Curcumin reverses chemoresistance of human gastric cancer cells by downregulating the NF-κB transcription factor

  • Authors:
    • Liang-Liang Yu
    • Jia-Guo Wu
    • Ning Dai
    • Hong-Gang Yu
    • Jian-Μin Si
  • View Affiliations

  • Published online on: August 2, 2011     https://doi.org/10.3892/or.2011.1410
  • Pages: 1197-1203
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Gastric cancer remains one of the major health problems worldwide. Chemotherapy is an important therapeutic modality for gastric cancer, but the success rate of this treatment is limited because of chemoresistance. The ubiquitously expressed transcription factor NF-κB has been suggested to be associated with chemoresistance of gastric cancer. Agents that can either enhance the effects of chemotherapeutics or overcome chemoresistance to chemotherapeutics are needed for the treatment of gastric cancer. Curcumin, a component of turmeric, is one such agent that has been shown to suppress NF-κB and increase the efficacy of chemotherapy. In this study, we investigated whether curcumin can reverse chemoresistance by downregulating NF-κB in human gastric cancer cells. SGC-7901 human gastric cancer cells was treated with chemotherapeutics (etoposide and doxorubicin) or by combined application of curcumin and chemotherapeutics. The viability of SGC-7901 cells was measured by MTT assay. Apoptosis of SGC-7901 cells was detected using the TUNEL and Annexin V/PI methods. The protein levels of NF-κB were analyzed by immunocytochemical staining. EMSA was used to confirm the increased nuclear translocation of RelA. The protein levels of p-IκBα, Bcl-2 and Bcl-xL were analyzed by Western blotting. The chemotherapeutics (etoposide and doxorubicin) suppressed the growth of SGC-7901 cells, in a time-dose-dependent manner. Use of curcumin in addition to these agents can suppress cell growth further (inhibitory rate: doxorubicin vs. doxorubicin + curcumin, 33% vs. 45%, p<0.05; etoposide vs. etoposide + curcumin, 35% vs. 48%, p<0.05). Furthermore, chemotherapeutics induced apoptosis of SGC-7901 cells and activated NF-κB. The combination of curcumin and chemotherapeutics induced apoptosis of SGC-7901 cells further, attenuated the activation of NF-κB, and reduced expression of the NF-κB-regulated anti-apoptotic gene products Bcl-2 and Bcl-xL. Curcumin potentiates the antitumor effects of chemotherapeutics in gastric cancer by suppressing NF-κB and NF-κB-regulated anti-apoptotic genes.

Related Articles

Journal Cover

November 2011
Volume 26 Issue 5

Print ISSN: 1021-335X
Online ISSN:1791-2431

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Yu L, Wu J, Dai N, Yu H and Si J: Curcumin reverses chemoresistance of human gastric cancer cells by downregulating the NF-κB transcription factor. Oncol Rep 26: 1197-1203, 2011.
APA
Yu, L., Wu, J., Dai, N., Yu, H., & Si, J. (2011). Curcumin reverses chemoresistance of human gastric cancer cells by downregulating the NF-κB transcription factor. Oncology Reports, 26, 1197-1203. https://doi.org/10.3892/or.2011.1410
MLA
Yu, L., Wu, J., Dai, N., Yu, H., Si, J."Curcumin reverses chemoresistance of human gastric cancer cells by downregulating the NF-κB transcription factor". Oncology Reports 26.5 (2011): 1197-1203.
Chicago
Yu, L., Wu, J., Dai, N., Yu, H., Si, J."Curcumin reverses chemoresistance of human gastric cancer cells by downregulating the NF-κB transcription factor". Oncology Reports 26, no. 5 (2011): 1197-1203. https://doi.org/10.3892/or.2011.1410