Effect of curcumin on irradiated and estrogen-transformed human breast cell lines

  • Authors:
    • Gloria M. Calaf
    • Carlos Echiburú-Chau
    • Gengyun Wen
    • Adayabalam S. Balajee
    • Debasish Roy
  • View Affiliations

  • Published online on: October 12, 2011     https://doi.org/10.3892/ijo.2011.1228
  • Pages: 436-442
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Curcumin (diferuloyl methane) is a well known antioxidant that exerts antiproliferative and apoptotic effects. Curcumin effect was evaluated in a breast cancer model that was developed using the immortalized breast epithelial cell line MCF-10F after exposure to low doses of high LET (linear energy transfer) α particles (150 keV/µm) of radiation, and subsequently cultured in the presence of 17β-estradiol (estrogen). This model consisted of human breast epithelial cells in different stages of transformation: i) MCF-10F; ii) Estrogen cell line; iii) a malignant Alpha3 cell line; iv) a malignant and tumorigenic, Alpha5 cell line; and v) a cell line derived from Alpha5 injected into the nude mice that gave rise to Tumor2 cell line. Curcumin decreased anchorage-independent growh in transformed breast cancer cell lines in comparison to their counterparts and increased the percentage of cells from G0/G1 with a concomitant increase in G2/M phases, as well as a decrease in PCNA and Rho-A protein expression. Among the oncogenes, c-Ha-Ras and Ras homologous A (Rho-A) are important cell signaling factors for malignant transformation and to reach their active GTP bound state, Ras proteins must first release bound GDP mediated by a guanine nucleotide releasing factor (GRF). Then curcumin decrease RasGRF1 protein expression in malignant cell lines. Further, differential expression levels of cleaved (ADP) ribose polymerase 1 (PARP-1) and phosphorylated histone H2AX (γ-H2AX) were observed after curcumin treatment. It seems that PARP-1 similar to H2AX, confers cellular protection against radiation and estrogen-induced DNA damage mediated by curcumin. Therefore, targeting either PARP-1 or H2AX may provide an effective way of maximizing the therapeutic value of antioxidants for cancer prevention.

Related Articles

Journal Cover

February 2012
Volume 40 Issue 2

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Calaf GM, Echiburú-Chau C, Wen G, Balajee AS and Roy D: Effect of curcumin on irradiated and estrogen-transformed human breast cell lines. Int J Oncol 40: 436-442, 2012.
APA
Calaf, G.M., Echiburú-Chau, C., Wen, G., Balajee, A.S., & Roy, D. (2012). Effect of curcumin on irradiated and estrogen-transformed human breast cell lines. International Journal of Oncology, 40, 436-442. https://doi.org/10.3892/ijo.2011.1228
MLA
Calaf, G. M., Echiburú-Chau, C., Wen, G., Balajee, A. S., Roy, D."Effect of curcumin on irradiated and estrogen-transformed human breast cell lines". International Journal of Oncology 40.2 (2012): 436-442.
Chicago
Calaf, G. M., Echiburú-Chau, C., Wen, G., Balajee, A. S., Roy, D."Effect of curcumin on irradiated and estrogen-transformed human breast cell lines". International Journal of Oncology 40, no. 2 (2012): 436-442. https://doi.org/10.3892/ijo.2011.1228