1
|
Ramji DP and Davies TS: Cytokines in
atherosclerosis: Key players in all stages of disease and promising
therapeutic targets. Cytokine Growth Factor Rev. 26:673–685. 2015.
View Article : Google Scholar : PubMed/NCBI
|
2
|
McLaren JE, Michael DR, Ashlin TG and
Ramji DP: Cytokines, macrophage lipid metabolism and foam cells:
Implications for cardiovascular disease therapy. Prog Lipid Res.
50:331–347. 2011. View Article : Google Scholar : PubMed/NCBI
|
3
|
Ross JS, Stagliano NE, Donovan MJ,
Breitbart RE and Ginsburg GS: Atherosclerosis: a cancer of the
blood vessels? Am J Clin Pathol. 116 (Suppl):S97–S107.
2001.PubMed/NCBI
|
4
|
Chen CH and Walterscheid JP: Plaque
angiogenesis versus compensatory arteriogenesis in atherosclerosis.
Circ Res. 99:787–789. 2006. View Article : Google Scholar : PubMed/NCBI
|
5
|
Doyle B and Caplice N: Plaque
neovascularization and antiangiogenic therapy for atherosclerosis.
J Am Coll Cardiol. 49:2073–2080. 2007. View Article : Google Scholar : PubMed/NCBI
|
6
|
Hoving S, Heeneman S, Gijbels MJ, te Poele
JA, Russell NS, Daemen MJ and Stewart FA: Single-dose and
fractionated irradiation promote initiation and progression of
atherosclerosis and induce an inflammatory plaque phenotype in
ApoE(−/-) mice. Int J Radiat Oncol Biol Phys. 71:848–857. 2008.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Zhong Y, Ye F, You W and Wu ZM:
Correlation between serum inflammatory cytokine levels and fibrous
cap thickness of fibrofatty plaque in coronary culprit lesions.
Zhonghua Xin Xue Guan Bing Za Zhi. 45:566–571. 2017.(In Chinese).
PubMed/NCBI
|
8
|
Taleb S, Tedgui A and Mallat Z: IL-17 and
Th17 cells in atherosclerosis: Subtle and contextual roles.
Arterioscler Thromb Vasc Biol. 35:258–264. 2015. View Article : Google Scholar : PubMed/NCBI
|
9
|
Xu S and Cao X: Interleukin-17 and its
expanding biological functions. Cell Mol Immunol. 7:164–174. 2010.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Gaffen SL: Recent advances in the IL-17
cytokine family. Curr Opin Immunol. 23:613–619. 2011. View Article : Google Scholar : PubMed/NCBI
|
11
|
Armstrong EJ, Morrow DA and Sabatine MS:
Inflammatory biomarkers in acute coronary syndromes: part III:
biomarkers of oxidative stress and angiogenic growth factors.
Circulation. 113:e289–e292. 2006. View Article : Google Scholar : PubMed/NCBI
|
12
|
Tenger C, Sundborger A, Jawien J and Zhou
X: IL-18 accelerates atherosclerosis accompanied by elevation of
IFN-gamma and CXCL16 expression independently of T cells.
Arterioscler Thromb Vasc Biol. 25:791–796. 2005. View Article : Google Scholar : PubMed/NCBI
|
13
|
Whitman SC, Ravisankar P and Daugherty A:
Interleukin-18 enhances atherosclerosis in apolipoprotein E(−/-)
mice through release of interferon-gamma. Circ Res. 90:E34–E38.
2002. View Article : Google Scholar : PubMed/NCBI
|
14
|
Crea F and Liuzzo G: Pathogenesis of acute
coronary syndromes. J Am Coll Cardiol. 61:1–11. 2013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Xu D, Hippe DS, Underhill HR,
Oikawa-Wakayama M, Dong L, Yamada K, Yuan C and Hatsukami TS:
Prediction of high-risk plaque development and plaque progression
with the carotid atherosclerosis score. JACC Cardiovasc Imaging.
7:366–373. 2014. View Article : Google Scholar : PubMed/NCBI
|
16
|
Kadoglou NP, Lambadiari V, Gastounioti A,
Gkekas C, Giannakopoulos TG, Koulia K, Maratou E, Alepaki M,
Kakisis J, Karakitsos P, et al: The relationship of novel
adipokines, RBP4 and omentin-1, with carotid atherosclerosis
severity and vulnerability. Atherosclerosis. 235:606–612. 2014.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Abbas A, Gregersen I, Holm S, Daissormont
I, Bjerkeli V, Krohg-Sørensen K, Skagen KR, Dahl TB, Russell D,
Almås T, et al: Interleukin 23 levels are increased in carotid
atherosclerosis: possible role for the interleukin 23/interleukin
17 axis. Stroke. 46:793–799. 2015. View Article : Google Scholar : PubMed/NCBI
|
18
|
Tacke F, Alvarez D, Kaplan TJ, Jakubzick
C, Spanbroek R, Llodra J, Garin A, Liu J, Mack M, van Rooijen N, et
al: Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1
to accumulate within atherosclerotic plaques. J Clin Invest.
117:185–194. 2007. View
Article : Google Scholar : PubMed/NCBI
|
19
|
de Boer OJ, van der Meer JJ, Teeling P,
van der Loos CM, Idu MM, van Maldegem F, Aten J and van der Wal AC:
Differential expression of interleukin-17 family cytokines in
intact and complicated human atherosclerotic plaques. J Pathol.
220:499–508. 2010.PubMed/NCBI
|
20
|
Gao Q, Jiang Y, Ma T, Zhu F, Gao F, Zhang
P, Guo C, Wang Q, Wang X, Ma C, et al: A critical function of Th17
proinflammatory cells in the development of atherosclerotic plaque
in mice. J Immunol. 185:5820–5827. 2010. View Article : Google Scholar : PubMed/NCBI
|
21
|
Kharitonenkov A, Dunbar JD, Bina HA,
Bright S, Moyers JS, Zhang C, Ding L, Micanovic R, Mehrbod SF,
Knierman MD, et al: FGF-21/FGF-21 receptor interaction and
activation is determined by betaKlotho. J Cell Physiol. 215:1–7.
2008. View Article : Google Scholar : PubMed/NCBI
|
22
|
Liu J, Zhao B, Cui Y, Huang Y, Huang C,
Huang J, Han L and Lao L: Effects of shenque moxibustion on
behavioral changes and brain oxidative state in apolipoprotein
e-deficient mice. Evid Based Complement Alternat Med.
2015:8048042015.PubMed/NCBI
|
23
|
Aubin MC, Lajoie C, Clément R, Gosselin H,
Calderone A and Perrault LP: Female rats fed a high-fat diet were
associated with vascular dysfunction and cardiac fibrosis in the
absence of overt obesity and hyperlipidemia: therapeutic potential
of resveratrol. J Pharmacol Exp Ther. 325:961–968. 2008. View Article : Google Scholar : PubMed/NCBI
|
24
|
Sun Q, Wang A, Jin X, Natanzon A, Duquaine
D, Brook RD, Aguinaldo JG, Fayad ZA, Fuster V, Lippmann M, et al:
Long-term air pollution exposure and acceleration of
atherosclerosis and vascular inflammation in an animal model. JAMA.
294:3003–3010. 2005. View Article : Google Scholar : PubMed/NCBI
|
25
|
Mallat Z, Corbaz A, Scoazec A, Besnard S,
Lesèche G, Chvatchko Y and Tedgui A: Expression of interleukin-18
in human atherosclerotic plaques and relation to plaque
instability. Circulation. 104:1598–1603. 2001. View Article : Google Scholar : PubMed/NCBI
|
26
|
Underhill HR, Hatsukami TS, Cai J, Yu W,
DeMarco JK, Polissar NL, Ota H, Zhao X, Dong L, Oikawa M, et al: A
noninvasive imaging approach to assess plaque severity: the carotid
atherosclerosis score. AJNR Am J Neuroradiol. 31:1068–1075. 2010.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Mallat Z, Corbaz A, Scoazec A, Graber P,
Alouani S, Esposito B, Humbert Y, Chvatchko Y and Tedgui A:
Interleukin-18/interleukin-18 binding protein signaling modulates
atherosclerotic lesion development and stability. Circ Res.
89:E41–E45. 2001. View Article : Google Scholar : PubMed/NCBI
|
28
|
Nakamura I, Hasegawa K, Wada Y, Hirase T,
Node K and Watanabe Y: Detection of early stage atherosclerotic
plaques using PET and CT fusion imaging targeting P-selectin in low
density lipoprotein receptor-deficient mice. Biochem Biophys Res
Commun. 433:47–51. 2013. View Article : Google Scholar : PubMed/NCBI
|