1.
|
Hoffman JI and Kaplan S: The incidence of
congenital heart disease. J Am Coll Cardiol. 39:1890–1900. 2002.
View Article : Google Scholar : PubMed/NCBI
|
2.
|
Wenxiang D: Status of paediatric cardiac
surgery in China. Heart Lung Circ. 10:16–19. 2001. View Article : Google Scholar
|
3.
|
Suh YA, Arnold RS, Lassegue B, Shi J, Xu
X, Sorescu D, Chung AB, Griendling KK and Lambeth JD: Cell
transformation by the superoxide-generating oxidase Mox1. Nature.
401:79–82. 1999. View
Article : Google Scholar : PubMed/NCBI
|
4.
|
Piao YJ, Seo YH, Hong F, Kim JH, Kim YJ,
Kang MH, Kim BS, Jo SA, Jo I, Jue DM, Kang I, Ha J and Kim SS: NOX2
stimulates muscle differentiation via NF-κB/iNOS pathway. Free
Radic Biol Med. 38:989–1001. 2005.PubMed/NCBI
|
5.
|
Pedruzzi E, Guichard C, Ollivier V, et al:
NAD(P)H oxidase NOX-4 mediates 7-ketocholesterol-induced
endoplasmic reticulum stress and apoptosis in human aortic smooth
muscle cells. Mol Cell Biol. 24:10703–10717. 2004. View Article : Google Scholar : PubMed/NCBI
|
6.
|
Van Rooij E and Olson EN: MicroRNAs:
powerful new regulators of heart disease and provocative
therapeutic targets. J Clin Invest. 117:2369–2376. 2007.PubMed/NCBI
|
7.
|
Bird A: DNA methylation pattern and
epigenetic memory. Genes Dev. 16:6–21. 2002. View Article : Google Scholar
|
8.
|
Zhu C, Yu ZB, Chen XH, Pan Y, Dong XY,
Qian LM and Han SP: Screening for differential methylation status
in fetal myocardial tissue samples with ventricular septal defects
by promoter methylation microarrays. Mol Med Rep. 4:137–143.
2011.
|
9.
|
Herman JG, Graff JR, Myohanen S, Nelkin BD
and Baylin SB: Methylation-specific PCR: a novel PCR assay for
methylation status of CpG islands. Proc Natl Acad Sci USA.
93:9821–9826. 1996. View Article : Google Scholar : PubMed/NCBI
|
10.
|
Antequera F and Bird A: Number of CpG
islands and genes in human and mouse. Proc Natl Acad Sci USA.
90:11995–11999. 1993. View Article : Google Scholar : PubMed/NCBI
|
11.
|
Suzuki MM and Bird A: DNA methylation
landscapes: provocative insights from epigenomics. Nat Rev Genet.
9:465–476. 2008. View
Article : Google Scholar : PubMed/NCBI
|
12.
|
Dal C and Guldberyg P: DNA methylation
analysis techniques. Biogerontology. 4:233–250. 2003. View Article : Google Scholar
|
13.
|
Tsumura A, Hayakawa T, Kumaki Y,
Takebayashi S, Sakaue M, Matsuoka C, Shimotohno K, Ishikawa F, Li
E, Ueda HR, Nakayama J and Okano M: Maintenance of self-renewal
ability of mouse embryonic stem cells in the absence of DNA
methyltransferases Dnmt1, Dnmt3a and Dnmt3b. Genes Cells.
11:805–814. 2006. View Article : Google Scholar : PubMed/NCBI
|
14.
|
Okano M, Bell DW and Haber DA: DNA
methyltransferases Dnmt3a and Dnmt3b are essential for de novo
methylation and mammalian development. Cell. 99:247–257. 1999.
View Article : Google Scholar : PubMed/NCBI
|
15.
|
Mayer W, Niveleau A, Walter J, Fundele R
and Haaf T: Embryogenesis-demethylation of the zygotic paternal
genome. Nature. 403:501–502. 2000. View
Article : Google Scholar : PubMed/NCBI
|
16.
|
Burn J, Brennan P, Little J, et al:
Recurrence risks in offspring of adults with major heart defects:
results from first cohort of British collaborative study. Lancet.
351:311–316. 1998. View Article : Google Scholar : PubMed/NCBI
|
17.
|
Mehregan M, Choy MK, Goddard M, Bennett
MR, Down TA and Foo RS: Differential DNA methylation correlates
with differential expression of angiogenic factors in human heart
failure. Plos One. 5:e85642010. View Article : Google Scholar : PubMed/NCBI
|
18.
|
Heymes C, Bendall JK, Ratajczak P, Cave
AC, Samuel JL, Hasenfuss G and Shah AM: Increased myocardial NADPH
oxidase activity in human heart failure. J Am Coll Cardiol.
41:2164–2171. 2003. View Article : Google Scholar : PubMed/NCBI
|
19.
|
Krijnen PA, Meischl C, Hack CE, Meijer CJ,
Visser CA, Roos D and Niessen HW: Increased Nox2 expression in
human cardiomyocytes after acute myocardial infarction. J Clin
Pathol. 56:194–199. 2003. View Article : Google Scholar : PubMed/NCBI
|
20.
|
Cheng G, Cao Z and Xu X: Homologs of
gp91phox: cloning and tissue expression of NOX3, NOX4, and NOX5.
Gene. 269:131–140. 2001. View Article : Google Scholar : PubMed/NCBI
|
21.
|
Bánfi B, Molnár G, Maturana A, Steger K,
Hegedûs B, Demaurex N and Krause KH: A Ca(2+)-activated NADPH
oxidase in testis, spleen, and lymph nodes. J Biol Chem.
276:37594–37601. 2001.
|
22.
|
BelAiba RS, Djordjevic T, Petry A, Diemer
K, Bonello S, Banfi B, Hess J, Pogrebniak A, Bickel C and Görlach
A: NOX5 variants are functionally active in endothelial cells. Free
Radic Biol Med. 42:446–459. 2007. View Article : Google Scholar : PubMed/NCBI
|
23.
|
Guzik TJ, Chen W, Gongora MC, Guzik B, Lob
HE, Mangalat D, Hoch N, Dikalov S, Rudzinski P, Kapelak B, Sadowski
J and Harrison DG: Calcium-dependent NOX5 nicotinamide adenine
dinucleotide phosphate oxidase contributes to vascular oxidative
stress in human coronary artery disease. J Am Coll Cardiol.
52:1803–1809. 2008. View Article : Google Scholar
|
24.
|
Fulton DJ: Nox5 and the regulation of
cellular function. Antioxid Redox Signal. 11:2443–2452. 2009.
View Article : Google Scholar : PubMed/NCBI
|
25.
|
Kaynak B, von Heydebreck A, Mebus S,
Seelow D, Hennig S, Vogel J, Sperling HP, Pregla R,
Alexi-Meskishvili V, Hetzer R, Lange PE, Vingron M, Lehrach H and
Sperling S: Genome-wide array analysis of normal and malformed
human hearts. Circulation. 107:2467–2474. 2003. View Article : Google Scholar : PubMed/NCBI
|
26.
|
Maru Y, Nishino T and Kakinuma K:
Expression of Nox genes in rat organs, mouse oocytes, and sea
urchin eggs. DNA Seq. 16:83–88. 2005.PubMed/NCBI
|
27.
|
Khalil A, Trehan R and Tiwari A:
Immunological profile in congenital heart disease. Indian Pediatr.
31:295–300. 1994.
|