association between APOE expression and clinicopathological features of patients with PTC
To further demonstrate the importance of APOE in PTC and patient prognosis, the association of APOE expression with clinicopathological features of patients with PTC was analyzed using the TCGA dataset. As presented in Table II, low expression of APOE was significantly associated with older age (P<0.001) and more advanced TNM stage (P<0.001). The results revealed that gender, lymph node involvement, distant metastasis and cancer multifocality were not significantly associated with APOE expression. Finally, univariate and multivariate Cox proportional hazard analyses were conducted. As shown in Table III, univariate analysis revealed that the mRNA expression of APOE (P=0.002) was closely associated with TNM stage (P=0.001), while multivariate analysis suggested that APOE could be an independent prognostic factor for patients with PTC.
Table II.Association between the expression of APOE and the clinicopathological characteristics of patients with papillary thyroid carcinoma. |
Discussion
PTC is the most prevalent malignancy in the endocrine system, with a rapid increase in morbidity rate in past two decades (1). Despite the relatively good 5-year survival rate of patients with PTC, tumor recurrence and lymph node metastasis are common, which might impact the OS and DFS of patients with PTC (30,31).
In the present study, DEGs between neoplastic and adjacent tissues of PTC were analyzed using the GEO database. Consequently, 134 upregulated and 106 downregulated DEGs were identified. GO and KEGG enrichment analysis, establishment of PPI network and network topological analysis were utilized to identify genes potentially related to the initiation and development of PTC. It can be hypothesized that most of the DEGs identified in the present study were enriched in multiple cancer initiation and development-related pathological processes and signaling pathways based on GO and KEGG enrichment analysis from previous research (32–37). Recent evidence from network biology suggests that genes and proteins do not function in isolation. Instead, they function in interconnected pathways and molecular networks on multiple levels (38). In a previous study the properties and behavior of biological molecules were also identified using the PPI network, suggesting this is an important tool (39).
In total, 6 significant hub genes were identified among the DEGs: APOE, HBA1, AGTR1, COL1A1, LGALS3 and TIMP1. Of these 6 genes, HBA1, AGTR1, COL1A1 and TIMP1 have previously been reported to participate in the pathogenesis, development, malignant transformation and pathological process of PTC, and they have been significantly associated with patient survival and prognosis (40–43). These previous studies have confirmed the reliability and accuracy of the bioinformatic mining results in the present study.
APOE is a well-known apolipoprotein that functions in lipoprotein-mediated lipid transport between organs via the plasma and interstitial fluids (44). As a secreted protein, APOE has been implicated in lipoprotein metabolism and the pathogenesis of Alzheimer's disease and atherosclerosis (45–47). However, its association with tumors has rarely been reported. In recent years, an additional role of APOE has been identified in the pathogenesis of tumor metastasis (48,49). APOE can inhibit the invasiveness of melanoma cells and the recruitment of endothelial cells, potentially functioning as a vital barrier to metastatic colonization (50,51). APOE has also been demonstrated to be involved in innate immune modulation, which could be a target to enhance the efficacy of cancer immunotherapy in patients (52). Moreover, the abnormal expression of APOE in lung, colorectal and gastric cancer has been reported (53–56); however, the association between APOE and PTC has not been investigated and should be the basis of future research.
At present, the association of the expression of numerous genes with the survival of patients with PTC is increasingly being mined. The majority of present studies are validated in animal tumor models, in vitro cell models or small-scale clinical studies (57,58). However, large-scale studies with more comprehensive analysis and larger cohorts are required due to the complexity of PTC. Fortunately, the rapid development of genome-wide sequencing has led to the development of publicly-available high-throughput tumor databases such as GEO and TCGA, which have made it possible to conduct bioinformatic analysis of large datasets of patients with PTC.
Acknowledgements
Not applicable.
Funding
The present study was supported by the Youth Fund of the Second Affiliated Hospital to Nanchang University (grant no. 2016YNQN12026) and the Young and Middle-aged Doctor Research Project of the Thyroid Gland from China Health Promotion Foundation and the Natural Science Foundation in China (grant nos. 81660294,.81560397 and 81660403, respectively).
Availability of data and materials
The datasets generated and/or analyzed during the present study are available in the Gene Expression Omnibus repository (https://www.ncbi.nlm.nih.gov/geo/) and The Cancer Genome Atlas repository (https://portal.gdc.cancer.gov/).
Authors' contributions
YXL and QGJ designed the study. QGJ and WQF collected and analyzed the data. YXL drafted, wrote and critically revised the manuscript. CFX analyzed the data. YXL critically revised the manuscript. All authors had intellectual input into the study and approved the final version of the manuscript.
Ethics approval and consent to participate
Not applicable.
Patient consent for publication
Not applicable.
Competing interests
The authors declare that they have no competing interests.
References
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI | |
Xing M, Haugen BR and Schlumberger M: Progress in molecular-based management of differentiated thyroid cancer. Lancet. 381:1058–1069. 2013. View Article : Google Scholar : PubMed/NCBI | |
Rusinek D, Pfeifer A, Krajewska J, Oczko-Wojciechowska M, Handkiewicz-Junak D, Pawlaczek A, Zebracka-Gala J, Kowalska M, Cyplinska R, Zembala-Nozynska E, et al: Coexistence of TERT promoter mutations and the BRAF V600E alteration and its impact on histopathological features of papillary thyroid carcinoma in a selected series of polish patients. Int J Mol Sci. 19:E26472018. View Article : Google Scholar : PubMed/NCBI | |
Kwak HY, Chae BJ, Eom YH, Hong YR, Seo JB, Lee SH, Song BJ, Jung SS and Bae JS: Does papillary thyroid carcinoma have a better prognosis with or without Hashimoto thyroiditis? Int J Clin Oncol. 20:463–473. 2015. View Article : Google Scholar : PubMed/NCBI | |
Selmansberger M, Feuchtinger A, Zurnadzhy L, Michna A, Kaiser JC, Abend M, Brenner A, Bogdanova T, Walch A, Unger K, et al: CLIP2 as radiation biomarker in papillary thyroid carcinoma. Oncogene. 34:3917–3925. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Cai J, Yu Y, Fang H, Si Y, Jankee JJ and Shen M: Tumor abnormal protein as a novel biomarker in papillary thyroid carcinoma. Clin Lab. 63:479–485. 2017. View Article : Google Scholar : PubMed/NCBI | |
Giordano TJ, Kuick R, Thomas DG, Misek DE, Vinco M, Sanders D, Zhu Z, Ciampi R, Roh M, Shedden K, et al: Molecular classification of papillary thyroid carcinoma: Distinct BRAF, RAS, and RET/PTC mutation-specific gene expression profiles discovered by DNA microarray analysis. Oncogene. 24:6646–6656. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ciampi R, Knauf JA, Kerler R, Gandhi M, Zhu Z, Nikiforova MN, Rabes HM, Fagin JA and Nikiforov YE: Oncogenic AKAP9-BRAF fusion is a novel mechanism of MAPK pathway activation in thyroid cancer. J Clin Invest. 115:94–101. 2005. View Article : Google Scholar : PubMed/NCBI | |
Crescenzi A, Guidobaldi L, Nasrollah N, Taccogna S, Cicciarella Modica DD, Turrini L, Nigri G, Romanelli F, Valabrega S, Giovanella L, et al: Immunohistochemistry for BRAF(V600E) antibody VE1 performed in core needle biopsy samples identifies mutated papillary thyroid cancers. Horm Metab Res. 46:370–374. 2014. View Article : Google Scholar : PubMed/NCBI | |
Clinkscales W, Ong A, Nguyen S, Harruff EE and Gillespie MB: Diagnostic value of RAS mutations in indeterminate thyroid nodules. Otolaryngol Head Neck Surg. 156:472–479. 2017. View Article : Google Scholar : PubMed/NCBI | |
Fagin JA and Wells SA Jr: Biologic and clinical perspectives on thyroid cancer. N Engl J Med. 375:23072016. View Article : Google Scholar : PubMed/NCBI | |
Lima CR, Geraldo MV, Fuziwara CS, Kimura ET and Santos MF: MiRNA-146b-5p upregulates migration and invasion of different Papillary Thyroid Carcinoma cells. BMC Cancer. 16:1082016. View Article : Google Scholar : PubMed/NCBI | |
Condello V, Torregrossa L, Sartori C, Denaro M, Poma AM, Piaggi P, Valerio L, Materazzi G, Elisei R, Vitti P and Basolo F: mRNA and miRNA expression profiling of follicular variant of papillary thyroid carcinoma with and without distant metastases. Mol Cell Endocrinol. 479:93–102. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chen F, Yin S, Zhu J, Liu P, Yang C, Feng Z and Deng Z: lncRNA DGCR5 acts as a tumor suppressor in papillary thyroid carcinoma via sequestering miR-2861. Exp Ther Med. 17:895–900. 2019.PubMed/NCBI | |
Matsumoto Y, Saito M, Saito K, Kanke Y, Watanabe Y, Onozawa H, Hayase S, Sakamoto W, Ishigame T, Momma T, et al: Enhanced expression of KIF4A in colorectal cancer is associated with lymph node metastasis. Oncol Lett. 15:2188–2194. 2018.PubMed/NCBI | |
Liu C, Song YH, Mao Y, Wang HB and Nie G: MiRNA-106a promotes breast cancer progression by regulating DAX-1. Eur Rev Med Pharmacol Sci. 23:1574–1583. 2019.PubMed/NCBI | |
Lundgren S, Fagerstrom-Vahman H, Zhang C, Ben-Dror L, Mardinoglu A, Uhlen M, Nodin B and Jirström K: Discovery of KIRREL as a biomarker for prognostic stratification of patients with thin melanoma. Biomark Res. 7:12019. View Article : Google Scholar : PubMed/NCBI | |
Edgar R, Domrachev M and Lash AE: Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 30:207–210. 2002. View Article : Google Scholar : PubMed/NCBI | |
He H, Jazdzewski K, Li W, Liyanarachchi S, Nagy R, Volinia S, Calin GA, Liu CG, Franssila K, Suster S, et al: The role of microRNA genes in papillary thyroid carcinoma. Proc Natl Acad Sci USA. 102:19075–19080. 2005. View Article : Google Scholar : PubMed/NCBI | |
Tarabichi M, Saiselet M, Tresallet C, Hoang C, Larsimont D, Andry G, Maenhaut C and Detours V: Revisiting the transcriptional analysis of primary tumours and associated nodal metastases with enhanced biological and statistical controls: Application to thyroid cancer. Br J Cancer. 112:1665–1674. 2015. View Article : Google Scholar : PubMed/NCBI | |
Iacobas DA, Tuli NY, Iacobas S, Rasamny JK, Moscatello A, Geliebter J and Tiwari RK: Gene master regulators of papillary and anaplastic thyroid cancers. Oncotarget. 9:2410–2424. 2017.PubMed/NCBI | |
Diboun I, Wernisch L, Orengo CA and Koltzenburg M: Microarray analysis after RNA amplification can detect pronounced differences in gene expression using limma. BMC Genomics. 7:2522006. View Article : Google Scholar : PubMed/NCBI | |
Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC and Lempicki RA: DAVID: Database for annotation, visualization, and integrated discovery. Genome Biol. 4:P32003. View Article : Google Scholar : PubMed/NCBI | |
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al: Gene ontology: Tool for the unification of biology. The gene ontology consortium. Nat Genet. 25:25–29. 2000. View Article : Google Scholar : PubMed/NCBI | |
Kanehisa M, Furumichi M, Tanabe M, Sato Y and Morishima K: KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 45:D353–D361. 2017. View Article : Google Scholar : PubMed/NCBI | |
Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, Santos A, Doncheva NT, Roth A, Bork P, et al: The STRING database in 2017: Quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res. 45:D362–D368. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chin CH, Chen SH, Wu HH, Ho CW, Ko MT and Lin CY: cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Syst Biol. 8 (Suppl 4):S112014. View Article : Google Scholar : PubMed/NCBI | |
Tan J, Qian X, Song B, An X, Cai T, Zuo Z, Ding D, Lu Y and Li H: Integrated bioinformatics analysis reveals that the expression of cathepsin S is associated with lymph node metastasis and poor prognosis in papillary thyroid cancer. Oncol Rep. 40:111–122. 2018.PubMed/NCBI | |
Asa SL, Giordano TJ and LiVolsi VA: Implications of the TCGA genomic characterization of papillary thyroid carcinoma for thyroid pathology: Does follicular variant papillary thyroid carcinoma exist? Thyroid. 25:1–2. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang K, Xu J, Li S, Liu S and Zhang L: Population-based study evaluating and predicting the probability of death resulting from thyroid cancer among patients with papillary thyroid microcarcinoma. Cancer Med. 8:6977–6985. 2019. View Article : Google Scholar : PubMed/NCBI | |
Londero SC, Krogdahl A, Bastholt L, Overgaard J, Pedersen HB, Hahn CH, Bentzen J, Schytte S, Christiansen P, Gerke O, et al: Papillary thyroid carcinoma in Denmark, 1996–2008: Outcome and evaluation of established prognostic scoring systems in a prospective national cohort. Thyroid. 25:78–84. 2015. View Article : Google Scholar : PubMed/NCBI | |
Rappa G, Puglisi C, Santos MF, Forte S, Memeo L and Lorico A: Extracellular vesicles from thyroid carcinoma: The New Frontier of Liquid Biopsy. Int J Mol Sci. 20:E11142019. View Article : Google Scholar : PubMed/NCBI | |
Andriescu EC, Caruntu ID, Giusca SE, Lozneanu L and Ciobanu Apostol DG: Prognostic significance of cell-adhesion molecules in histological variants of papillary thyroid carcinoma. Rom J Morphol Embryol. 59:721–727. 2018.PubMed/NCBI | |
Tang T and Zhang DL: Study on extracellular matrix metalloproteinase inducer and human epidermal growth factor receptor-2 protein expression in papillary thyroid carcinoma using a quantum dot-based immunofluorescence technique. Exp Ther Med. 9:1331–1335. 2015. View Article : Google Scholar : PubMed/NCBI | |
Selemetjev S, Bartolome A, Isic Dencic T, Đorić I, Paunović I, Tatić S and Cvejić D: Overexpression of epidermal growth factor receptor and its downstream effector, focal adhesion kinase, correlates with papillary thyroid carcinoma progression. Int J Exp Pathol. 99:87–94. 2018. View Article : Google Scholar : PubMed/NCBI | |
Arts RJ, Plantinga TS, Tuit S, Ulas T, Heinhuis B, Tesselaar M, Sloot Y, Adema GJ, Joosten LA, Smit JW, et al: Transcriptional and metabolic reprogramming induce an inflammatory phenotype in non-medullary thyroid carcinoma-induced macrophages. Oncoimmunology. 5:e12297252016. View Article : Google Scholar : PubMed/NCBI | |
French CA, Fletcher JA, Cibas ES, Caulfield C, Allard P and Kroll TG: Molecular detection of PPAR gamma rearrangements and thyroid carcinoma in preoperative fine-needle aspiration biopsies. Endocr Pathol. 19:166–174. 2008. View Article : Google Scholar : PubMed/NCBI | |
Miryala SK, Anbarasu A and Ramaiah S: Discerning molecular interactions: A comprehensive review on biomolecular interaction databases and network analysis tools. Gene. 642:84–94. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Wang H and Lu Y: Tianfoshen oral liquid: A CFDA approved clinical traditional Chinese medicine, normalizes major cellular pathways disordered during colorectal carcinogenesis. Oncotarget. 8:14549–14569. 2017.PubMed/NCBI | |
Wasenius VM, Hemmer S, Kettunen E, Knuutila S, Franssila K and Joensuu H: Hepatocyte growth factor receptor, matrix metalloproteinase-11, tissue inhibitor of metalloproteinase-1, and fibronectin are up-regulated in papillary thyroid carcinoma: A cDNA and tissue microarray study. Clin Cancer Res. 9:68–75. 2003.PubMed/NCBI | |
Qiu J, Zhang W, Xia Q, Liu F, Li L, Zhao S, Gao X, Zang C, Ge R and Sun Y: RNA sequencing identifies crucial genes in papillary thyroid carcinoma (PTC) progression. Exp Mol Pathol. 100:151–159. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hawthorn L, Stein L, Varma R, Wiseman S, Loree T and Tan D: TIMP1 and SERPIN-A overexpression and TFF3 and CRABP1 underexpression as biomarkers for papillary thyroid carcinoma. Head Neck. 26:1069–1083. 2004. View Article : Google Scholar : PubMed/NCBI | |
Lin P, Guo YN, Shi L, Li XJ, Yang H, He Y, Li Q, Dang YW, Wei KL and Chen G: Development of a prognostic index based on an immunogenomic landscape analysis of papillary thyroid cancer. Aging (Albany NY). 11:480–500. 2019. View Article : Google Scholar : PubMed/NCBI | |
Verghese PB, Castellano JM, Garai K, Wang Y, Jiang H, Shah A, Bu G, Frieden C and Holtzman DM: ApoE influences amyloid-β (Aβ) clearance despite minimal apoE/Aβ association in physiological conditions. Proc Natl Acad Sci USA. 110:E1807–E1816. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zokaei N, Cepukaityte G, Board AG, Mackay CE, Husain M and Nobre AC: Dissociable effects of the apolipoprotein-E (APOE) gene on short- and long-term memories. Neurobiol Aging. 73:115–122. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zheng L, Duan J, Duan X, Zhou W, Chen C, Li Y, Chen J, Zhou W, Wang YJ, Li T and Song W: Association of Apolipoprotein E (ApoE) polymorphism with Alzheimer's disease in Chinese population. Curr Alzheimer Res. 13:912–917. 2016. View Article : Google Scholar : PubMed/NCBI | |
Weber C and Soehnlein O: ApoE controls the interface linking lipids and inflammation in atherosclerosis. J Clin Invest. 121:3825–3827. 2011. View Article : Google Scholar : PubMed/NCBI | |
An HJ, Koh HM and Song DH: Apolipoprotein E is a predictive marker for assessing non-small cell lung cancer patients with lymph node metastasis. Pathol Res Pract. 215:1526072019. View Article : Google Scholar : PubMed/NCBI | |
Zhao Z, Zou S, Guan X, Wang M, Jiang Z, Liu Z, Li C, Lin H, Liu X, Yang R, et al: Apolipoprotein E overexpression is associated with tumor progression and poor survival in colorectal cancer. Front Genet. 9:6502018. View Article : Google Scholar : PubMed/NCBI | |
LXR agonism inhibits metastatic melanoma through activation of ApoE. Cancer Discov. 4:OF162014. View Article : Google Scholar | |
Pencheva N, Tran H, Buss C, Huh D, Drobnjak M, Busam K and Tavazoie SF: Convergent multi-miRNA targeting of ApoE drives LRP1/LRP8-dependent melanoma metastasis and angiogenesis. Cell. 151:1068–1082. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tavazoie MF, Pollack I, Tanqueco R, Ostendorf BN, Reis BS, Gonsalves FC, Kurth I, Andreu-Agullo C, Derbyshire ML, Posada J, et al: LXR/ApoE activation restricts innate immune suppression in cancer. Cell. 172:825–840.e18. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tahmasbpour E, Ghanei M and Panahi Y: Two lung cancer development-related genes, Forkhead Box M1 (FOXM1) and Apolipoprotein E (APOE), are overexpressed in Bronchial of patients after long-term exposure to Sulfur Mustard. Iran J Pharm Res. 16:1487–1494. 2017.PubMed/NCBI | |
Liu Z, Gao Y, Hao F, Lou X, Zhang X, Li Y, Wu D, Xiao T, Yang L, Li Q, et al: Secretomes are a potential source of molecular targets for cancer therapies and indicate that APOE is a candidate biomarker for lung adenocarcinoma metastasis. Mol Biol Rep. 41:7507–7523. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sakashita K, Tanaka F, Zhang X, Mimori K, Kamohara Y, Inoue H, Sawada T, Hirakawa K and Mori M: Clinical significance of ApoE expression in human gastric cancer. Oncol Rep. 20:1313–1319. 2008.PubMed/NCBI | |
Slattery ML, Sweeney C, Murtaugh M, Ma KN, Potter JD, Levin TR, Samowitz W and Wolff R: Associations between apoE genotype and colon and rectal cancer. Carcinogenesis. 26:1422–1429. 2005. View Article : Google Scholar : PubMed/NCBI | |
Liu F, Zhang J, Qin L, Yang Z, Xiong J, Zhang Y, Li R, Li S, Wang H, Yu B, et al: Circular RNA EIF6 (Hsa_circ_0060060) sponges miR-144-3p to promote the cisplatin-resistance of human thyroid carcinoma cells by autophagy regulation. Aging (Albany NY). 10:3806–3820. 2018. View Article : Google Scholar : PubMed/NCBI | |
Jia M, Shi Y, Li Z, Lu X and Wang J: MicroRNA-146b-5p as an oncomiR promotes papillary thyroid carcinoma development by targeting CCDC6. Cancer Lett. 443:145–156. 2019. View Article : Google Scholar : PubMed/NCBI |