Open Access

Differential gene expression profiling of the sciatic nerve in type 1 and type 2 diabetic mice

  • Authors:
    • Yu Gu
    • Zhuo-Lin Qiu
    • De-Zhao Liu
    • Guo-Liang Sun
    • Ying-Chao Guan
    • Zi-Qing Hei
    • Xiang Li
  • View Affiliations

  • Published online on: July 26, 2018     https://doi.org/10.3892/br.2018.1135
  • Pages: 291-304
  • Copyright: © Gu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Diabetic peripheral neuropathy (DPN) is a common complication of diabetes mellitus (DM). The pathogenic mechanisms of DPN and the therapeutic interventions required may be distinct between type 1 (T1) and type 2 (T2) DM. However, the molecular mechanisms underlying the pathogenesis of DPN in both types of diabetes remain unclear. The aim of the current study was to identify the changes in genes and pathways associated with DPN in sciatic nerves of T1- and T2DM mice using bioinformatics analysis. The microarray profiles of sciatic nerves of T1DM (GSE11343) and T2DM (GSE27382) mouse models were downloaded from the Gene Expression Omnibus database to identify differentially expressed genes (DEGs) in each. DEGs in the two types of DM (with fold change ≥2 and P<0.05) were identified with BRB-ArrayTools. Gene Ontology (GO) term and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed using the Database for Annotation, Visualization and Integrated Discovery. A protein-protein interaction (PPI) network was constructed using the Search Tool for the Retrieval of Interacting Genes/Proteins and visualized using Cytoscape. Compared with control samples, 623 and 1,890 DEGs were identified in sciatic nerves of T1- and T2DM mice, respectively. Of these, 75 genes were coordinately dysregulated in the sciatic nerves of both models. Many DEGs unique to T1DM mice were localized to the nucleoplasm and were associated with regulation of transcription processes, while many unique to T2DM mice were localized at cell junctions and were associated with ion transport. In addition, certain DEGs may be associated with the different treatment strategies used for the two types of DM. This analysis provides insight into the functional gene sets and pathways operating in sciatic nerves in T1- and T2DM. The results should improve understanding of the molecular mechanisms underlying the pathophysiology of DPN, and provide information for the development of therapeutic strategies for DPN specific to each type of DM.

Introduction

Diabetic peripheral neuropathy (DPN) is a common complication of diabetes mellitus (DM). More than half of patients with DM worldwide suffer from DPN during the course of the disease (1,2). DPN is characterized by distal-to-proximal nerve damage leading to neuropathic pain and loss of sensation (3). It is also associated with notably high morbidity and mortality: Previous studies reported that the mortality rate approximated to 25–50% within 5–10 years following onset of diabetic neuropathy (4,5). Strict maintenance of normal glycemic level is the only effective treatment available for DPN at present (6).

Though the occurrence of DPN is common to both type 1 (T1) and type 2 (T2)DM, a number of studies have suggested that its pathogenic mechanism may differ between the two (7,8). For example, more abnormalities at the molecular, functional and morphometric levels including increased frequencies of denervated Schwann cells and significant fiber loss have been observed in the peripheral nerve of T1DM mice compared with in T2DM mice (8,9). In addition, different structural changes may lead to variation in nerve conduction velocity for DPN in the two diabetic models (10). These fundamentally different mechanisms for DPN may lead to varying effects of the common treatments, such as in control of glucose, which has been suggested to be more beneficial for DPN in T1DM than in T2DM (7). Therefore, determining the distinct molecular mechanisms underlying DPN in T1- and T2DM is of paramount importance for the development of successful therapeutic interventions.

In the last decade, the development of high-throughput platforms including microarray technology has allowed researchers to concurrently determine the expression levels of several thousands of differentially expressed genes (DEGs) in diseases (11,12). In addition, the comparison of gene expression profiles of DEGs through microarray technology using bioinformatics analysis has determined distinct pathophysiological mechanisms in different diseases or syndromes including neuropathic pain and chronic radicular pain (13). For instance, Zhang et al (14) screened a number of DEGs in a control (healthy) group of mice and a group with streptozotocin (STZ)-induced diabetes, and identified genes co-regulated by both STZ and rosiglitazone, which may be potential targets in the treatment of DPN. However, there are few studies that have compared the gene expression profiles of DEGs between DPN in T1- and T2DM through microarray profiling. In the present study, the aim was to compare the DEGs between the sciatic nerves of T1- and T2DM mouse models by microarray profiling. Furthermore, the distinct biological processes and pathways associated with DPN in T1- or T2DM were analyzed and compared based on gene ontology (GO) and pathway enrichment analyses. This was hoped to provide novel insights into the distinct pathophysiological mechanisms and implicate drug therapies for DPN specific to the different types of DM.

Materials and methods

Source of microarray data

The gene expression profiles of GSE11343 and GSE27382 were obtained from the Gene Expression Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo/). The annotation platforms for GSE11343 and GSE27382 were GPL1261 and GPL9746, respectively.

For GSE11343 submitted by Wiggin et al (15), included datasets were of five sciatic nerve samples from mice with T1DM induced by STZ (GSM286169, GSM286173, GSM286176, GSM286178 and GSM286430) and four sciatic nerve samples from normal mice (GSM286159, GSM286160, GSM286163 and GSM286165).

For GSE27382 submitted by Pande et al (16), included datasets were of six sciatic nerve samples from db/db mice with T2DM (GSM677112-GSM677117) and seven sciatic nerve samples from db/+ (normal) mice (GSM677105-GSM677111).

Pre-processing of microarray data and identification of DEGs

Pre-processing for the cell intensity (CEL) files including conversion into expression measures, background correction and quartile data normalization was performed with BRB-ArrayTools (version 4.5.1) (17). The univariate t-test with a fold change ≥2 and nominal significance level of 0.05 was applied in BRB-ArrayTools to identify the DEGs between the diabetic and normal groups.

Gene ontology and pathway enrichment analyses

To identify the DEGs determined with BRB-ArrayTools, GO and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed via the Database for Annotation, Visualization and Integrated Discovery (DAVID 6.8; http://david.abcc.ncifcrf.gov/) (18,19). GO terms [categorized into molecular function (MF), biological process (BP) and cellular component (CC)] and KEGG pathways with P<0.05 were considered significantly enriched by the DEGs.

Construction of protein-protein interaction (PPI) network and module analysis

With the purpose of evaluating the relationships among DEGs from the perspective of protein interaction, a protein-protein interaction (PPI) network was constructed with the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING 10.5; http://www.string-db.org) and visualized using Cytoscape software (version 3.4.0; http://cytoscape.org/) (18). A combined score >0.4 was selected to determine significant interactions among DEGs. In accordance with a previous analysis (20), the connectivity degree of a protein, namely the number of proteins it connected with, was considered to indicate importance of the protein in the PPI network.

Module analysis was performed in the plugin ClusterONE (version 1.0) in Cytoscape with a threshold of P<0.001. In addition, function and pathway enrichment analyses were performed for DEGs in the modules with a threshold of P<0.05.

Results

Identification of DEGs

Based on the criteria of a nominal significance level of 0.05 and fold change ≥2, 623 and 1,890 DEGs were identified in sciatic nerves of T1DM (GSE11343) and T2DM (GSE27382) mice, respectively, as compared with the control samples. Among them, 75 genes were identified to be coordinately dysregulated in sciatic nerves of both models, with 20 genes upregulated and 55 genes downregulated (Fig. 1 and Table SI). Meanwhile, 160 upregulated and 388 downregulated DEGs were unique to T1DM (Fig. 1 and Table SII), and 721 upregulated and 1,094 downregulated DEGs were unique to T2DM (Fig. 1 and Table SIII).

Table SI.

List of genes coordinately regulated in type 1 and type 2 diabetes mellitus.

Table SI.

List of genes coordinately regulated in type 1 and type 2 diabetes mellitus.

Gene countGene symbolGene countGene symbolGene countGene symbol
Upregulated
  1C1qtnf98Myo5b15Hipk3
  2Hspb79Tcf1516Hif3a
  3Fmo210Ltbp217Pde2a
  4Cyp1a111Tlr718Fkbp5
  5Gpihbp112Map3k6198430436 N08Rik
  6Mbd113Angptl420Dnah11
  7Gm487614D8Ertd82e
Downregulated
  1Kcna220Pcyox1l39Tmem229a
  2Kif5b21Rapgef440Rian
  3Cct422Sptssb41C1ql3
  4Fchsd2235930427L02Rik42Chic1
  5Fgf1424Efcab1443Cntn3
  6Fndc525Frzb44Map1b
  7Kcna126Cemip45Slc35f1
  8Slc25a2727Zic246Sox9
  9Galnt328Zic147Gpm6b
10Ncald29Slc1a348Slc47a1
11Senp830Snhg1449Elavl2
12Asph31Bmp550Ptn
13Pdia332Lamc351Dcc
14Bicd133Nipal152Atp13a5
15Elovl434C7885953Hpca
16Npas335Glipr254Sox8
17Opcml36Enah55Zic5
18Nr2f237Gm19935
19Ntrk338Paqr8

Table SII.

List of genes specific to type 1 diabetes mellitus.

Table SII.

List of genes specific to type 1 diabetes mellitus.

Gene countGene symbolGene countGene symbolGene countGene symbol
Upregulated
    1Myh255Wdr63108Bbd9
    2Doc2b56Gm17455109Klk1b24
    3Atxn7l157Per2110Acer2
    4Tbata58Gimap8111Angpt2
    5Rph3al59Cpa3112BC003965
    6Apoc360C77370113Rtp3
    7Nr5a261Rgs3114Iffo1
    8Alpk362Oosp1115Lhx6
    9Tal163Dbp116Tmem88
10Aldh3b264Dll41174930539E08Rik
11Rasd265Mapk12118Adcyap1r1
12Iigp166D7Bwg0826e119Anapc11
13Etnppl67Myct1120Clca3a2
14Colec1168Ranbp17121Cyyr1
15Ifi4469Adcy4122Lrpap1
16Krt1870Shisa6123Cdh13
17Gimap471Asxl1124Abcg1
18Adgrf572Ppp1r3d125Syt7
19Spns273Camk2n1126Jag2
20Cabp474Mboat1127Odf3b
21D7Wsu130e75Arrdc4128Rilp
22Ms4a276Ctsg129Sox7
23Exoc3l277Pvr1309430030N17Rik
24Ms4a8a78Tox131Adgrl4
25Csf2rb2794833438C02Rik132Usp3
26Ace280Rasgrf2133Vps51
27Itih481Tnfsf13os134Kcnq1
28Robo482Gm11772135Krt20
29Gm11716834833411I10Rik136Rabgap1l
304921507P07Rik84Mfng137Sphk2
31Gp1bb85Sox171381810021B22Rik
32Vwf86D930003E18Rik1394930447M23Rik
33Erg87Rtn4rl2140Arhgef15
34Eng88Kank3141Cpsf1
35Mettl2289Ptprb142Foxp4
36Lama390Rpusd2143Sema5b
375730458M16Rik91Sigirr144Actr1b
384833403J16Rik92Trim47145Hsd17b11
39Tceanc293Adamdec1146Myrip
40Fam107a94Cgrrf1147Gimap5
41Slc27a295Tigd3148Prkcg
42Zfpm196Spn149Abi3
43Clec14a97Car7150Bmp4
44Oasl198Mettl13151Mgst2
45Anxa899Rap1gap152Ppp1r13l
46D130037M23Rik1002210019G11Rik153Selo
47Fam189a11016330403A02Rik154Sema3f
48Clca3a1102Tmprss2155Mocs1
49Mmrn2103Ak8156Nos3
50Cbfa2t3104Cyp11a1157Pold1
51Notch4105Ushbp1158AU022252
52She106Slc6a7159D630045J12Rik
53Soat21076330416G13Rik160Ngef
54Unc45bos
Downregulated
    1Ccnt21319530029O12Rik260Dag1
    2Col4a5132A330075M08Rik261Itm2a
    3Crkl133Abce1262Luc7l2
    4Dnajc18134Anp32a263Marcks
    5Ebf2135Arhgef6264Nktr
    6Lamb1136Chl1265Saa1
    7Pbrm1137Cp266Senp6
    8R3hdm4138Ctse267Serinc1
    9Rab10139Dcbld2268Sfrp1
  10Rbfox2140Eif4a1269Slc25a24
  11Rsl24d1141Epb41l2270Snx18
  12Sat1142Far1271Snx5
  13Slc25a3143Gatm272Tbl1×r1
  14Smarcc1144Gpbp1l1273Zic4
  15Spry2145Hba-a22749930031P18Rik
  16Suz12146Hmgcr275Akap13
  17Timp2147Igf1r276Dtx3l
  18Zfp626148Klhl28277Hsph1
  19Actb149Mboat7278Lin7c
  20Amd1150Pddc1279Peg3
  21Arf1151Ppp1r10280Ppp4c
  22Arhgap29152Prpf39281Pum2
  23Atp6v1b2153Pura282Rad51c
  24C030046G05154Rbm25283Scd2
  25Cbx5155Rnd3284Slc12a2
  26Cd47156Slc7a11285Sp7
  27Cryzl1157Trps1286Stk25
  28D2Ertd640e158Ttc14287Txnip
  29Elavl1159Vma21288Usp48
  30Hist1h1c160Vps13a289Zfp825
  31Il6st161Yipf4290AA409587
  32Katnbl1162Add3291B4galt6
  33Lats2163Atxn7l3b292D9Ertd292e
  34P4ha1164BC052688293Dusp3
  35Pi4kb165C230076A16Rik294Klhl24
  36Plekhg1166Col8a1295Msn
  37Polb167Cpeb2296Ppp3cb
  38Pten168Cpne3297Smad5
  39Rbbp4169Dab2298Canx
  40Rnf13170Hpgds299Ccl2
  41Slc25a30171Lrrc41300Ccl7
  42Srsf11172Lrrk1301Dnm1l
  43Stard3nl173Nrk302Fbn2
  44Strn3174Pbx1303Jmjd1c
  45Tmem39a175Prkx304Nlgn3
  46Upk1b176Rab23305Prkacb
  47AI314180177Rbms2306Selk
  48Ccdc66178Sec61a2307Smurf2
  49Chst13179Srgap2308Srsf1
  50Crls1180Steap4309Ssr1
  51Ddit3181Taf15310Cd209a
  52Gpc6182Tmtc4311Dhdh
  53Hrsp12183Usp9×312Fn1
  54Ikzf2184Wac313Hacd3
  55Mbnl1185Actr2314Nbeal1
  56Nit2186Cdk6315Ncaph2
  57Npr3187Cflar316Ss18
  58Pja2188Ddi2317Zfp266
  59S100pbp189Dnajc13318Zfp36l1
  60Siglech190Dyrk23194930447C04Rik
  61Snx27191Etnk1320Adam10
  62Stk3192Gadd45a321Arpc4
  63Taok1193Khsrp322Atp8a1
  64Tgfbr3194Mpdz323Ddx6
  65Tpbg195N4bp2l2324Malat1
  66Trak2196Otub1325Nid1
  67Ttc5197Rab31326Snhg11
  68Whsc1l1198Sorbs1327Cx3cr1
  69Zeb2199Tacc1328Dlk1
  70Atrx200Tmem80329Etv5
  71Copa201Tnrc6a330Mier1
  72Cux1202Wnt16331Rsrc2
  73Dmtf1203Zcchc7332Sdf2l1
  74Dnajb6204Zdhhc2333Slc9a2
  75E130308A19Rik205Zfand5334Atic
  76Epha7206Zfp871335Camk1d
  77Fam49a207Araf336Gm2a
  78Gcc2208Brd4337Mirg
  79Glg1209Cwf19l2338Mob1a
  80Kdelr2210Decr2339Peli2
  81Lnpep211Hoxb5os340Pknox1
  82Mcf2212Hsd17b12341Thbs1
  83Pcdhb15213Krit1342Trove2
  84Pum1214Larp4343Dyrk1a
  85Rhou215Mapre1344Efnb2
  86Ssbp2216Phip345Fgfr2
  87Stoml2217Rbms3346Gmfb
  88Syne2218Rhobtb3347Lcor
  89Sypl219Tspyl1348Slc16a6
  90Tet1220Usf1349Sox6
  91Tfpi221Apool350Srrm2
  92Tmed7222Ascc3351Ugt8a
  93Trp53223Cask352Arhgef11
  94Usp4224Cd247353Braf
  95Ywhaz225Cdh11354Dhcr24
  96Zbtb20226Cdkn2c355Golt1b
  97Zcchc3227Cpxm1356Otud4
  981810014B01Rik228Cyp20a1357Pfdn2
  99Adamts15229Ercc4358Saa2
100Aplnr230Fbxl3359Smg1
101Arl8a231Ggact360Igf2
102Btbd7232Hnrnpl361Lsm12
103Crim1233Hook3362Malt1
104Fubp1234Kantr363Sc5d
105Kansl1235Msi2364Tial1
106LOC552902236Rab14365Zfp451
107Lpp237Rbm12b1366Cxadr
108Mau2238Smek13679430020K01Rik
109Mmgt1239Vti1a368Gpc3
110Mtpn2401300017J02Rik369Serinc3
111Ntrk2241E030016H06Rik370E230029C05Rik
112Nudcd1242Eif4ebp2371Rbm5
113Peak1243Gid4372Tgfbr1
114Phf14244Hsd17b7373Yes1
115Polh245Kat2b374Vcan
116Ppm1k246Kif1b375Irf2bp2
117Psmb2247Map3k2376Dapl1
118Rrm2b248Nek4377Pdia4
119Sfpq249Ppig378Uba6
120Sgcd250Rbm41379Wif1
121Sp3251Tmem45a380Slc22a8
122Srpx252Vamp3381Ubfd1
123Stxbp4253March7382Eya1
124Tcf7l22549430053O09Rik383Slc38a5
125Vps13b255Abi2384Nnat
126Wnt5a256Arf6385Asgr1
127Zcchc24257Arglu1386Ranbp3l
128Zfp207258Cspg5387Sall1
129Zkscan8259Cybb388Fabp7
1305830407P18Rik

Table SIII.

List of genes specific to type 2 diabetes mellitus.

Table SIII.

List of genes specific to type 2 diabetes mellitus.

Gene countGene symbolGene countGene symbolGene countGene symbol
Upregulated
    1Sept2242Alcam48Bex1
    2Tph2243Duoxa1484Cables1
    3Lipf244Lrrc3485Ccl4
    4Ighm245Tcerg1l486Cnr2
    5Trdn246Irx3487Epgn
    6Prr32247Lep488Lpcat3
    7Oxtr248Slc16a10489Nabp1
    8Cpa2249Clspn490Slc24a3
    9Gpr50250Ctcflos491Tnfrsf23
  10Mbnl3251Uhrf1492Bcl2l13
  11Chil3252Ccl2493Cd320
  12Ucp1253Stc2494Paqr9
  13Ubd254Gm6484495Pih1d2
  14Atp1a4255Trav9d-3496Tmem252
  15Ighg256Gm7694497Zwilch
  16Dusp9257Iqgap34981700013H16Rik
  17Cdkl4258Otop1499Dsg1b
  18Hmga2259Ocstamp500Fabp5
  19Atp6v0d2260Mylk501Rhod
  20Tfr2261Ube2t502Trim25
  21Gabrr2262C3ar1503Wfdc21
  222010309G21Rik263Dhx32504Hist1h1e
  23Mmp12264Cd200r1505Lman1
  24Il1rn265Ccl22506Rtn2
  259030619P08Rik266Ghrh507Hoxc13
  26Arg1267A530020G20Rik508Krt222
  27Olr1268A530053G22Rik509Pfkl
  28Slc5a7269Aifm2510Pik3ap1
  29Ptchd42704933427G17Rik511Sh3tc1
  30F7271Lat2512Srpx2
  31Il7r272Prkag3513Tmem120b
  32Apoc4273Ddias514Tmem144
  33Spc25274Dgat2515Card11
  34Mogat2275Trim67516Etf1
  35Lppr4276Cenpe517Plet1os
  36Crisp2277Cd164l2518Cd68
  37Npr3278Mest519Cdca2
  38Rnase2a279Mgll520Ccnd2
  39Rgs1280Slc8a1521Dcp2
  404930502E18Rik281Gdf3522Fgd4
  41Klf14282Vsig4523Foxm1
  42Crtac1283Adora1524Gm6377
  43Synpo2284Il13ra2525Gna13
  44Itgax285Tmem37526Il2ra
  45Sez6l286Cd1d1527Llgl2
  46Cdca7l287Kif2c528Nckap1l
  47Serpine1288Rrm2529Serpina3m
  48Hmmr289Cks2530Snta1
  49Iglv1290Pdcd1lg2531Hpdl
  50Fam110c291Ffar2532Knstrn
  51Kcnj14292Stap1533Nedd1
  52Prr16293Pm20d1534Nf2
  53Cldn23294Clec4a2535Pitpnm2
  54Cyp2r1295Fmr1nb536Pole
  55Mc2r296Blnk537Thbs2
  56Grtp1297Tnfrsf12a538Cd300lb
  574930480G23Rik298Vegfc539Cdc42ep1
  58Dcst1299Acaa1b540Gm30173
  59Lpgat1300Als2cr12541Igfals
  60Aadac301Car9542Kat7
  612310002L09Rik302Gpt543Kcnn4
  62Cyp2c70303Havcr2544Pmch
  63Nek2304Marco545Fstl3
  64Dnajb133054931406C07Rik546Car4
  65Gsdma2306Dnmt3a547Cd180
  66Zranb3307Pik3r5548Comt
  67Orm2308Abcc3549Fsd2
  68Krt79309Fbp2550Itgb1
  69Cxcl2310Gm15498551Plk4
  70Cdca5311Kif1b552Spc24
  71Adam8312Lpxn553Tns1
  72Tcfl5313Pmepa1554Atp2a3
  73Bub1314Slc16a12555Myo1f
  74Agtr2315Stil556Pla2g12a
  75Dcstamp316Nup2105571700017B05Rik
  76Myl4317Gdf5558Pou2af1
  77C430042M11Rik318Serpina1b559Rpl39l
  78Stra6l319Bche560A930018P22Rik
  79Tshr320Ncaph561Gm15972
  80S100a8321Stom562Usp29
  81Ncan322Hist1h3d563Arl4a
  82S100g323Tmem178564Ercc6l
  83Kcnj153242610020C07Rik565Ccl7
  84Pkp2325Rps6ka3566Shmt1
  851600025M17Rik326Fam20c567Atp10a
  86Gas2l2327Trabd2b568Glb1l2
  87D830036C21Rik328Asf1b569Slc2a10
  88Slc37a2329Edem1570Smoc1
  89Ccnb2330Cdt1571Zfp106
  90Angptl3331Cenpa572Arfgef2
  91Htra3332AF251705573Gcnt1
  92Gpnmb333Hipk1574Hesx1
  93Cldn15334Hn1l575Mrc2
  94Cep55335Nepn576Neurl2
  95Abcb4336Sel1l577Plk1
  96Gprin3337Cyp4b1578Zfp426
  97Car6338Muc13579AI844685
  98Brca1339Rhof580Ckap2l
  99Igkv15-103340Mcm10581Clip1
100Tinag341Tnfrsf11a582Dyrk2
101Trim29342Ppih583E2f7
102Cela1343Rasgrp2584Pex16
103Mki67344Srp54b585Qpctl
104Cdk1345Gzme586Slc22a4
105Lrrc39346Fam126b587Tmem132a
106Dtl347Heph588Adam23
107Ugt3a2348Cd200r4589D17H6S56E-5
108Dusp3349Cnnm2590Ece2
109Tmem182350Ghr591Lipa
110Acoxl351Cenpw592Plek
111Chrna2352Mcm5593Tgfb1
112Apoc2353Ska3594Adamts9
113Fzd4354Mrgprg595Fgfrl1
114Fads3355Pcdh7596Mutyh
115Arhgap253562810408I11Rik597Nim1k
116Dock8357E2f8598Ptprk
117Ccnb13585430437J10Rik5995830403F22Rik
118Gm6277359Kif18b600Aurka
1194930486L24Rik360Akr1c13601Fignl1
120Hephl1361Cd300a602Isoc1
121Tpx2362Cd84603Lss
122Slpi363Lrrc27604Tgm2
123Sirpb1a364Mcemp1605Trappc13
124Tlr13365Adam12606Wipi1
125Saa3366Ckap2607Copg2os2
1269130204L05Rik367Fam101b608Hvcn1
127Cfi368Igsf6609Mpeg1
128Rbm28369Pramef12610Sphk1
129Dnmt3l370Tnfrsf22611Tpsab1
130Sucnr1371Ttk612Rab20
131Atp6v0a1372Car12613Skil
132Irak2373Depdc1a614Gatb
133Prss27374Fam64a615Gm11827
134Birc5375Hpgd616Ptpn22
135Mis18bp1376Dbf4617Stx17
136Spaca1377Igsf21618Trib3
137Adh6b378Kcna5619E2f2
138Afp379AI481207620Itsn1
139Tk1380Cenph621C2cd2
140Cxcl3381Gla622Cd44
141Sdsl382Hrct1623Hfe
142Tsc22d2383Naip1624Mmp19
143Klk1384Slc18a16252500002B13Rik
144Fosl13852210406H18Rik6262700099C18Rik
145Rnf1283863930402G23Rik627Ano9
146Cdca8387Adap2628Ccne1
147Timp4388Palmd629Lox
148Zc3h12d389Vldlr630Dynlrb2
149Plin5390Mfge8631Eny2
150Ttc39b391Mpp7632Gm3912
151AA467197392Sgol1633Lipg
152Tenm4393Mmp13634Maff
153Nuf2394Ms4a6d635Milr1
1548430408G22Rik395Tatdn2636Tmem82
155Cdca3396Pigt6372600006K01Rik
156Hilpda397Sbk1638Acvr1c
157Esco2398Lrg1639Bcl2l10
158Slc9a6399Oit3640Itih5
159Trem2400Qsox1641Plekhm1
160Pkp1401Vwa8642Slc7a8
161Tex33402Atp8b4643Tes
162Aqp7403B430306N03Rik644Cd6
163Fmr1404Msr1645Gsg2
164Fggy405Nfe2l2646Gm2011
165BE949265406Nkd1647Incenp
166Ube2c407Ptx3648Pold3
167Pbk408Cd22649Bst1
168Wif1409Galns650Optc
169Nedd9410Afmid651Smad6
170Igfbp3411Cd300lg652Tmem206
171Slc7a10412Ermp1653Zfp787
172Spdl1413Fcgr4654Cdc20
173Tmed5414Shcbp1655Ripk3
174Slc15a3415Knop1656Sdcbp2
175Clec4d416Serpina12657Myo19
176Serpinb9b417Larp1b658Tinagl1
177Cux2418Thbs1659Tmem106a
178Cdk18419Seh1l660Trim16
179C6420Lgals36615033430I15Rik
180Lhfpl2421Nek6662AI606473
181Scel422Ctse663Dolk
182Glyctk423Hsd11b2664Laptm5
183Mms22l424Itgb2665Lats2
184Tcp11×2425Slamf7666Lbp
185Cacna1e4263110027N22Rik667Ormdl3
186Hipk2427Dmrt2668Pde1b
187Ccl3428Hspb6669Prelp
188Fabp12429Ptbp3670Serpina3c
189Ncapg430Slc22a12671Hr
190Pnpla2431Ttc7672Klhl25
191Dppa3432Cenpi673Shb
192Elovl3433Cxcl9674Vav1
193Prss46434Itga76756030422H21Rik
194Mmp8435Lcn2676Ccdc86
195Folh1436Pid1677Cenpp
196Cenpf437Prc1678Gch1
197Npy4381700112E06Rik679Ms4a6b
198Apol64392010003K11Rik680Nlrc3
199Rrbp1440Plekhg6681Gm9899
200Pex5l441Kif22682Phtf2
201F10442Ndc80683Tead4
202Ccna2443Nlrp10684Tfcp2l1
203Tmem135444Ptges3l685Tfpi2
204Aspm445Sod3686Map2k5
205Gm8350446Abhd15687Sh2b2
206Nus1447Acsl1688Spint2
207Tm4sf5448Ltc4s689Wdr62
208Cdr2449Crk6904930511E03Rik
209Aurkb450Naip2691B230307C23Rik
210Lonrf3451Peg3692Cib2
211Bcar34524430402I18Rik693Olfm2
212Dsg1a453Fgf21694Zfp655
213Peg10454Lrrc28695Cenpk
214Tmem38b455Plekhf2696Dgkd
215Clec4e456Rad51ap1697Hspa12a
216Galnt6457Sgol2a698Hspg2
217Gys2458Ehd2699Morn5
218Melk459St8sia4700Rbp7
219Spag5460Dcbld1701Chpt1
220Gsdma461Mtor702Ehd3
221Glipr1462Plaur703Hk3
222Pde7a463Akap2704LOC545086
223Top2a464Ccnf705Mta3
224Rab38465Lrr1706Spry4
225Adh4466Nat1707Treml1
226Cxcl10467Gm31718708Gpr65
227Kif11468Kif20a709Rel
228Hrasls469Optn710Stk17b
229Kcnk3470Plod1711Zfp69
2302810417H13Rik471Rad54b712Ccr7
2311700029I15Rik472AU021933713Cenpn
232Serpina3a473Ccrl2714Fbxo42
233Lamb3474Piezo1715Ttpa
234Plet1475Stab2716Vac14
235Klb476C5ar1717Ncf1
236Btc477Hgf718Ybx2
237Ccdc125478Kbtbd12719Cd300ld
238Rbpms479Map7720Gk
239Mettl24480Rad18721Xrcc3
240Tnc481Sdk2
241Tpcn2482Tlr8
Downregulated
    1March2366Tspan2731St6gal2
    2March4367Ttyh1732Sytl2
    3March5368Unc13a733Tnfrsf19
    4March6369Zfp612734Agr2
    52900055J20Rik3701110002L01Rik735Bcan
    6Bcl11b3719330184L24Rik736C030034E14Rik
    7Cdk7372Aak1737Cntn2
    8Esr1373Adamtsl1738Dcdc2a
    9Gm13446374Aif1l739E130002L11Rik
  10Gpr85375Ank3740Fam131a
  11Hoxb9376Atl1741Fam167a
  12Htr7377B930095G15Rik742Fam169a
  13Kctd14378C030039L03Rik743Gap43
  14Mapk4379Cacnb3744Gng4
  15Ncdn380Calb2745Kcnd1
  16Osbpl3381Ccdc136746Krtdap
  17Pfn2382Cdh8747Lrrn1
  18Pou3f2383Clasp2748Lysmd4
  19Slc14a1384Dlg4749Mmd2
  20Tardbp385Epb41l4b750Nacad
  214833423F13Rik386Fbxo30751Necab1
  22Angel1387Gpr61752Nrxn1
  23BC030500388Itgb3bp753Nxpe3
  24Cacng4389Lcat754Parm1
  25Chd9390Lect1755Ptprt
  26Cst6391Magi1756Pvalb
  27Dpysl3392Meg3757Rem2
  28Ece1393Mmp9758Rps6ka6
  29Eif5a2394Neto2759Sphkap
  30Endod1395Otud7a760Syt11
  31Epha5396Phactr1761Th
  32Evi5397Prkcz762Thy1
  33Gjd2398Psd2763Tmem74
  34Gpr88399Rnf130764Trim37
  35Hs6st2400Sema3b765Tspan8
  36Htr1d401Sema4g766Wipf3
  37Ica1l402Slc2a3767Bves
  38Kalrn403Smr2768Ccdc92
  39Kcnmb2404Srr769Elfn1
  40Kcnv1405Trpm3770Erich3
  41Mag406Zfp385b771Galnt5
  42Nxph1407A830010M20Rik772Gca
  43Osbpl6408AI661384773Ggt7
  44Pax3409AI854703774Gria1
  45Pcdh9410AW046457775Hoxb5
  46Pcp4l1411Adam22776Kcnh1
  47Pter412B3gat1777Kcnip1
  48Rgs7413Baiap2l1778Kcnmb1
  49Scmh1414C530044C16Rik779Lrfn5
  50Slc1a6415Chrnb2780Mab21l2
  51Smco3416Cntnap5a781Necab3
  52Sostdc1417Cplx2782Nyap1
  53Stxbp1418Crh783Sptbn2
  54Stxbp5419Csdc2784Syn1
  55Tmem229b420Ctxn1785Tmem151a
  56Ube2e3421D2Ertd282e786Tmem25
  57Upp2422Dclk1787Tro
  58Zfp788423Eras788Trpa1
  595330417C22Rik424Erich6789Agtr1b
  60A730089K16Rik425Gm36529790Calca
  61Abhd10426Greb1l791Camta1
  62Adgra1427Grm4792Crmp1
  63C79242428Hopx793Fam131b
  64Camk4429Mycn794Fam171b
  65Cep97430Nalcn795Gabra2
  66Cpsf2431Nebl796Kcnd3
  67Cpsf6432Nova1797Lmo3
  68Csmd3433Pcp4798Map3k9
  69Cyfip2434Plekha6799Mpped2
  70Eml2435Rab6b800Ngfr
  71Fat3436Rbfox3801Nmnat2
  72Fgf18437Rbm11802Prkar1b
  73Golga7b438Rgs8803Rims2
  74Gpr173439Rtn4804Rundc3b
  75Grin1440Sarm1805Scn4b
  76Hs3st1441Sema3e806Slc5a5
  77Irf4442Shisa4807Tesc
  78Klf12443Slc6a17808Trpv1
  79Lancl1444Slco1c1809Tst
  80Lrba445Synm810Ube2ql1
  81Lrrn4cl446Tubg2811Zfp365
  82Lrrtm4447Wdr17812Zfp804a
  83Nppb4489330182L06Rik8132700046A07Rik
  84Paqr5449Aifm3814AF529169
  85Plch1450Bhlha9815B3galt5
  86Prokr2451Cd200r3816Bean1
  87Prr5l452Cdh1817F2rl2
  88R3hdm1453Chd5818Nrsn1
  89Runx1t1454Dgkg819Pcsk1
  90Sall4455E130309D14Rik820Pcyt1b
  91Slc29a4456Hapln2821Rnf157
  92Slc35f2457Myt1l822Serpini1
  93Trank1458Ntsr2823Slain1
  94Zdhhc18459Oprl1824Slc35f4
  95Zfp318460Prdm8825Slc4a10
  96Zfp37461Prr18826Vps13c
  972900009J20Rik462Psmf1827Wt1
  98A930041H05Rik463Rab3a828Adamts16
  99Ak5464Rasgef1a829Ano3
100Arg2465Rgmb830Arfgef3
101Bank1466Rgs7bp831Arhgdig
102Ccdc28a467Robo1832Cntn1
103Cdkn1b468Rph3a833Ddx25
104Clec2l469Slc2a12834Dzank1
105Csmd1470Slc6a2835Fam19a3
106Dip2a471Sstr4836Gprin2
107Dlgap1472Syt7837Hsbp1l1
108F5473Tdo2838Htr4
109Fzd3474Tmem108839Jakmip1
110Htr1a475Vwa5a840Jakmip2
111Hunk476Zfr2841Klc1
112Klhl324779530077C05Rik842Lix1
113L1cam478Acsl6843Maneal
114Lrrtm2479Aqp4844Npy2r
115Map6d1480Atcay845Rab3c
116Mfsd6481Ccdc68846Reep2
117Mrpl35482Cdk5r1847Rufy2
118Nedd4l483Cgref1848Sh3gl2
119Pcsk6484Cpb1849Vstm5
120Plxnb1485Ctnnd28501810041L15Rik
121Ppp1r2486Cxxc4851A830039N20Rik
122Rbm33487Dnah7a852Aldoc
123Rfx4488Dzip3853Asic1
124Sacs489Fndc4854BC059841
125Serpina11490Fxyd7855Car10
126Shd491Gabra5856Ccdc172
127Tcte2492Glrb857Cldn10
128Tia1493Lrch1858D130043K22Rik
129Tox2494Mir124a-1hg859Gabrg2
130Ttbk1495Ncam2860Gm16551
131Ttc3496Plk5861Kcnip2
132Vamp4497Pogz862Kcnip4
1332900056L01Rik498Prox1863Kif3c
1342900064F13Rik499Rasl10b864Mrgpra3
135Arhgap20500Rnf208865Pappa2
136Ccdc112501Scin866Rab39b
137Cfap69502Scn8a867Rassf6
138Cmtm5503Scrt1868Rbfox1
139Dtna504Slitrk4869Rufy3
140Dusp15505Susd5870Sez6l2
141Ephx4506Tmem169871Soga3
142Faim2507Tmem196872Stac
143Gabrb3508Ttc39c873Sv2a
144Galnt14509Tyrp1874Tmem179
145Gm12371510Unc5c875Tspyl4
146Gm13889511Vwc2l876Aplp1
147Gprasp15125930412G12Rik877Atp6v1g2
148Hspa4l513Abcg4878Far2
149Igsf11514Ache879Megf11
150Itih3515Acsm3880Nsg2
151Kcnip3516Arhgap12881Pclo
152Kcnk1517Cabp7882Pou4f2
153Lingo1518Ccdc30883Ptprn
154Mkx519Clip3884Rasgrp1
155Nipa1520Clip4885Rit2
156Phex521Dgkb886Slc1a2
157Pnkd522Diras1887Them5
158Ppm1l523Elovl2888Tmem151b
159Spink10524Gm10700889Zwint
160St3gal6525Gpr1498906430604M11Rik
161St6galnac3526Has2891Bsn
162Stk33527Hoxd10892C530008M17Rik
163Tfap2a528Hs3st4893Cadps2
164Wdr31529Iqsec3894Cbln2
1654930519N06Rik530Kazn895Ctnna2
166Acsbg1531Kcnf1896Cyp4×1
167Akr1c18532Kif3a897Elavl3
168Asxl3533Lepr898Fbxo2
169Atad1534Lingo2899Gm10419
170B3galt1535Mapt900Igfbp2
171B630019K06Rik536Mycl901Jph3
172Ccdc138537Neto1902Jph4
173Cdr2l538Nipal3903Klhdc8a
174Clec3b539Nwd2904Nrcam
175Cyr61540Pdzd4905Ppap2c
176Dhh541Plcxd3906Ppm1j
177Edil3542Plp1907Ptgs2
178Fign543Ppfia2908Tcte1
179Gabbr1544Ptbp2909Tmem150c
180Gabra1545Scrn1910Trim9
181Gm13629546Slc25a18911Acpp
182Gm5089547Slco5a1912Adgrb3
183Gnaz548Svop913Anks1b
184Gpr62549Syngr1914Ccdc184
185Hcn1550Tmem246915Chga
186Kcnk5551Tmem88b916Ckmt1
187Kcnq5552Arpp21917Galnt13
188Lrrc49553Atp1b1918Gng3
189Mbp554Cd209g919Kcnab1
190Pak1555Cda920Kcnc1
191Pax9556Chst5921Kif5a
192Pcdh10557Cnnm1922Napb
193Praf2558Dleu2923Nrxn3
194Prss12559Dscam924Ptgds
195Ptchd2560Dusp26925Ptprn2
196Rimklb561Hebp2926Rgs17
197Sgtb562Il31ra927Tox3
198Sh3d19563Lhfpl3928Uchl1
199Slc16a9564Lrp8929Zmat4
200Smpd3565Mfsd4930Csrnp3
201Sorcs3566P2rx3931Dpp6
202Stmn2567Pigz932Fam184b
203Usp31568Pnma2933Gdap1
204Vamp1569Rab39934Kctd8
205Vat1l570Rell2935Nrg3
206Zdbf2571Rlbp1936Rnf112
207Aldh1a2572Sema4f937Syt2
208Atp2b4573Slitrk5938Tmem200c
209Cacnb4574Smarcal19393632451O06Rik
210Camk1g575Sntg19409430021M05Rik
211Chn1576Stmn3941AW060742
212Dio3os577Susd4942Ank1
213Fkbp1b578Tmem117943Asic3
214Gjb1579Vwa7944Brsk2
215Gna145801700019D03Rik945Cldn11
216Herc3581A2m946Faxc
217Hnrnpr582Brsk1947Fstl5
218Igsf1583C030011L09Rik948Lhfpl5
219Irf6584Cabp1949Nptx2
220Ism1585Dok4950Pacsin1
221Jam3586Epb41l3951Rims3
222Klf7587Exph5952Rspo2
223Ltbp1588Fez1953Rundc3a
224Mapk8ip1589Fmn2954Scg5
225Nek1590Gria2955Slc6a15
226Nrip3591Kif5c956Srrm3
227Phyhip592Mast1957St8sia3
228Prepl593Ms4a3958Tram1l1
229Rasgrf1594Ndrg4959Zswim5
230Serpind1595Pirt9602900011O08Rik
231Sox1596Prmt8961Astn1
232Sox2ot597Rab33a962Atp2b2
233Spock2598Rab37963Bend6
234Susd2599Slc25a12964Bex2
235Syndig1l600Srgap3965Cacna2d3
236Zfhx2601Tmem163966Cckar
237 A730054J21Rik602Tmem79967Cend1
238Adam11603Ttc9b968 D930028M14Rik
239Adcy1604 4930524O07Rik969Dnm3
240Adgrl3605 A330050F15Rik970Fam155a
241Ankrd13d606 A330102I10Rik971Gnal
242Apba1607Arhgap28972Ipw
243Apcdd1608Arhgap44973Kcna4
244B3gnt5609Celf4974Kcnj10
245Bmp7610Cntnap4975Lsamp
246Crym611Elovl7976Mapk8ip2
247Dbndd2612Fcrls977Mtcl1
248Eef1a2613Gpr37978Phf24
249Fam81a614Grin3a979Snap25
250Fbxl16615Ibsp980Tmem59l
251Fbxo41616Ints6981Atp2b3
252Flrt1617Lgi3982Col25a1
253Gkn3618Lrrtm1983Dpysl5
254Hey2619Magee1984Grip1
255Kcnd2620Pcdh20985Hapln1
256Kcng4621Plcxd2986Klk6
257Lin7a622Plekhh1987Lhfpl4
258Lrrtm3623Prkg2988Nap1l3
259Ncam1624Prune2989Ppm1e
260Nrsn2625Rcan2990Prph
261Pak7626Scn2b991Rnf182
262Pcolce2627Slc7a14992Rtn1
263Ppp2r2c628Stx1b993Slc39a12
264Prr15629Sult4a1994Tmem35
265S100b630Syt14995Zcchc18
266Samd14631Tmem132e996Ano4
267Sh3gl3632Ubash3b997Arhgef7
268Slc6a11633 A830018L16Rik998BC048546
269Trio634Adcy8999Gabrg1
270 2610100L16Rik635Cdh101000Hecw1
271AI846148636Ceacam101001Insm2
272Apbb1637Chrna61002Map7d2
273Ccl27a638Eno21003Mog
274Ccp110639Fgf41004Pcsk2
275Cd24a640Frrs1l1005Pgbd5
276Clvs2641Gm51241006Rprm
277Cntn6642Gpr221007Sgpp2
278Cxcl13643Il1r21008Slc17a7
279Cytl1644Lancl31009Slc26a7
280Depdc5645Ogfrl11010Spock1
281Dkk2646Olfm31011Adrb3
282Gabrb2647Phactr31012Akap6
283Gm15663648Reep11013 C030017B01Rik
284Hs3st2649Rgs41014Calb1
285Id4650Rimbp21015Cpne4
286Il18651Skida11016Dync1i1
287Map1a652Slc6a11017Isl1
288Mllt11653Slitrk11018Isl2
289Nfasc654Tmem561019Kndc1
290Pak3655Trnp11020Map4
291Pgm2l1656Tspyl51021Mapk10
292Plcd4657Vstm2a1022Phyhipl
293Rasal2658 4832406H04Rik1023Pou4f1
294Rltpr659 A330068G13Rik1024Rims1
295Sec62660Aard1025Sv2b
296Snph661Acsl31026Syt1
297Stk32c662Atp8a21027Syt4
298Syngr3663Cacna1b1028Tubb4a
299Tbc1d30664Cdh91029Amph
300Trim2665Ces1f1030Elavl4
301 1110032F04Rik666Col4a61031Ermn
302Ank2667Dner1032Gfap
303Apc2668Fn3k1033Hoxd1
304Apoh669Gm165321034Mlc1
305Asphd1670Itga81035Mup10
306BB319198671Kif1a1036Nrg1
307Cacna2d2672L1td11037Scn10a
308Cadm3673Megf101038Tagln3
309Clgn674Mtus21039Vgf
310Cmah675Nipal21040Add2
311Ddn676Nrxn21041Cdhr1
312Dhrs2677Ntrk11042Chrna7
313Efcab1678Pcdh81043Cpne6
314Fam189a1679Pla2g31044Dlg2
315Gm32444680Rab9b1045Dpp10
316Gpr158681Sowahb1046Fam19a4
317Gpr75682Trpc31047Grik1
318Grm8683Trpc61048Htr3a
319Inadl684Tvp23a1049Plekhd1
320Kcnq2685Vwa5b21050Ppp1r1c
321Kctd4686 A730017C20Rik1051Ppp2r2b
322Kif21a687Amer31052Ralyl
323Krt27688Arhgef41053St8sia1
324Lgi2689Arnt21054Stmn4
325Lonrf2690Ccser11055Synpr
326Lztfl1691Cntnap21056 2900052N01Rik
327Mfsd2a692Cplx11057Chgb
328Mro693Crygs1058Fam19a2
329Pcnxl2694Dock31059Resp18
330Prkg1695Dpp41060Slc17a6
331Srd5a1696Fam189b1061Spock3
332Srsf12697Gdap1l11062Vsnl1
333Tmem231698Gm21151063Nefl
334Tnik699Gprasp21064Scn9a
335Trim36700Hoxb61065Nts
336Ttbk2701Lgi11066Sult1e1
337Aox3702Mobp1067Avil
338Ccdc47703Mogat11068 2810037O22Rik
339Celsr2704Mtmr71069Nefh
340Cldn9705Nkx2-21070Cdk5r2
341Dbndd1706Omg1071Ttc9
342Esd707Pde1c1072Adcyap1
343Fxyd3708Ptprz11073Pon1
344Greb1709Scn1a1074Slc24a2
345Gria4710Slc35f31075Nefm
346Kcnn2711Spire21076Panx2
347Kcnt1712Stxbp5l1077Syt9
348Lynx1713Tenm11078Rimkla
349Ndp714Timd41079Gm2102
350Nkain2715 6330563C09Rik1080Scg2
351Pi16716Ap3b21081Tac1
352Pip5kl1717Arhgap361082Prrxl1
353Pla2g2d718Caln11083AI593442
354Ppl719Celf61084Calcb
355Prokr1720Cntn41085Shh
356Rab27b721Corin1086Tmem130
357Rragd722Epb411087Cyp2f2
358Rsrp1723Fosb1088Snap91
359Scrt2724Kcnj31089Nap1l2
360Slc35d3725Kcnk101090Scn11a
361Spink2726Lrrc75b1091Myt1
362Stk39727Morn41092Grm7
363Synrg728Onecut21093Tubb3
364Tmem255a729Pcsk1n1094Cadps
365Tshz2730Scg3
GO and pathway enrichment analyses

There were 60 coincident enriched GO terms for DEGs in T1- and T2DM, the top 20 of which are listed in Table I. In addition, the top 20 enriched GO terms for DEGs that were unique to sciatic nerves from the T1- or T2DM model are presented in Table II. Besides these, 21 and 27 KEGG pathways were enriched for DEGs in T1- and T2DM, respectively. Among them, 4 pathways were coincident in both models (Table III), while 17 and 23 pathways were unique to T1- and T2DM respectively (Table IV).

Table I.

Top 20 coincident enriched GO terms in T1- and T2DM.

Table I.

Top 20 coincident enriched GO terms in T1- and T2DM.

T1DMT2DM


GO IDGO termGene countP-valueGene countP-value
GO:0005515 MFProtein binding573.1E-6769.2E-20
GO:0005737 CCCytoplasm216.7E-61233.8E-14
GO:0001525 BPAngiogenesis149.6E-6897.3E-18
GO:0000166 MFNucleotide binding452.4E-5465.5E-10
GO:0007399 BPNervous system development213.2E-5867.3E-11
GO:0008201 MFHeparin binding134.6E-5575.9E-14
GO:0006468 BPProtein phosphorylation115.4E-5614.3E-12
GO:0005578 CCProteinaceous extracellular matrix245.5E-5669.1E-20
GO:0016310 BP Phosphorylation136.2E-5788.8E-16
GO:0009986 CCCell surface126.5E-5545.6E-17
GO:0016020 CCMembrane178.9E-5233.2E-15
GO:0005794 CCGolgi apparatus122.4E-4452.5E-17
GO:0004672 MFProtein kinase activity143.1E-4244.2E-16
GO:0030335 BPPositive regulation of cell migration154.5E-4198.5E-17
GO:0005783 CCEndoplasmic reticulum   65.3E-4325.2E-16
GO:0019933 BPcAMP-mediated signaling185.8E-4307.5E-13
GO:0048471 CCPerinuclear region of cytoplasm166.3E-4215.2E-12
GO:0016301 MFKinase activity196.7E-4267.1E-15
GO:0004674 MFProtein serine/threonine kinase activity321.3E-3242.1E-18
GO:0006629 BPLipid metabolic process221.6E-3427.6E-22

[i] GO, Gene ontology; BP, biological process; MF, molecular function; CC, cellular component; T1DM, type 1 diabetes mellitus; T2DM, type 2 diabetes mellitus.

Table II.

Top 20 enriched GO terms for differentially expressed genes in the sciatic nerve of T1- and T2DM models, respectively.

Table II.

Top 20 enriched GO terms for differentially expressed genes in the sciatic nerve of T1- and T2DM models, respectively.

GO IDGO termGene countP-value
T1DM
GO:0005654 CCNucleoplasm925.3E-7
GO:0070062 CCExtracellular exosome1161.3E-6
GO:0005829 CCCytosol842.8E-6
GO:0045893 BPPositive regulation of transcription, DNA-templated384.3E-6
GO:0050680 BPNegative regulation of epithelial cell proliferation126.0E-6
GO:0071560 BPCellular response to transforming growth factor β stimulus118.3E-6
GO:0005604 CCBasement membrane131.7E-5
GO:0090090 BPNegative regulation of canonical Wnt signaling pathway133.5E-5
GO:0045165 BPCell fate commitment113.7E-5
GO:0005925 CCFocal adhesion274.7E-5
GO:0030154 BPCell differentiation436.9E-5
GO:0045944 BPPositive regulation of transcription from RNA polymerase II promoter501.6E-4
GO:0005634 CCNucleus2082.4E-4
GO:0009887 BPOrgan morphogenesis122.9E-4
GO:0035925 MFmRNA 3′-UTR AU-rich region binding53.0E-4
GO:0008285 BPNegative regulation of cell proliferation253.1E-4
GO:0048709 BPOligodendrocyte differentiation73.6E-4
GO:0000381 BPRegulation of alternative mRNA splicing, via spliceosome77.8E-4
GO:0000122 BPNegative regulation of transcription from RNA polymerase II promoter371.1E-3
GO:0031012 CCExtracellular matrix191.7E-3
T2DM
GO:0030054 CCCell junction1471.4E-26
GO:0030424 CCAxon981.9E-26
GO:0043195 CCTerminal bouton468.7E-21
GO:0006811 BPIon transport1125.1E-18
GO:0005216 MFIon channel activity481.8E-14
GO:0042734 CCPresynaptic membrane312.4E-14
GO:0034765 BPRegulation of ion transmembrane transport423.8E-14
GO:0008021 CCSynaptic vesicle393.6E-13
GO:0005244 MFVoltage-gated ion channel activity405.0E-13
GO:0005509 MFCalcium ion binding1112.9E-12
GO:0045211 CCPostsynaptic membrane543.6E-13
GO:0005886 CCPlasma membrane5093.5E-12
GO:0006810 BPTransport2271.1E-11
GO:0007268 BPChemical synaptic transmission441.4E-11
GO:0008076 CCVoltage-gated potassium channel complex272.2E-10
GO:0007269 BPNeurotransmitter secretion173.6E-11
GO:0000775 CCChromosome, centromeric region387.1E-11
GO:0006813 BPPotassium ion transport341.1E-9
GO:0005267 MFPotassium channel activity261.4E-9
GO:0005887 CCIntegral component of plasma membrane1505.7E-10

[i] GO, gene ontology; BP, biological process; MF, molecular function; CC, cellular component; T1DM, type 1 diabetes mellitus; T2DM, type 2 diabetes mellitus.

Table III.

Coincident enriched Kyoto Encyclopedia of Genes and Genomes pathways in T1- and T2DM.

Table III.

Coincident enriched Kyoto Encyclopedia of Genes and Genomes pathways in T1- and T2DM.

T1DMT2DM


TermGene countP-valueGene countP-value
mmu04010:MAPK signaling pathway197.5E-4293.2E-2
mmu04512:ECM-receptor interaction101.4E-3156.9E-3
mmu04390:Hippo signaling pathway111.8E-2241.2E-3
mmu04360:Axon guidance   94.5E-2173.8E-2

[i] T1DM, type 1 diabetes mellitus; T2DM, type 2 diabetes mellitus.

Table IV.

Enriched Kyoto Encyclopedia of Genes and Genomes pathways in T1- and T2DM, respectively.

Table IV.

Enriched Kyoto Encyclopedia of Genes and Genomes pathways in T1- and T2DM, respectively.

TermGene countP-value
T1DM
mmu04010:MAPK signaling pathway197.5E-4
mmu04512:ECM-receptor interaction101.4E-3
mmu05202:Transcriptionalmisregulation in cancer141.7E-3
mmu05200:Pathways in cancer242.5E-3
mmu05205:Proteoglycans in cancer153.8E-3
mmu04310:Wnt signaling pathway111.1E-2
mmu05214:Glioma71.4E-2
mmu05222:Small cell lung cancer81.4E-2
mmu04015:Rap1 signaling pathway141.4E-2
mmu04330:Notch signaling pathway61.7E-2
mmu04914:Progesterone-mediated81.7E-2
oocyte maturation
mmu04390:Hippo signaling pathway111.8E-2
mmu00100:Steroid biosynthesis41.9E-2
mmu05218:Melanoma72.1E-2
mmu04614:Renin-angiotensin system52.2E-2
mmu04520:Adherens junction72.3E-2
mmu04510:Focal adhesion132.5E-2
mmu04913:Ovarian steroidogenesis63.0E-2
mmu04360:Axon guidance94.5E-2
mmu05210:Colorectal cancer64.6E-2
mmu05212:Pancreatic cancer64.9E-2
T2DM
mmu05033:Nicotine addiction191.6E-10
mmu04080:Neuroactive ligand-receptor interaction491.4E-7
mmu04723:Retrograde endocannabinoid signaling238.5E-6
mmu04721:Synaptic vesicle cycle171.2E-5
mmu05032:Morphine addiction206.7E-5
mmu04514:Cell adhesion molecules (CAMs)272.4E-4
mmu04724:Glutamatergic synapse214.3E-4
mmu04024:cAMP signaling pathway304.9E-4
mmu04923:Regulation of lipolysis in adipocytes131.1E-3
mmu04390:Hippo signaling pathway241.2E-3
mmu04020:Calcium signaling pathway262.7E-3
mmu04972:Pancreatic secretion173.8E-3
mmu00561:Glycerolipid metabolism124.2E-3
mmu04911:Insulin secretion155.6E-3
mmu04727:GABAergic synapse156.2E-3
mmu04512:ECM-receptor interaction156.9E-3
mmu04261:Adrenergic signaling in cardiomyocytes202.1E-2
mmu04022:cGMP-PKG signaling pathway222.2E-2
mmu04810:Regulation of actin cytoskeleton262.3E-2
mmu04726:Serotonergic synapse182.4E-2
mmu04725:Cholinergic synapse162.6E-2
mmu04728:Dopaminergic synapse182.8E-2
mmu04610:Complement and coagulation cascades123.0E-2
mmu04010:MAPK signaling pathway293.2E-2
mmu04970:Salivary secretion123.3E-2
mmu04360:Axon guidance173.8E-2
mmu04062:Chemokine signaling pathway234.6E-2

[i] T1DM, type 1 diabetes mellitus; T2DM, type 2 diabetes mellitus.

PPI network

A total of 419 nodes and 1,343 edges were involved in the PPI for T1DM, whereas 1,416 nodes and 11,077 edges were involved in that for T2DM (data not shown). The top 10 proteins in each of T1- and T2DM with a relatively high degree of connectivity in the PPI network are presented in Table V.

Table V.

Top 10 proteins with relatively high connectivity degrees in the protein-protein interaction networks for T1- and T2DM.

Table V.

Top 10 proteins with relatively high connectivity degrees in the protein-protein interaction networks for T1- and T2DM.

T1DMT2DM


RankProteinDegreeRankProteinDegree
  1Lrrk1761Top2a171
  2Trp53652Cdk1144
  3Actb603Plk1126
  4Actr1b424Aurkb120
  5Fn1405Plk4116
  6Yes1386Ccnb1115
  7Mapk12387Aurka114
  8Prkacb338Mki67113
  9Pten329Kif11112
10Ywhaz2810Cdc20111

[i] T1DM, type 1 diabetes mellitus; T2DM, type 2 diabetes mellitus.

Extent of enriched function and topological structure analysis for the modules of the PPI networks

Based on the module analysis by ClusterONE, a single module was determined in the PPI for T1DM (Fig. 2A) and 7 modules for T2DM (Fig. 2B-H). The information on the modules, including node number, P-value, protein with highest degree of connectivity, and numbers of GO terms and KEGG pathways are shown in Table VI.

Table VI.

Information on the modules of the protein-protein interaction networks in T1- and T2DM.

Table VI.

Information on the modules of the protein-protein interaction networks in T1- and T2DM.

ModuleNode numberP-valueProtein with highest connectivity degree (degree)GO term numberKEGG pathway number
T1DM
1159.4E-5Srsf1 (22)180
T2DM
11254.2E-14Top2a (171)1518
2282.9E-10Frrs1l (28)20
3248.3E-8Ccr7 (46)795
4411.0E-4Mapk4 (72)404
5112.8E-4Gabrg2 (25)375
6323.4E-4Scn8a (52)744
7206.0E-4Aldh1a2 (30)349

[i] T1DM, type 1 diabetes mellitus; T2DM, type 2 diabetes mellitus.

Discussion

DPN is among the most frequent complications for T1- and T2DM. It is generally considered that DPN results from damage by hyperglycemia, regardless of the type of DM (3). In recent decades, distinct molecular functions and morphometric abnormalities between DPN in T1- and T2DM have been reported (7,8). In addition, it has been proposed that the therapeutic interventions for DPN should differ based on the type of diabetes (7). For DPN in T1DM, it has been suggested that improved glycemic control may preserve nerve function and/or decrease the likelihood of developing DPN (6). By contrast, for DPN in T2DM, not only glycemic control, but treatments for other risk factors including obesity may be equally critical in preventing DPN (6). Therefore, since the molecular mechanisms underlying the pathogenesis of DPN in each type of DM may differ, understanding the mechanisms may lead to novel therapeutic approaches for prevention or treatment.

In the present study, there were marked differences between the gene expression profiles, GO terms and KEGG pathways of DEGs in the sciatic nerves of T1- and T2DM mouse models. This was in accordance with previous studies revealing considerable alterations in global gene expression profiles of several tissues including skeletal muscles and adipose tissue (21), and organs such as the intestine (22), liver (23) and brain (24) in the two types of DM. It is established that T1DM is characterized by destruction of pancreatic islet cells by autoimmunity, with loss of pancreatic insulin production, while T2DM is a metabolic disease with high pancreatic insulin production in the setting of insulin resistance (6). Therefore, the different insulin level and insulin signaling pathways between the two types of DM may converge on and modulate the transcription of genes (25); it thus seemed reasonable to search for altered gene expression patterns in DPN between T1- and T2DM models characterized by absolute or relative insulin deficiency.

A number of DEGs unique to the sciatic nerve of T1DM mice were associated with cell proliferation, as well as the mitogen-activated protein kinase signaling pathway, which is a critical pathway for cell proliferation (26). In neuropathic pain, a correlation has been determined between the proliferation of nerve cells including microglia and astrocyte and the abnormal pain responses (27,28). In addition, previous study has demonstrated that the proliferation of glia cells including astrocyte was associated with structural changes in the nervous system, such as axonal growth (29). Furthermore, with loss of C-fibers, increased frequencies of denervated Schwann cells and regenerating fibers have been identified in T1DM mice but not in T2DM mice (8). Therefore, the DEGs associated with cell proliferation may serve a crucial role during the pathological changes of DPN in T1DM.

Insulin resistance is among the major factors that leads to the development and progression of complications in T2DM (30). Regarding DPN, it has been suggested that perturbation of insulin receptor signaling due to insulin resistance may cause neurons to become more vulnerable to metabolic insults and contribute to the pathogenesis of neuropathy (31). However, how gene expression is altered under the insulin-resistant state in nerve tissue remains unclear for T2DM. In the present study, a number of unique GO terms and signaling pathways were determined for the sciatic nerve profile of T2DM mice, which may result from an insulin-resistant state. For instance, a majority of the GO terms among the top 20 enriched terms unique to T2DM were related to the biological processes associated with cell junctions, ion activity and membrane activity. Previous studies indicated that the insulin-resistant state induced phosphorylation and downregulated of the expression of certain connexin (Cx) proteins including Cx43, which may constitute a potential mechanism underlying the pathogenesis of insulin resistance and its complications (32,33). Furthermore, it was demonstrated that Ca2+ overload in the mitochondria caused production of superoxide and functional impairment of multiple tissues, which may result in β-cell failure and insulin resistance in target tissues, further aggravating the complications of diabetes (34). Therefore, it may be speculated that the impairment of nerve tissues under the insulin-resistant state is attributable to these DEGs in the aforementioned biological processes in T2DM.

In addition, it was apparent that the efficacy of different treatment strategies for the two types of DM may be attributed to certain DEGs. For example, treatment of obesity appeared as critical as glycemic control for preventing the development of DPN in T2DM (5). In the present study, C-C chemokine receptor 7 (Ccr7), which was among the proteins with the highest degrees of connectivity in the PPI network for T2DM, could interact with the chemokine ligand 19 (Ccl19). The Ccl19-Ccr7 pathway may serve an important role in development of high-fat-induced obesity and subsequent insulin resistance (35). Therefore, it may be suggested that a potential treatment strategy is through Ccr7 targeting to alleviate insulin resistance and neuropathy in T2DM.

Limitation of the current study included the data being obtained from online databases, meaning the genetic backgrounds of the mice could vary substantially. Further genetic analyses are therefore warranted to identify genes and determine the molecular differences in neuropathy between the two types of DM based on different strains of mice.

In conclusion, the present study revealed the gene expression profiles and signaling pathways associated with the sciatic nerve in T1- and T2DM mouse models. The DEGs and signaling pathways may indicate unique biological processes and treatment strategies for the two types of DM. Further molecular biological experiments are required to validate the function of the DEGs and signaling pathways in DPN.

Acknowledgements

Not applicable.

Funding

The present study was supported by the National Natural Science Foundation of China (grant no. 81701104), the Natural Science Foundation of Guangdong Province, China (grant no. 2016A030310157), the Technology Planning Project of Guangdong Province, China (grant no. 2016A020220010) and the Technology Planning Project of Guangzhou, China (grant no. 201604020120).

Availability of data and materials

All data used and/or analyzed during this study are included in this published article.

Authors contributions

XL designed the study and aided in drafting of the manuscript. YG and ZLQ performed the bioinformatics analysis and drafted the manuscript. DZL and GLS analyzed the data. ZQH and YCG interpreted the results and prepared the figures. XL and ZQH edited and revised manuscript. All authors approved the final version of the manuscript to be published.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

References

1 

Vincent AM, Callaghan BC, Smith AL and Feldman EL: Diabetic neuropathy: Cellular mechanisms as therapeutic targets. Nat Rev Neurol. 7:573–583. 2011. View Article : Google Scholar : PubMed/NCBI

2 

Tesfaye S and Selvarajah D: Advances in the epidemiology, pathogenesis and management of diabetic peripheral neuropathy. Diabetes Metab Res Rev. 28 Suppl 1:8–14. 2012. View Article : Google Scholar : PubMed/NCBI

3 

Premkumar LS and Pabbidi RM: Diabetic peripheral neuropathy: Role of reactive oxygen and nitrogen species. Cell Biochem Biophys. 67:373–383. 2013. View Article : Google Scholar : PubMed/NCBI

4 

Levitt NS, Stansberry KB, Wynchank S and Vinik AI: The natural progression of autonomic neuropathy and autonomic function tests in a cohort of people with IDDM. Diabetes Care. 19:751–754. 1996. View Article : Google Scholar : PubMed/NCBI

5 

Rathmann W, Ziegler D, Jahnke M, Haastert B and Gries FA: Mortality in diabetic patients with cardiovascular autonomic neuropathy. Diabet Med. 10:820–824. 1993. View Article : Google Scholar : PubMed/NCBI

6 

OBrien PD, Sakowski SA and Feldman EL: Mouse models of diabetic neuropathy. ILAR J. 54:259–272. 2014. View Article : Google Scholar : PubMed/NCBI

7 

Callaghan BC, Hur J and Feldman EL: Diabetic neuropathy: One disease or two? Curr Opin Neurol. 25:536–541. 2012. View Article : Google Scholar : PubMed/NCBI

8 

Sima AA and Kamiya H: Diabetic neuropathy differs in type 1 and type 2 diabetes. Ann NY Acad Sci. 1084:235–249. 2006. View Article : Google Scholar : PubMed/NCBI

9 

Kamiya H, Murakawa Y, Zhang W and Sima AA: Unmyelinated fiber sensory neuropathy differs in type 1 and type 2 diabetes. Diabetes Metab Res Rev. 21:448–458. 2005. View Article : Google Scholar : PubMed/NCBI

10 

Stevens MJ, Zhang W, Li F and Sima AA: C-peptide corrects endoneurial blood flow but not oxidative stress in type 1 BB/Wor rats. Am J Physiol Endocrinol Metab. 287:E497–E505. 2004. View Article : Google Scholar : PubMed/NCBI

11 

Qu W, Han C, Li M, Zhang J and Li L: Revealing the underlying mechanism of diabetic nephropathy viewed by microarray analysis. Exp Clin Endocrinol Diabetes. 123:353–359. 2015. View Article : Google Scholar : PubMed/NCBI

12 

He K, Lv W, Zhang Q, Wang Y, Tao L and Liu D: Gene set enrichment analysis of pathways and transcription factors associated with diabetic retinopathy using a microarray dataset. Int J Mol Med. 36:103–112. 2015. View Article : Google Scholar : PubMed/NCBI

13 

Lacroix-Fralish ML, Tawfik VL, Tanga FY, Spratt KF and DeLeo JA: Differential spinal cord gene expression in rodent models of radicular and neuropathic pain. Anesthesiology. 104:1283–1292. 2006. View Article : Google Scholar : PubMed/NCBI

14 

Zhang L, Qu S, Liang A, Jiang H and Wang H: Gene expression microarray analysis of the sciatic nerve of mice with diabetic neuropathy. Int J Mol Med. 35:333–339. 2015. View Article : Google Scholar : PubMed/NCBI

15 

Wiggin TD, Kretzler M, Pennathur S, Sullivan KA, Brosius FC and Feldman EL: Rosiglitazone treatment reduces diabetic neuropathy in streptozotocin-treated DBA/2J mice. Endocrinology. 149:4928–4937. 2008. View Article : Google Scholar : PubMed/NCBI

16 

Pande M, Hur J, Hong Y, Backus C, Hayes JM, Oh SS, Kretzler M and Feldman EL: Transcriptional profiling of diabetic neuropathy in the BKS db/db mouse: A model of type 2 diabetes. Diabetes. 60:1981–1989. 2011. View Article : Google Scholar : PubMed/NCBI

17 

Simon R, Lam A, Li MC, Ngan M, Menenzes S and Zhao Y: Analysis of gene expression data using BRB-ArrayTools. Cancer Inform. 3:11–17. 2007. View Article : Google Scholar : PubMed/NCBI

18 

Huang W, Sherman BT and Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 4:44–57. 2009. View Article : Google Scholar : PubMed/NCBI

19 

Huang W, Sherman BT and Lempicki RA: Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37:1–13. 2009. View Article : Google Scholar : PubMed/NCBI

20 

Wang J, Ma SH, Tao R, Xia LJ, Liu L and Jiang YH: Gene expression profile changes in rat dorsal horn after sciatic nerve injury. Neurol Res. 39:176–182. 2017. View Article : Google Scholar : PubMed/NCBI

21 

Yang YL, Xiang RL, Yang C, Liu XJ, Shen WJ, Zuo J, Chang YS and Fang FD: Gene expression profile of human skeletal muscle and adipose tissue of Chinese Han patients with type 2 diabetes mellitus. Biomed Environ Sci. 22:359–368. View Article : Google Scholar : PubMed/NCBI

22 

Sun J, Wang D and Jin T: Insulin alters the expression of components of the Wnt signaling pathway including TCF-4 in the intestinal cells. Biochim Biophys Acta. 1800:344–351. 2010. View Article : Google Scholar : PubMed/NCBI

23 

Matsumoto K and Yokoyama S: Gene expression analysis on the liver of cholestyramine-treated type 2 diabetic model mice. Biomed Pharmacother. 64:373–378. View Article : Google Scholar : PubMed/NCBI

24 

Abdul-Rahman O, Sasvari-Szekely M, Ver A, Rosta K, Szasz BK, Kereszturi E and Keszler G: Altered gene expression profiles in the hippocampus and prefrontal cortex of type 2 diabetic rats. BMC Genomics. 13:812012. View Article : Google Scholar : PubMed/NCBI

25 

Mounier C and Posner BI: Transcriptional regulation by insulin: From the receptor to the gene. Can J Physiol Pharmacol. 84:713–724. 2006. View Article : Google Scholar : PubMed/NCBI

26 

Schuelert N, Gorodetskaya N, Just S, Doods H and Corradini L: Electrophysiological characterization of spinal neurons in different models of diabetes type 1- and type 2-induced neuropathy in rats. Neuroscience. 291:146–154. 2015. View Article : Google Scholar : PubMed/NCBI

27 

Echeverry S, Shi XQ and Zhang J: Characterization of cell proliferation in rat spinal cord following peripheral nerve injury and the relationship with neuropathic pain. Pain. 135:37–47. 2008. View Article : Google Scholar : PubMed/NCBI

28 

Sun C, Zhang J, Chen L, Liu T, Xu G, Li C, Yuan W, Xu H and Su Z: IL-17 contributed to the neuropathic pain following peripheral nerve injury by promoting astrocyte proliferation and secretion of proinflammatory cytokines. Mol Med Rep. 15:89–96. 2017. View Article : Google Scholar : PubMed/NCBI

29 

Guzen FP, de Almeida Leme RJ, de Andrade MS, de Luca BA and Chadi G: Glial cell line-derived neurotrophic factor added to a sciatic nerve fragment grafted in a spinal cord gap ameliorates motor impairments in rats and increases local axonal growth. Restor Neurol Neurosci. 27:1–16. 2009.PubMed/NCBI

30 

Chang-Chen KJ, Mullur R and Bernal-Mizrachi E: Beta-cell failure as a complication of diabetes. Rev Endocr Metab Disord. 9:329–343. 2008. View Article : Google Scholar : PubMed/NCBI

31 

Kim B, McLean LL, Philip SS and Feldman EL: Hyperinsulinemia induces insulin resistance in dorsal root ganglion neurons. Endocrinology. 152:3638–3647. 2011. View Article : Google Scholar : PubMed/NCBI

32 

Bian O, Zhang H, Guan Q, Sun Y and Zeng D: High-dose insulin inhibits gap junction intercellular communication in vascular smooth muscle cells. Mol Med Rep. 12:331–336. 2015. View Article : Google Scholar : PubMed/NCBI

33 

Takenaka T, Inoue T, Okada H, Ohno Y, Miyazaki T, Chaston DJ, Hill CE and Suzuki H: Altered gap junctional communication and renal haemodynamics in Zucker fatty rat model of type 2 diabetes. Diabetologia. 54:2192–2201. 2011. View Article : Google Scholar : PubMed/NCBI

34 

Ly LD, Xu S, Choi SK, Ha CM, Thoudam T, Cha SK, Wiederkehr A, Wollheim CB, Lee IK and Park KS: Oxidative stress and calcium dysregulation by palmitate in type 2 diabetes. Exp Mol Med. 49:e2912017. View Article : Google Scholar : PubMed/NCBI

35 

Sano T, Iwashita M, Nagayasu S, Yamashita A, Shinjo T, Hashikata A, Asano T, Kushiyama A, Ishimaru N, Takahama Y, et al: Protection from diet-induced obesity and insulin resistance in mice lacking CCL19-CCR7 signaling. Obesity (Silver Spring). 23:1460–1471. 2015. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

October-2018
Volume 9 Issue 4

Print ISSN: 2049-9434
Online ISSN:2049-9442

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Gu Y, Qiu Z, Liu D, Sun G, Guan Y, Hei Z and Li X: Differential gene expression profiling of the sciatic nerve in type 1 and type 2 diabetic mice. Biomed Rep 9: 291-304, 2018.
APA
Gu, Y., Qiu, Z., Liu, D., Sun, G., Guan, Y., Hei, Z., & Li, X. (2018). Differential gene expression profiling of the sciatic nerve in type 1 and type 2 diabetic mice. Biomedical Reports, 9, 291-304. https://doi.org/10.3892/br.2018.1135
MLA
Gu, Y., Qiu, Z., Liu, D., Sun, G., Guan, Y., Hei, Z., Li, X."Differential gene expression profiling of the sciatic nerve in type 1 and type 2 diabetic mice". Biomedical Reports 9.4 (2018): 291-304.
Chicago
Gu, Y., Qiu, Z., Liu, D., Sun, G., Guan, Y., Hei, Z., Li, X."Differential gene expression profiling of the sciatic nerve in type 1 and type 2 diabetic mice". Biomedical Reports 9, no. 4 (2018): 291-304. https://doi.org/10.3892/br.2018.1135