Antibody‑drug conjugates in prostate cancer: Emerging strategies to enhance therapeutic index and current clinical landscape (Review)
- Authors:
- Chadanfeng Yang
- Limei Wang
- Chen Gong
- Dihao Lv
- Haihao Li
- Yinglong Huang
- Jiting Li
- Wujie Chen
- Shi Fu
- Zhiyong Tan
- Mingxia Ding
-
Affiliations: Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China - Published online on: December 13, 2024 https://doi.org/10.3892/or.2024.8854
- Article Number: 21
This article is mentioned in:
Abstract
Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 74:229–263. 2024. View Article : Google Scholar : PubMed/NCBI | |
Calabrese M, Saporita I, Turco F, Gillessen S, Castro E, Vogl UM, Di Stefano RF, Carfì FM, Poletto S, Farinea G, et al: Synthetic lethality by co-inhibition of androgen receptor and polyadenosine diphosphate-ribose in metastatic prostate cancer. Int J Mol Sci. 25:782023. View Article : Google Scholar : PubMed/NCBI | |
Yamada Y and Beltran H: The treatment landscape of metastatic prostate cancer. Cancer Lett. 519:20–29. 2021. View Article : Google Scholar : PubMed/NCBI | |
Armstrong AJ, Szmulewitz RZ, Petrylak DP, Holzbeierlein J, Villers A, Azad A, Alcaraz A, Alekseev B, Iguchi T, Shore ND, et al: ARCHES: A randomized, phase III study of androgen deprivation therapy with enzalutamide or placebo in men with metastatic hormone-sensitive prostate cancer. J Clin Oncol. 37:2974–2986. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chi KN, Agarwal N, Bjartell A, Chung BH, de Santana Gomes AJ, Given R, Soto ÁJ, Merseburger AS, Özgüroğlu M, Uemura H, et al: Apalutamide for metastatic, castration-sensitive prostate cancer. N Engl J Med. 381:13–24. 2019. View Article : Google Scholar : PubMed/NCBI | |
Davis ID, Martin AJ, Stockler MR, Begbie S, Chi KN, Chowdhury S, Coskinas X, Frydenberg M, Hague WE, Horvath LG, et al: Enzalutamide with standard first-line therapy in metastatic prostate cancer. N Engl J Med. 381:121–131. 2019. View Article : Google Scholar : PubMed/NCBI | |
Fizazi K, Tran N, Fein L, Matsubara N, Rodriguez-Antolin A, Alekseev BY, Özgüroğlu M, Ye D, Feyerabend S, Protheroe A, et al: Abiraterone plus prednisone in metastatic, castration-sensitive prostate cancer. N Engl J Med. 377:352–360. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sweeney CJ, Chen YH, Carducci M, Liu G, Jarrard DF, Eisenberger M, Wong YN, Hahn N, Kohli M, Cooney MM, et al: Chemohormonal therapy in metastatic hormone-sensitive prostate cancer. N Engl J Med. 373:737–746. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gillessen S, Armstrong A, Attard G, Beer TM, Beltran H, Bjartell A, Bossi A, Briganti A, Bristow RG, Bulbul M, et al: Management of patients with advanced prostate cancer: Report from the advanced prostate cancer consensus conference 2021. Eur Urol. 82:115–141. 2022. View Article : Google Scholar : PubMed/NCBI | |
Verry C, Vincendeau S, Massetti M, Blachier M, Vimont A, Bazil ML, Bernardini P, Pettré S and Timsit MO: Pattern of clinical progression until metastatic castration-resistant prostate cancer: An epidemiological study from the European prostate cancer registry. Target Oncol. 17:441–451. 2022. View Article : Google Scholar : PubMed/NCBI | |
Tilki D, van den Bergh RCN, Briers E, Van den Broeck T, Brunckhorst O, Darraugh J, Eberli D, De Meerleer G, De Santis M, Farolfi A, et al: EAU-EANM-ESTRO-ESUR-ISUP-SIOG guidelines on prostate cancer. Part II-2024 update: Treatment of relapsing and metastatic prostate cancer. Eur Urol. 86:164–182. 2024. View Article : Google Scholar : PubMed/NCBI | |
Dumontet C, Reichert JM, Senter PD, Lambert JM and Beck A: Antibody-drug conjugates come of age in oncology. Nat Rev Drug Discov. 22:641–661. 2023. View Article : Google Scholar : PubMed/NCBI | |
Drago JZ, Modi S and Chandarlapaty S: Unlocking the potential of antibody-drug conjugates for cancer therapy. Nat Rev Clin Oncol. 18:327–344. 2021. View Article : Google Scholar : PubMed/NCBI | |
Beck A, Goetsch L, Dumontet C and Corvaia N: Strategies and challenges for the next generation of antibody-drug conjugates. Nat Rev Drug Discov. 16:315–337. 2017. View Article : Google Scholar : PubMed/NCBI | |
Trail PA, Dubowchik GM and Lowinger TB: Antibody drug conjugates for treatment of breast cancer: Novel targets and diverse approaches in ADC design. Pharmacol Ther. 181:126–142. 2018. View Article : Google Scholar : PubMed/NCBI | |
Modi S, Saura C, Yamashita T, Park YH, Kim SB, Tamura K, Andre F, Iwata H, Ito Y, Tsurutani J, et al: Trastuzumab deruxtecan in previously treated HER2-positive breast cancer. N Engl J Med. 382:610–621. 2020. View Article : Google Scholar : PubMed/NCBI | |
Modi S, Jacot W, Yamashita T, Sohn J, Vidal M, Tokunaga E, Tsurutani J, Ueno NT, Prat A, Chae YS, et al: Trastuzumab deruxtecan in previously treated HER2-low advanced breast cancer. N Engl J Med. 387:9–20. 2022. View Article : Google Scholar : PubMed/NCBI | |
Bardia A, Hurvitz SA, Tolaney SM, Loirat D, Punie K, Oliveira M, Brufsky A, Sardesai SD, Kalinsky K, Zelnak AB, et al: Sacituzumab govitecan in metastatic triple-negative breast cancer. N Engl J Med. 384:1529–1541. 2021. View Article : Google Scholar : PubMed/NCBI | |
Strebhardt K and Ullrich A: Paul Ehrlich's magic bullet concept: 100 years of progress. Nat Rev Cancer. 8:473–480. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kohler G and Milstein C: Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 256:495–497. 1975. View Article : Google Scholar : PubMed/NCBI | |
Carter P: Improving the efficacy of antibody-based cancer therapies. Nat Rev Cancer. 1:118–129. 2001. View Article : Google Scholar : PubMed/NCBI | |
Schrama D, Reisfeld RA and Becker JC: Antibody targeted drugs as cancer therapeutics. Nat Rev Drug Discov. 5:147–159. 2006. View Article : Google Scholar : PubMed/NCBI | |
Sievers EL: Efficacy and safety of gemtuzumab ozogamicin in patients with CD33-positive acute myeloid leukaemia in first relapse. Expert Opin Biol Ther. 1:893–901. 2001. View Article : Google Scholar : PubMed/NCBI | |
Amiri-Kordestani L, Blumenthal GM, Xu QC, Zhang L, Tang SW, Ha L, Weinberg WC, Chi B, Candau-Chacon R, Hughes P, et al: FDA approval: Ado-trastuzumab emtansine for the treatment of patients with HER2-positive metastatic breast cancer. Clin Cancer Res. 20:4436–4441. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ghose A, Lapitan P, Apte V, Ghosh A, Kandala A, Basu S, Parkes J, Shinde SD, Boussios S, Sharma A, et al: Antibody drug conjugates in urological cancers: A review of the current landscape. Curr Oncol Rep. 26:633–646. 2024. View Article : Google Scholar : PubMed/NCBI | |
Chang E, Weinstock C, Zhang L, Charlab R, Dorff SE, Gong Y, Hsu V, Li F, Ricks TK, Song P, et al: FDA approval summary: Enfortumab vedotin for locally advanced or metastatic urothelial carcinoma. Clin Cancer Res. 27:922–927. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li K, Xie G, Deng X, Zhang Y, Jia Z and Huang Z: Antibody-drug conjugates in urinary tumors: Clinical application, challenge, and perspectives. Front Oncol. 13:12597842023. View Article : Google Scholar : PubMed/NCBI | |
Tsuchikama K and An Z: Antibody-drug conjugates: Recent advances in conjugation and linker chemistries. Protein Cell. 9:33–46. 2018. View Article : Google Scholar : PubMed/NCBI | |
Giugliano F, Corti C, Tarantino P, Michelini F and Curigliano G: Bystander effect of antibody-drug conjugates: Fact or fiction? Curr Oncol Rep. 24:809–817. 2022. View Article : Google Scholar : PubMed/NCBI | |
Khera E, Dong S, Huang H, de Bever L, van Delft FL and Thurber GM: Cellular-Resolution imaging of bystander payload tissue penetration from antibody-drug conjugates. Mol Cancer Ther. 21:310–321. 2022. View Article : Google Scholar : PubMed/NCBI | |
Staudacher AH and Brown MP: Antibody drug conjugates and bystander killing: Is antigen-dependent internalisation required? Br J Cancer. 117:1736–1742. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mjaess G, Aoun F, Rassy E, Diamand R, Albisinni S and Roumeguere T: Antibody-drug conjugates in prostate cancer: Where are we? Clin Genitourin Cancer. 21:171–174. 2023. View Article : Google Scholar : PubMed/NCBI | |
Trail PA, King HD and Dubowchik GM: Monoclonal antibody drug immunoconjugates for targeted treatment of cancer. Cancer Immunol Immunother. 52:328–337. 2003. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Cozzi PJ and Russell PJ: Promising tumor-associated antigens for future prostate cancer therapy. Med Res Rev. 30:67–101. 2010. View Article : Google Scholar : PubMed/NCBI | |
Jin Y, Schladetsch MA, Huang X, Balunas MJ and Wiemer AJ: Stepping forward in antibody-drug conjugate development. Pharmacol Ther. 229:1079172022. View Article : Google Scholar : PubMed/NCBI | |
Conilh L, Sadilkova L, Viricel W and Dumontet C: Payload diversification: A key step in the development of antibody-drug conjugates. J Hematol Oncol. 16:32023. View Article : Google Scholar : PubMed/NCBI | |
Su Z, Xiao D, Xie F, Liu L, Wang Y, Fan S, Zhou X and Li S: Antibody-drug conjugates: Recent advances in linker chemistry. Acta Pharm Sin B. 11:3889–3907. 2021. View Article : Google Scholar : PubMed/NCBI | |
Baah S, Laws M and Rahman KM: Antibody-drug conjugates-a tutorial review. Molecules. 26:29432021. View Article : Google Scholar : PubMed/NCBI | |
Fu Z, Li S, Han S, Shi C and Zhang Y: Antibody drug conjugate: The ‘biological missile’ for targeted cancer therapy. Signal Transduct Target Ther. 7:932022. View Article : Google Scholar : PubMed/NCBI | |
Samantasinghar A, Sunildutt NP, Ahmed F, Soomro AM, Salih ARC, Parihar P, Memon FH, Kim KH, Kang IS and Choi KH: A comprehensive review of key factors affecting the efficacy of antibody drug conjugate. Biomed Pharmacother. 161:1144082023. View Article : Google Scholar : PubMed/NCBI | |
Diamantis N and Banerji U: Antibody-drug conjugates-an emerging class of cancer treatment. Br J Cancer. 114:362–367. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kaur R, Kaur G, Gill RK, Soni R and Bariwal J: Recent developments in tubulin polymerization inhibitors: An overview. Eur J Med Chem. 87:89–124. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cheung-Ong K, Giaever G and Nislow C: DNA-damaging agents in cancer chemotherapy: Serendipity and chemical biology. Chem Biol. 20:648–659. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ackerman SE, Pearson CI, Gregorio JD, Gonzalez JC, Kenkel JA, Hartmann FJ, Luo A, Ho PY, LeBlanc H, Blum LK, et al: Immune-stimulating antibody conjugates elicit robust myeloid activation and durable antitumor immunity. Nat Cancer. 2:18–33. 2021. View Article : Google Scholar : PubMed/NCBI | |
Rahbar K, Afshar-Oromieh A, Jadvar H and Ahmadzadehfar H: PSMA theranostics: Current status and future directions. Mol Imaging. 17:15360121187760682018. View Article : Google Scholar : PubMed/NCBI | |
Sun M, Niaz MJ, Niaz MO and Tagawa ST: Prostate-Specific membrane antigen (PSMA)-targeted radionuclide therapies for prostate cancer. Curr Oncol Rep. 23:592021. View Article : Google Scholar : PubMed/NCBI | |
Milowsky MI, Galsky MD, Morris MJ, Crona DJ, George DJ, Dreicer R, Tse K, Petruck J, Webb IJ, Bander NH, et al: Phase 1/2 multiple ascending dose trial of the prostate-specific membrane antigen-targeted antibody drug conjugate MLN2704 in metastatic castration-resistant prostate cancer. Urol Oncol. 34:530 e515–530 e521. 2016. View Article : Google Scholar : PubMed/NCBI | |
Henry MD, Wen S, Silva MD, Chandra S, Milton M and Worland PJ: A prostate-specific membrane antigen-targeted monoclonal antibody-chemotherapeutic conjugate designed for the treatment of prostate cancer. Cancer Res. 64:7995–8001. 2004. View Article : Google Scholar : PubMed/NCBI | |
Galsky MD, Eisenberger M, Moore-Cooper S, Kelly WK, Slovin SF, DeLaCruz A, Lee Y, Webb IJ and Scher HI: Phase I trial of the prostate-specific membrane antigen-directed immunoconjugate MLN2704 in patients with progressive metastatic castration-resistant prostate cancer. J Clin Oncol. 26:2147–2154. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ma D, Hopf CE, Malewicz AD, Donovan GP, Senter PD, Goeckeler WF, Maddon PJ and Olson WC: Potent antitumor activity of an auristatin-conjugated, fully human monoclonal antibody to prostate-specific membrane antigen. Clin Cancer Res. 12:2591–2596. 2006. View Article : Google Scholar : PubMed/NCBI | |
Petrylak DP, Kantoff P, Vogelzang NJ, Mega A, Fleming MT, Stephenson JJ Jr, Frank R, Shore ND, Dreicer R, McClay EF, et al: Phase 1 study of PSMA ADC, an antibody-drug conjugate targeting prostate-specific membrane antigen, in chemotherapy-refractory prostate cancer. Prostate. 79:604–613. 2019. View Article : Google Scholar : PubMed/NCBI | |
Petrylak DP, Vogelzang NJ, Chatta K, Fleming MT, Smith DC, Appleman LJ, Hussain A, Modiano M, Singh P, Tagawa ST, et al: PSMA ADC monotherapy in patients with progressive metastatic castration-resistant prostate cancer following abiraterone and/or enzalutamide: Efficacy and safety in open-label single-arm phase 2 study. Prostate. 80:99–108. 2020. View Article : Google Scholar : PubMed/NCBI | |
Cho S, Zammarchi F, Williams DG, Havenith CEG, Monks NR, Tyrer P, D'Hooge F, Fleming R, Vashisht K, Dimasi N, et al: Antitumor activity of MEDI3726 (ADCT-401), a pyrrolobenzodiazepine antibody-drug conjugate targeting PSMA, in preclinical models of prostate cancer. Mol Cancer Ther. 17:2176–2186. 2018. View Article : Google Scholar : PubMed/NCBI | |
de Bono JS, Fleming MT, Wang JS, Cathomas R, Miralles MS, Bothos J, Hinrichs MJ, Zhang Q, He P, Williams M, et al: Phase I study of MEDI3726: A prostate-specific membrane antigen-targeted antibody-drug conjugate, in patients with mCRPC after failure of abiraterone or enzalutamide. Clin Cancer Res. 27:3602–3609. 2021. View Article : Google Scholar : PubMed/NCBI | |
Shen J, Pachynski R, Nordquist LT, Adra N, Bilen MA, Aggarwal R, Reichert Z, Schweizer M, Iravani A, Aung S, et al: 1804P APEX-01: First-in-human phase I/II study of ARX517 an anti-prostate-specific membrane antigen (PSMA) antibody-drug conjugate (ADC) in patients (pts) with metastatic castration-resistant prostate cancer (mCRPC). Ann Oncol. 34:S974–S975. 2023. View Article : Google Scholar | |
Gomes IM, Maia CJ and Santos CR: STEAP proteins: From structure to applications in cancer therapy. Mol Cancer Res. 10:573–587. 2012. View Article : Google Scholar : PubMed/NCBI | |
Rocha SM, Nascimento D, Coelho RS, Cardoso AM, Passarinha LA, Socorro S and Maia CJ: STEAP1 knockdown decreases the sensitivity of prostate cancer cells to paclitaxel, docetaxel and cabazitaxel. Int J Mol Sci. 24:66432023. View Article : Google Scholar : PubMed/NCBI | |
Danila DC, Szmulewitz RZ, Vaishampayan U, Higano CS, Baron AD, Gilbert HN, Brunstein F, Milojic-Blair M, Wang B, Kabbarah O, et al: Phase I study of DSTP3086S, an antibody-drug conjugate targeting six-transmembrane epithelial antigen of prostate 1, in metastatic castration-resistant prostate cancer. J Clin Oncol. 37:3518–3527. 2019. View Article : Google Scholar : PubMed/NCBI | |
Doronina SO, Toki BE, Torgov MY, Mendelsohn BA, Cerveny CG, Chace DF, DeBlanc RL, Gearing RP, Bovee TD, Siegall CB, et al: Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat Biotechnol. 21:778–784. 2003. View Article : Google Scholar : PubMed/NCBI | |
Trerotola M, Ganguly KK, Fazli L, Fedele C, Lu H, Dutta A, Liu Q, De Angelis T, Riddell LW, Riobo NA, et al: Trop-2 is up-regulated in invasive prostate cancer and displaces FAK from focal contacts. Oncotarget. 6:14318–14328. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sperger JM, Helzer KT, Stahlfeld CN, Jiang D, Singh A, Kaufmann KR, Niles DJ, Heninger E, Rydzewski NR, Wang L, et al: Expression and therapeutic targeting of TROP-2 in treatment-resistant prostate cancer. Clin Cancer Res. 29:2324–2335. 2023. View Article : Google Scholar : PubMed/NCBI | |
Starodub AN, Ocean AJ, Shah MA, Guarino MJ, Picozzi VJ Jr, Vahdat LT, Thomas SS, Govindan SV, Maliakal PP, Wegener WA, et al: First-in-Human trial of a novel anti-trop-2 antibody-sn-38 conjugate, sacituzumab govitecan, for the treatment of diverse metastatic solid tumors. Clin Cancer Res. 21:3870–3878. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lang J, Tagawa ST, Slovin S, Emamekhoo H, Rathkopf D, Abida W, Autio K, Xiao H, Molina AM, Eickhoff J, et al: 1406P Interim results of a phase II trial of sacituzumab govitecan (SG) in patients (Pts) with metastatic castration resistant prostate cancer (mCRPC) progressing on androgen receptor signaling inhibitors (ARSI). Ann Oncol. 33:S11882022. View Article : Google Scholar | |
Corti C, Antonarelli G, Valenza C, Nicolò E, Rugo H, Cortés J, Harbeck N, Carey LA, Criscitiello C and Curigliano G: Histology-agnostic approvals for antibody-drug conjugates in solid tumours: Is the time ripe? Eur J Cancer. 171:25–42. 2022. View Article : Google Scholar : PubMed/NCBI | |
Elvington M, Liszewski MK and Atkinson JP: CD46 and oncologic interactions: Friendly fire against cancer. Antibodies (Basel). 9:592020. View Article : Google Scholar : PubMed/NCBI | |
Su Y, Liu Y, Behrens CR, Bidlingmaier S, Lee NK, Aggarwal R, Sherbenou DW, Burlingame AL, Hann BC, Simko JP, et al: Targeting CD46 for both adenocarcinoma and neuroendocrine prostate cancer. JCI Insight. 3:e1214972018. View Article : Google Scholar : PubMed/NCBI | |
Aggarwal RR, Vuky J, VanderWeele DJ, Rettig M, Heath EI, Beer TM, Huang J, Pawlowska N, Sinit R, Abbey J, et al: Phase 1a/1b study of FOR46, an antibody drug conjugate (ADC), targeting CD46 in metastatic castration-resistant prostate cancer (mCRPC). J Clin Oncol. 40:3001. 2022. View Article : Google Scholar | |
Zang X and Allison JP: The B7 family and cancer therapy: Costimulation and coinhibition. Clin Cancer Res. 13:5271–5279. 2007. View Article : Google Scholar : PubMed/NCBI | |
Bonk S, Tasdelen P, Kluth M, Hube-Magg C, Makrypidi-Fraune G, Möller K, Höflmayer D, Rico SD, Büscheck F, Minner S, et al: High B7-H3 expression is linked to increased risk of prostate cancer progression. Pathol Int. 70:733–742. 2020. View Article : Google Scholar : PubMed/NCBI | |
Mendes AA, Lu J, Kaur HB, Zheng SL, Xu J, Hicks J, Weiner AB, Schaeffer EM, Ross AE, Balk SP, et al: Association of B7-H3 expression with racial ancestry, immune cell density, and androgen receptor activation in prostate cancer. Cancer. 128:2269–2280. 2022. View Article : Google Scholar : PubMed/NCBI | |
Guo C, Figueiredo I, Gurel B, Neeb A, Seed G, Crespo M, Carreira S, Rekowski J, Buroni L, Welti J, et al: B7-H3 as a therapeutic target in advanced prostate Cancer. Eur Urol. 83:224–238. 2023. View Article : Google Scholar : PubMed/NCBI | |
Scribner JA, Brown JG, Son T, Chiechi M, Li P, Sharma S, Li H, De Costa A, Li Y, Chen Y, et al: Preclinical development of MGC018, a duocarmycin-based antibody-drug conjugate targeting B7-H3 for solid cancer. Mol Cancer Ther. 19:2235–2244. 2020. View Article : Google Scholar : PubMed/NCBI | |
Shenderov E, Mallesara GHG, Wysocki PJ, Xu W, Ramlau R, Weickhardt AJ, Zolnierek J, Spira A, Joshua AM, Powderly J, et al: 620P MGC018, an anti-B7-H3 antibody-drug conjugate (ADC), in patients with advanced solid tumors: Preliminary results of phase I cohort expansion. Ann Oncol. 32:S657–S659. 2021. View Article : Google Scholar | |
Belluomini L, Sposito M, Avancini A, Insolda J, Milella M, Rossi A and Pilotto S: Unlocking new horizons in small-cell lung cancer treatment: The onset of antibody-drug conjugates. Cancers (Basel). 15:53682023. View Article : Google Scholar : PubMed/NCBI | |
Breij EC, de Goeij BE, Verploegen S, Schuurhuis DH, Amirkhosravi A, Francis J, Miller VB, Houtkamp M, Bleeker WK, Satijn D and Parren PW: An antibody-drug conjugate that targets tissue factor exhibits potent therapeutic activity against a broad range of solid tumors. Cancer Res. 74:1214–1226. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chu AJ: Tissue factor, blood coagulation, and beyond: An overview. Int J Inflam. 2011:3672842011.PubMed/NCBI | |
Versteeg HH: Tissue factor: Old and new links with cancer biology. Semin Thromb Hemost. 41:747–755. 2015. View Article : Google Scholar : PubMed/NCBI | |
Markham A: Tisotumab vedotin: First approval. Drugs. 81:2141–2147. 2021. View Article : Google Scholar : PubMed/NCBI | |
de Bono JS, Concin N, Hong DS, Thistlethwaite FC, Machiels JP, Arkenau HT, Plummer R, Jones RH, Nielsen D, Windfeld K, et al: Tisotumab vedotin in patients with advanced or metastatic solid tumours (InnovaTV 201): A first-in-human, multicentre, phase 1–2 trial. Lancet Oncol. 20:383–393. 2019. View Article : Google Scholar : PubMed/NCBI | |
Corti C, Bielo LB, Schianca AC, Salimbeni BT, Criscitiello C and Curigliano G: Future potential targets of antibody-drug conjugates in breast cancer. Breast. 69:312–322. 2023. View Article : Google Scholar : PubMed/NCBI | |
Saunders LR, Bankovich AJ, Anderson WC, Aujay MA, Bheddah S, Black K, Desai R, Escarpe PA, Hampl J, Laysang A, et al: A DLL3-targeted antibody-drug conjugate eradicates high-grade pulmonary neuroendocrine tumor-initiating cells in vivo. Sci Transl Med. 7:302ra1362015. View Article : Google Scholar : PubMed/NCBI | |
Puca L, Gavyert K, Sailer V, Conteduca V, Dardenne E, Sigouros M, Isse K, Kearney M, Vosoughi A, Fernandez L, et al: Delta-like protein 3 expression and therapeutic targeting in neuroendocrine prostate cancer. Sci Transl Med. 11:eaav08912019. View Article : Google Scholar : PubMed/NCBI | |
Rudin CM, Pietanza MC, Bauer TM, Ready N, Morgensztern D, Glisson BS, Byers LA, Johnson ML, Burris HA III, Robert F, et al: Rovalpituzumab tesirine, a DLL3-targeted antibody-drug conjugate, in recurrent small-cell lung cancer: A first-in-human, first-in-class, open-label, phase 1 study. Lancet Oncol. 18:42–51. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mansfield AS, Hong DS, Hann CL, Farago AF, Beltran H, Waqar SN, Hendifar AE, Anthony LB, Taylor MH, Bryce AH, et al: A phase I/II study of rovalpituzumab tesirine in delta-like 3-expressing advanced solid tumors. NPJ Precis Oncol. 5:742021. View Article : Google Scholar : PubMed/NCBI | |
Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S, Mooney M, et al: New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur J Cancer. 45:228–247. 2009. View Article : Google Scholar : PubMed/NCBI | |
Fuentes-Antras J, Genta S, Vijenthira A and Siu LL: Antibody-drug conjugates: In search of partners of choice. Trends Cancer. 9:339–354. 2023. View Article : Google Scholar : PubMed/NCBI | |
Lohiya V, Aragon-Ching JB and Sonpavde G: Role of chemotherapy and mechanisms of resistance to chemotherapy in metastatic castration-resistant prostate cancer. Clin Med Insights Oncol. 10:57–66. 2016.PubMed/NCBI | |
de Bono JS, Oudard S, Ozguroglu M, Hansen S, Machiels JP, Kocak I, Gravis G, Bodrogi I, Mackenzie MJ, Shen L, et al: Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: A randomised open-label trial. Lancet. 376:1147–1154. 2010. View Article : Google Scholar : PubMed/NCBI | |
Tannock IF, de Wit R, Berry WR, Horti J, Pluzanska A, Chi KN, Oudard S, Théodore C, James ND, Turesson I, et al: Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med. 351:1502–1512. 2004. View Article : Google Scholar : PubMed/NCBI | |
de Goeij BE, Satijn D, Freitag CM, Wubbolts R, Bleeker WK, Khasanov A, Zhu T, Chen G, Miao D, van Berkel PH and Parren PW: High turnover of tissue factor enables efficient intracellular delivery of antibody-drug conjugates. Mol Cancer Ther. 14:1130–1140. 2015. View Article : Google Scholar : PubMed/NCBI | |
Thurber GM, Schmidt MM and Wittrup KD: Antibody tumor penetration: Transport opposed by systemic and antigen-mediated clearance. Adv Drug Deliv Rev. 60:1421–1434. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ruan DY, Wu HX, Meng Q and Xu RH: Development of antibody-drug conjugates in cancer: Overview and prospects. Cancer Commun (Lond). 44:3–22. 2024. View Article : Google Scholar : PubMed/NCBI | |
Autio KA, Boni V, Humphrey RW and Naing A: Probody therapeutics: An emerging class of therapies designed to enhance on-target effects with reduced off-tumor toxicity for use in immuno-oncology. Clin Cancer Res. 26:984–989. 2020. View Article : Google Scholar : PubMed/NCBI | |
Andreev J, Thambi N, Bay AE, Delfino F, Martin J, Kelly MP, Kirshner JR, Rafique A, Kunz A, Nittoli T, et al: Bispecific antibodies and antibody-drug Conjugates (ADCs) bridging HER2 and prolactin receptor improve efficacy of HER2 ADCs. Mol Cancer Ther. 16:681–693. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tang F, Yang Y, Tang Y, Tang S, Yang L, Sun B, Jiang B, Dong J, Liu H, Huang M, et al: One-pot N-glycosylation remodeling of IgG with non-natural sialylglycopeptides enables glycosite-specific and dual-payload antibody-drug conjugates. Org Biomol Chem. 14:9501–9518. 2016. View Article : Google Scholar : PubMed/NCBI | |
Colombo R and Rich JR: The therapeutic window of antibody drug conjugates: A dogma in need of revision. Cancer Cell. 40:1255–1263. 2022. View Article : Google Scholar : PubMed/NCBI | |
Tarantino P, Ricciuti B, Pradhan SM and Tolaney SM: Optimizing the safety of antibody-drug conjugates for patients with solid tumours. Nat Rev Clin Oncol. 20:558–576. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhu Y, Liu K, Wang K and Zhu H: Treatment-related adverse events of antibody-drug conjugates in clinical trials: A systematic review and meta-analysis. Cancer. 129:283–295. 2023. View Article : Google Scholar : PubMed/NCBI | |
Donaghy H: Effects of antibody, drug and linker on the preclinical and clinical toxicities of antibody-drug conjugates. MAbs. 8:659–671. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tumey LN and Han S: ADME considerations for the development of biopharmaceutical conjugates using cleavable linkers. Curr Top Med Chem. 17:3444–3462. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mahalingaiah PK, Ciurlionis R, Durbin KR, Yeager RL, Philip BK, Bawa B, Mantena SR, Enright BP, Liguori MJ and Van Vleet TR: Potential mechanisms of target-independent uptake and toxicity of antibody-drug conjugates. Pharmacol Ther. 200:110–125. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chen YF, Xu YY, Shao ZM and Yu KD: Resistance to antibody-drug conjugates in breast cancer: Mechanisms and solutions. Cancer Commun (Lond). 43:297–337. 2023. View Article : Google Scholar : PubMed/NCBI | |
Piombino C, Tonni E, Oltrecolli M, Pirola M, Pipitone S, Baldessari C, Dominici M, Sabbatini R and Vitale MG: Immunotherapy in urothelial cancer: Current status and future directions. Expert Rev Anticancer Ther. 23:1141–1155. 2023. View Article : Google Scholar : PubMed/NCBI | |
O'Malley DM, Matulonis UA, Birrer MJ, Castro CM, Gilbert L, Vergote I, Martin LP, Mantia-Smaldone GM, Martin AG, Bratos R, et al: Phase Ib study of mirvetuximab soravtansine, a folate receptor alpha (FRalpha)-targeting antibody-drug conjugate (ADC), in combination with bevacizumab in patients with platinum-resistant ovarian cancer. Gynecol Oncol. 157:379–385. 2020. View Article : Google Scholar : PubMed/NCBI | |
Uliano J, Nicolo E, Corvaja C, Salimbeni BT, Trapani D and Curigliano G: Combination immunotherapy strategies for triple-negative breast cancer: Current progress and barriers within the pharmacological landscape. Expert Rev Clin Pharmacol. 15:1399–1413. 2022. View Article : Google Scholar : PubMed/NCBI | |
Thana M and Wood L: Immune checkpoint inhibitors in genitourinary malignancies. Curr Oncol. 27:S69–S77. 2020. View Article : Google Scholar : PubMed/NCBI | |
Bakhtiar R: Antibody drug conjugates. Biotechnol Lett. 38:1655–1664. 2016. View Article : Google Scholar : PubMed/NCBI |