The growth inhibition of hepatocellular and cholangiocellular carcinoma cells by gemcitabine and the roles of extracellular signal-regulated and checkpoint kinases
- Authors:
- Published online on: October 1, 2008 https://doi.org/10.3892/or_00000084
- Pages: 863-872
Metrics: Total
Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Abstract
We examined the effects of gemcitabine, a pyrimidine analogue, on hepatocellular carcinoma (HCC) and cholangiocellular carcinoma (CCC) cells. After HCC cells (HepG2, Hep3B, HLF and PLC/PRF/5) and CCC cells (HuCCT-1) were treated with gemcitabine, cellular growth, cell cycle, nuclear morphology and activity of signaling molecules were evaluated by WST-8 assays, flow cytometry analysis, Hoechst 33258 staining and Western blotting, respectively. We found that gemcitabine significantly inhibited the growth of HCC and CCC cells in a dose- and time-dependent manner. Gemcitabine induced cell cycle arrest at the G1 phase, however, the sub-G1 fraction was not observed and nuclear morphology did not indicate the induction of apoptosis. Gemcitabine induced differential activation of checkpoint kinases, Chk2 and Chk1, in HCC and CCC cells, respectively and gemcitabine activated extracellular signal-regulated kinase (ERK)1/2 in both cell types. After the cells were pretreated with a MEK inhibitor U0126, activations of these checkpoint kinases were abrogated and the cell death was enhanced. These results demonstrate that gemcitabine inhibited the growth of HCC and CCC cells by cell cycle arrest without apoptosis and that the ERK/Chk1/2 signaling pathway was in part responsible for the resistance to gemcitabine. Our findings shed light on treating patients with HCC and CCC by gemcitabine, especially when combined with a MEK inhibitor and Chk1/2 inhibitors.