1.
|
Tiganis T and Bennett A: Protein tyrosine
phosphatase function: the substrate perspective. Biochem J.
402:1–15. 2007. View Article : Google Scholar : PubMed/NCBI
|
2.
|
Ensslen-Craig S and Brady-Kalnay S:
Receptor protein tyrosine phosphatases regulate neural development
and axon guidance. Dev Biol. 275:12–22. 2004. View Article : Google Scholar : PubMed/NCBI
|
3.
|
Stepanek L, Stoker A, Stoeckli E and Bixby
J: Receptor tyrosine phosphatases guide vertebrate motor axons
during development. J Neurosci. 25:3813–3823. 2005. View Article : Google Scholar : PubMed/NCBI
|
4.
|
Uetani N, Kato K, Ogura H, et al: Impaired
learning with enhanced hippocampal long-term potentiation in
PTPdeltadeficient mice. EMBO J. 19:2775–2785. 2000. View Article : Google Scholar : PubMed/NCBI
|
5.
|
Sjöblom T, Jones S, Wood L, et al: The
consensus coding sequences of human breast and colorectal cancers.
Science. 314:268–274. 2006.
|
6.
|
Weir B, Woo M, Getz G, et al:
Characterizing the cancer genome in lung adenocarcinoma. Nature.
450:893–898. 2007. View Article : Google Scholar : PubMed/NCBI
|
7.
|
Network CGAR: Comprehensive genomic
characterization defines human glioblastoma genes and core
pathways. Nature. 455:1061–1068. 2008. View Article : Google Scholar : PubMed/NCBI
|
8.
|
Bignell G, Greenman C, Davies H, et al:
Signatures of mutation and selection in the cancer genome. Nature.
463:893–898. 2010. View Article : Google Scholar : PubMed/NCBI
|
9.
|
Sato M, Takahashi K, Nagayama K, et al:
Identification of chromosome arm 9p as the most frequent target of
homozygous deletions in lung cancer. Genes Chromosomes Cancer.
44:405–414. 2005. View Article : Google Scholar : PubMed/NCBI
|
10.
|
Solomon D, Kim J, Cronin J, et al:
Mutational inactivation of PTPRD in glioblastoma multiforme and
malignant melanoma. Cancer Res. 68:10300–10306. 2008. View Article : Google Scholar : PubMed/NCBI
|
11.
|
Veeriah S, Brennan C, Meng S, et al: The
tyrosine phosphatase PTPRD is a tumor suppressor that is frequently
inactivated and mutated in glioblastoma and other human cancers.
Proc Natl Acad Sci USA. 106:9435–9440. 2009. View Article : Google Scholar
|
12.
|
Gonzalez-Brito M and Bixby J: Differential
activities in adhesion and neurite growth of fibronectin type III
repeats in the PTP-delta extracellular domain. Int J Dev Neurosci.
24:425–429. 2006. View Article : Google Scholar
|
13.
|
Serra-Pagès C, Medley Q, Tang M, Hart A
and Streuli M: Liprins, a family of LAR transmembrane
protein-tyrosine phosphataseinteracting proteins. J Biol Chem.
273:15611–15620. 1998.PubMed/NCBI
|
14.
|
Woodings J, Sharp S and Machesky L: MIM-B,
a putative metastasis suppressor protein, binds to actin and to
protein tyrosine phosphatase delta. Biochem J. 371:463–471. 2003.
View Article : Google Scholar
|
15.
|
Gonzalez-Quevedo R, Shoffer M, Horng L and
Oro A: Receptor tyrosine phosphatase-dependent cytoskeletal
remodeling by the hedgehog-responsive gene MIM/BEG4. J Cell Biol.
168:453–463. 2005. View Article : Google Scholar : PubMed/NCBI
|
16.
|
Ponta H, Sherman L and Herrlich P: CD44:
from adhesion molecules to signalling regulators. Nat Rev Mol Cell
Biol. 4:33–45. 2003. View
Article : Google Scholar : PubMed/NCBI
|
17.
|
Nakamura T, Hayashi T, Nasu-Nishimura Y,
et al: PX-RICS mediates ER-to-Golgi transport of the
N-cadherin/beta-catenin complex. Genes Dev. 22:1244–1256. 2008.
View Article : Google Scholar : PubMed/NCBI
|
18.
|
Kawasaki Y, Sato R and Akiyama T: Mutated
APC and Asef are involved in the migration of colorectal tumour
cells. Nat Cell Biol. 5:211–215. 2003. View
Article : Google Scholar : PubMed/NCBI
|
19.
|
Jeanes A, Gottardi C and Yap A: Cadherins
and cancer: how does cadherin dysfunction promote tumor
progression? Oncogene. 27:6920–6929. 2008. View Article : Google Scholar : PubMed/NCBI
|
20.
|
Wang J and Bixby J: Receptor tyrosine
phosphatase-delta is a homophilic, neurite-promoting cell adhesion
molecular for CNS neurons. Mol Cell Neurosci. 14:370–384. 1999.
View Article : Google Scholar : PubMed/NCBI
|
21.
|
Kawasaki Y, Sagara M, Shibata Y, Shirouzu
M, Yokoyama S and Akiyama T: Identification and characterization of
Asef2, a guanine-nucleotide exchange factor specific for Rac1 and
Cdc42. Oncogene. 26:7620–7267. 2007. View Article : Google Scholar : PubMed/NCBI
|
22.
|
Gilles C, Polette M, Mestdagt M, et al:
Transactivation of vimentin by beta-catenin in human breast cancer
cells. Cancer Res. 63:2658–2664. 2003.PubMed/NCBI
|
23.
|
Gavert N, Conacci-Sorrell M, Gast D, et
al: L1, a novel target of beta-catenin signaling, transforms cells
and is expressed at the invasive front of colon cancers. J Cell
Biol. 168:633–642. 2005. View Article : Google Scholar : PubMed/NCBI
|
24.
|
Vignjevic D, Schoumacher M, Gavert N, et
al: Fascin, a novel target of beta-catenin-TCF signaling, is
expressed at the invasive front of human colon cancer. Cancer Res.
67:6844–6853. 2007. View Article : Google Scholar : PubMed/NCBI
|
25.
|
Morin P, Sparks A, Korinek V, et al:
Activation of beta-catenin-Tcf signaling in colon cancer by
mutations in beta-catenin or APC. Science. 275:1787–1790. 1997.
View Article : Google Scholar : PubMed/NCBI
|
26.
|
Sparks A, Morin P, Vogelstein B and
Kinzler K: Mutational analysis of the APC/beta-catenin/Tcf pathway
in colorectal cancer. Cancer Res. 58:1130–1134. 1998.PubMed/NCBI
|
27.
|
Fodde R and Brabletz T: Wnt/beta-catenin
signaling in cancer stemness and malignant behavior. Curr Opin Cell
Biol. 19:150–158. 2007. View Article : Google Scholar : PubMed/NCBI
|
28.
|
Wielenga V, Smits R, Korinek V, et al:
Expression of CD44 in Apc and Tcf mutant mice implies regulation by
the WNT pathway. Am J Pathol. 154:515–523. 1999. View Article : Google Scholar : PubMed/NCBI
|
29.
|
Boon E, van der Neut R, van de Wetering M,
Clevers H and Pals S: Wnt signaling regulates expression of the
receptor tyrosine kinase met in colorectal cancer. Cancer Res.
62:5126–5128. 2002.PubMed/NCBI
|
30.
|
Al-Hajj M, Wicha M, Benito-Hernandez A,
Morrison S and Clarke M: Prospective identification of tumorigenic
breast cancer cells. Proc Natl Acad Sci USA. 100:3983–3988. 2003.
View Article : Google Scholar : PubMed/NCBI
|
31.
|
Du L, Wang H, He L, et al: CD44 is of
functional importance for colorectal cancer stem cells. Clin Cancer
Res. 14:6751–6760. 2008. View Article : Google Scholar : PubMed/NCBI
|
32.
|
Van der Flier L, van Gijn M, Hatzis P, et
al: Transcription factor achaete scute-like 2 controls intestinal
stem cell fate. Cell. 136:903–912. 2009.PubMed/NCBI
|
33.
|
Zheng H, Ying H, Wiedemeyer R, et al:
PLAGL2 regulates Wnt signaling to impede differentiation in neural
stem cells and gliomas. Cancer Cell. 17:497–509. 2010. View Article : Google Scholar : PubMed/NCBI
|
34.
|
O’Connell M and Weeraratna A: Hear the Wnt
Ror: how melanoma cells adjust to changes in Wnt. Pigment Cell
Melanoma Res. 22:724–739. 2009.PubMed/NCBI
|
35.
|
Müller T, Choidas A, Reichmann E and
Ullrich A: Phosphorylation and free pool of beta-catenin are
regulated by tyrosine kinases and tyrosine phosphatases during
epithelial cell migration. J Biol Chem. 274:10173–10183.
1999.PubMed/NCBI
|
36.
|
Siu R, Fladd C and Rotin D: N-cadherin is
an in vivo substrate for protein tyrosine phosphatase sigma
(PTPsigma) and participates in PTPsigma-mediated inhibition of axon
growth. Mol Cell Biol. 27:208–219. 2007. View Article : Google Scholar : PubMed/NCBI
|
37.
|
Harder K, Moller N, Peacock J and Jirik F:
Protein-tyrosine phosphatase alpha regulates Src family kinases and
alters cellsubstratum adhesion. J Biol Chem. 273:31890–31900. 1998.
View Article : Google Scholar : PubMed/NCBI
|
38.
|
Zhu S, Bjorge J and Fujita D: PTP1B
contributes to the oncogenic properties of colon cancer cells
through Src activation. Cancer Res. 67:10129–10137. 2007.
View Article : Google Scholar : PubMed/NCBI
|