1.
|
Coutinho-Camillo CM, Brentani MM and Nagai
MA: Genetic alterations in juvenile nasopharyngeal angiofibromas.
Head Neck. 30:390–400. 2008. View Article : Google Scholar : PubMed/NCBI
|
2.
|
Beham A, Beham-Schmid C, Regauer S, et al:
Nasopharyngeal angiofibroma: true neoplasm or vascular
malformation? Adv Anat Pathol. 7:36–46. 2000. View Article : Google Scholar : PubMed/NCBI
|
3.
|
Schick B and Urbschat S: New aspects of
pathogenesis of juvenile angiofibroma. Hosp Med. 65:269–273. 2004.
View Article : Google Scholar : PubMed/NCBI
|
4.
|
Eivazi B, Ardelean M, Bäumler W, et al:
Update on hemangiomas and vascular malformations of the head and
neck. Eur Arch Otorhinolaryngol. 266:187–197. 2009. View Article : Google Scholar : PubMed/NCBI
|
5.
|
Starlinger V, Wendler O, Gramann M, et al:
Laminin expression in juvenile angiofibroma indicates vessel's
early developmental stage. Acta Otolaryngol. 127:1310–1315.
2007.PubMed/NCBI
|
6.
|
Gramann M, Wendler O, Haeberle L and
Schick B: Prominent collagen type VI expression in juvenile
angiofibromas. Histochem Cell Biol. 131:155–164. 2009. View Article : Google Scholar : PubMed/NCBI
|
7.
|
Gramann M, Wendler O, Haeberle L and
Schick B: Expression of collagen types I, II and III in juvenile
angiofibromas. Cells Tissues Organs. 189:403–409. 2009. View Article : Google Scholar : PubMed/NCBI
|
8.
|
Enjolras O, Wassef M and Chapot R:
Introduction: ISSVA Classification In: Color Atlas of Vascular
Tumors and Vascular Malformations. Cambridge University Press; New
York: pp. 3–11. 2007
|
9.
|
Tamm E, Jungkunz W, Marsch WC and
Lütjen-Drecoll E: Increase in types IV and VI collagen in cherry
haemangiomas. Arch Dermatol Res. 284:275–282. 1992. View Article : Google Scholar : PubMed/NCBI
|
10.
|
Pusztaszeri MP, Seelentag W and Bosman FT:
Immunohistochemical expression of endothelial markers CD31, CD34,
von Willebrand factor, and Fli-1 in normal human tissues. J
Histochem Cytochem. 54:385–395. 2006. View Article : Google Scholar : PubMed/NCBI
|
11.
|
Schiff M, Gonzalez AM, Ong M, et al:
Juvenile nasopharyngeal angiofibroma contain an angiogenic growth
factor: basic FGF. Laryngoscope. 102:940–945. 1992. View Article : Google Scholar : PubMed/NCBI
|
12.
|
Dillard DG, Cohen C, Muller S, et al:
Immunolocalization of activated transforming growth factor beta1 in
juvenile nasopharyngeal angiofibroma. Arch Otolaryngol Head Neck
Surg. 126:723–725. 2000. View Article : Google Scholar : PubMed/NCBI
|
13.
|
Zhang PJ, Weber R, Liang HH, et al: Growth
factors and receptors in juvenile nasopharyngeal angiofibroma and
nasal polyps: an immunohistochemical study. Arch Pathol Lab Med.
127:1480–1484. 2003.PubMed/NCBI
|
14.
|
Brieger J, Wierzbicka M, Sokolov M, et al:
Vessel density, proliferation, and immunolocalization of vascular
endothelial growth factor in juvenile nasopharyngeal angiofibromas.
Arch Otolaryngol Head Neck Surg. 130:727–731. 2004. View Article : Google Scholar : PubMed/NCBI
|
15.
|
Saylam G, Yücel OT, Sungur A, et al:
Proliferation, angiogenesis and hormonal markers in juvenile
nasopharyngeal angiofibroma. Int J Pediatr Otorhinolaryngol.
70:227–234. 2006. View Article : Google Scholar : PubMed/NCBI
|
16.
|
Schuon R, Brieger J, Heinrich UR, et al:
Immunohistochemical analysis of growth mechanisms in juvenile
nasopharyngeal angiofibroma. Eur Arch Otorhinolaryngol.
264:389–394. 2007. View Article : Google Scholar : PubMed/NCBI
|
17.
|
Ponti G, Losi L, Pellacani G, et al: Wnt
pathway, angiogenetic and hormonal markers in sporadic and familial
adenomatous polyposis-associated juvenile nasopharyngeal
angiofibromas (JNA). Appl Immunohistochem Mol Morphol. 16:173–178.
2008. View Article : Google Scholar
|
18.
|
Montag AG, Tretiakova M and Richardson M:
Steroid hormone receptor expression in nasopharyngeal
angiofibromas. Consistent expression of estrogen receptor beta. Am
J Clin Pathol. 125:832–837. 2006. View Article : Google Scholar : PubMed/NCBI
|
19.
|
Pauli J, Gundelach R, Vanelli-Rees A, et
al: Juvenile nasopharyngeal angiofibroma: an immunohistochemical
characterisation of the stromal cell. Pathology. 40:396–400. 2008.
View Article : Google Scholar : PubMed/NCBI
|
20.
|
Nagy JA, Chang SH, Dvorak AM and Dvorak
HF: Why are tumour blood vessels abnormal and why is it important
to know? Br J Cancer. 100:865–869. 2009. View Article : Google Scholar : PubMed/NCBI
|
21.
|
Truong AH and Ben-David Y: The role of
Fli-1 in normal cell function and malignant transformation.
Oncogene. 19:6482–6489. 2000. View Article : Google Scholar : PubMed/NCBI
|
22.
|
Folpe AL, Chand EM, Goldblum JR and Weiss
SW: Expression of Fli-1, a nuclear transcription factor,
distinguishes vascular neoplasms from potential mimics. Am J Surg
Pathol. 25:1061–1066. 2001. View Article : Google Scholar : PubMed/NCBI
|
23.
|
Dallas NA, Samuel S, Xia L, Fan F, Gray
MJ, Lim SJ and Ellis LM: Endoglin (CD105): a marker of tumor
vasculature and potential target for therapy. Clin Cancer Res.
14:1931–1937. 2008. View Article : Google Scholar : PubMed/NCBI
|
24.
|
Breiteneder-Geleff S, Soleiman A, Kowalski
H, et al: Angiosarcomas express mixed endothelial phenotypes of
blood and lymphatic capillaries: podoplanin as a specific marker
for lymphatic endothelium. Am J Pathol. 154:385–394. 1999.
View Article : Google Scholar
|
25.
|
Folpe AL, Veikkola T, Valtola R and Weiss
SW: Vascular endothelial growth factor receptor-3 (VEGFR-3): a
marker of vascular tumors with presumed lymphatic differentiation,
including Kaposi's sarcoma, kaposiform and Dabska-type
hemangioendotheliomas, and a subset of angiosarcomas. Mod Pathol.
13:180–185. 2000.PubMed/NCBI
|
26.
|
Harik SI, Hall AK, Richey P, et al:
Ontogeny of the erythroid/HepG2-type glucose transporter (GLUT-1)
in the rat nervous system. Brain Res Dev Brain Res. 72:41–49. 1993.
View Article : Google Scholar : PubMed/NCBI
|
27.
|
Gillies RJ, Robey I and Gatenby RA: Causes
and consequences of increased glucose metabolism of cancers. J Nucl
Med. 49:S24–S42. 2008. View Article : Google Scholar : PubMed/NCBI
|
28.
|
North PE, Waner M, Mizeracki A, et al:
GLUT-1: a newly discovered immunohistochemical marker for juvenile
hemangiomas. Hum Pathol. 31:11–22. 2000. View Article : Google Scholar : PubMed/NCBI
|
29.
|
Aird WC: Molecular heterogeneity of tumor
endothelium. Cell Tissue Res. 335:271–281. 2009. View Article : Google Scholar : PubMed/NCBI
|
30.
|
Clark CJ and Sage EH: A prototypic
matricellular protein in the tumor microenvironment – where there's
SPARC, there's fire. J Cell Biochem. 104:721–732. 2008.PubMed/NCBI
|
31.
|
Rio MC: From a unique cell to metastasis
is a long way to go: clues to stromelysin-3 participation.
Biochimie. 87:299–306. 2005. View Article : Google Scholar : PubMed/NCBI
|
32.
|
Podhajcer OL, Benedetti L, Girotti MR,
Prada F, Salvatierra E and Llera AS: The role of the matricellular
protein SPARC in the dynamic interaction between the tumor and the
host. Cancer Metastasis Rev. 27:523–537. 2008. View Article : Google Scholar
|
33.
|
Krstulja M, Car A, Bonifacić D, Braut T
and Kujundzić M: Nasopharyngeal angiofibroma with intracellular
accumulation of SPARC – a hypothesis (SPARC in nasopharyngeal
angiofibroma). Med Hypotheses. 70:600–604. 2008.PubMed/NCBI
|
34.
|
Mangone FR, Brentani MM, Nonogaki S, et
al: Overexpression of Fos-related antigen-1 in head and neck
squamous cell carcinoma. Int J Exp Pathol. 86:205–212. 2005.
View Article : Google Scholar : PubMed/NCBI
|
35.
|
Baluk P, Morikawa S, Haskell A, Mancuso M
and McDonald DM: Abnormalities of basement membrane on blood
vessels and endothelial sprouts in tumors. Am J Pathol.
163:1801–1815. 2003. View Article : Google Scholar : PubMed/NCBI
|
36.
|
Cao R, Eriksson A, Kubo H, Alitalo K, Cao
Y and Thyberg J: Comparative evaluation of FGF-2-, VEGF-A-, and
VEGF-C-induced angiogenesis, lymphangiogenesis, vascular
fenestrations, and permeability. Circ Res. 94:664–670. 2004.
View Article : Google Scholar : PubMed/NCBI
|
37.
|
Duerr S, Wendler O, Aigner T, Karosi S and
Schick B: Metalloproteinases in juvenile angiofibroma – a collagen
rich tumor. Hum Pathol. 39:259–268. 2008.
|
38.
|
Motrescu ER, Blaise S, Etique N, et al:
Matrix metalloproteinase-11/stromelysin-3 exhibits collagenolytic
function against collagen VI under normal and malignant conditions.
Oncogene. 27:6347–6355. 2008. View Article : Google Scholar
|
39.
|
Chlenski A, Liu S, Guerrero LJ, et al:
SPARC expression is associated with impaired tumor growth,
inhibited angiogenesis and changes in the extracellular matrix. Int
J Cancer. 118:310–316. 2006. View Article : Google Scholar : PubMed/NCBI
|
40.
|
Kato Y, Lewalle JM, Baba Y, et al:
Induction of SPARC by VEGF in human vascular endothelial cells.
Biochem Biophys Res Commun. 287:422–426. 2001. View Article : Google Scholar : PubMed/NCBI
|
41.
|
Sennes LU, Fortes FS, Butugan O, Saldiva
PH and Bernardi FC: Tissue maturation correlating to clinical
manifestations in juvenile angiofibroma. Ann Otol Rhinol Laryngol.
114:705–708. 2005. View Article : Google Scholar : PubMed/NCBI
|
42.
|
Delany AM and Canalis E: The
metastasis-associated metalloproteinase stromelysin-3 is induced by
transforming growth factor-beta in osteoblasts and fibroblasts.
Endocrinology. 142:1561–1566. 2001.PubMed/NCBI
|