1.
|
Duan M, Venail F, Spencer N and Mezzina M:
Treatment of peripheral sensorineural hearing loss: gene therapy.
Gene Ther. 11(Suppl 1): 51–56. 2004. View Article : Google Scholar : PubMed/NCBI
|
2.
|
Ge X, Jackson RL, Liu J, et al:
Distribution of PLGA nanoparticles in chinchilla cochleae.
Otolaryngol Head Neck Surg. 137:619–623. 2007. View Article : Google Scholar : PubMed/NCBI
|
3.
|
Tamura T, Kita T, Nakagawa T, et al: Drug
delivery to the cochlea using PLGA nanoparticles. Laryngoscope.
115:2000–2005. 2005. View Article : Google Scholar : PubMed/NCBI
|
4.
|
Zou J, Saulnier P, Perrier T, et al:
Distribution of lipid nanocapsules in different cochlear cell
populations after round window membrane permeation. J Biomed Mater
Res B Appl Biomater. 87:10–18. 2008. View Article : Google Scholar : PubMed/NCBI
|
5.
|
Praetorius M, Brunner C, Lehnert B, et al:
Transsynaptic delivery of nanoparticles to the central auditory
nervous system. Acta Otolaryngol. 127:486–490. 2007. View Article : Google Scholar : PubMed/NCBI
|
6.
|
Sun H, Jiang M and Zhu SH: In vitro and in
vivo studies on hydroxyapatite nanoparticles as a novel vector for
inner ear gene therapy. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za
Zhi. 43:51–57. 2008.PubMed/NCBI
|
7.
|
Jiang M, Zhang YQ, He GX and Sun H:
Protective effect of NT-3 gene mediated by hydroxyapatite
nanoparticle on the cochlea of guinea pigs injured by
excitotoxicity. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 32:563–567.
2007.PubMed/NCBI
|
8.
|
Roy S, Johnston AH, Newman TA, et al:
Cell-specific targeting in the mouse inner ear using nanoparticles
conjugated with a neurotrophin-derived peptide ligand: potential
tool for drug delivery. Int J Pharm. 390:214–224. 2010. View Article : Google Scholar : PubMed/NCBI
|
9.
|
Praetorius M, Pfannenstiel S, Klingmann C,
Baumann I, Plinkert PK and Staecker H: [Expression patterns of
non-viral transfection with GFP in the organ of Corti in vitro and
in vivo. Gene therapy of the inner ear with non-viral vectors].
HNO. 56:524–529. 2008.(In German).
|
10.
|
Zhang Y, Liu JY, Yang F, et al: A new
strategy for assembling multifunctional nanocomposites with iron
oxide and amino-terminated PAMAM dendrimers. J Mater Sci Mater Med.
20:2433–2440. 2009. View Article : Google Scholar : PubMed/NCBI
|
11.
|
Liu XX, Rocchi P, Qu FQ, et al: PAMAM
dendrimers mediate siRNA delivery to target Hsp27 and produce
potent antiproliferative effects on prostate cancer cells.
ChemMedChem. 4:1302–1310. 2009. View Article : Google Scholar
|
12.
|
Navarro G and de Ilarduya CT: Activated
and non-activated PAMAM dendrimers for gene delivery in vitro and
in vivo. Nanomedicine. 5:287–297. 2009. View Article : Google Scholar : PubMed/NCBI
|
13.
|
Tomalia DA, Baker H, Dewald J, Hall M,
Kallos G, Martin S, Roeck J, Ryder J and Smith P: A new class of
polymers: starburst-dendritic macromolecules. Polymer J.
17:1171985. View Article : Google Scholar
|
14.
|
Tang MX, Redemann CT and Szoka FC Jr: In
vitro gene delivery by degraded polyamidoamine dendrimers.
Bioconjug Chem. 7:703–714. 1996. View Article : Google Scholar : PubMed/NCBI
|
15.
|
Jansen JF, de Brabander-van den Berg EM
and Meijer EW: Encapsulation of guest molecules into a dendritic
box. Science. 266:1226–1229. 1994. View Article : Google Scholar : PubMed/NCBI
|
16.
|
Roberts JC, Bhalgat MK and Zera RT:
Preliminary biological evaluation of polyamidoamine (PAMAM)
Starburst dendrimers. J Biomed Mater Res. 30:53–65. 1996.
View Article : Google Scholar : PubMed/NCBI
|
17.
|
Nam HY, Hahn HJ, Nam K, et al: Evaluation
of generations 2, 3 and 4 arginine modified PAMAM dendrimers for
gene delivery. Int J Pharm. 363:199–205. 2008. View Article : Google Scholar : PubMed/NCBI
|
18.
|
Lee H and Larson RG: Multiscale modeling
of dendrimers and their interactions with bilayers and
polyelectrolytes. Molecules. 14:423–438. 2009. View Article : Google Scholar : PubMed/NCBI
|
19.
|
Landmark KJ, Dimaggio S, Ward J, et al:
Synthesis, characterization, and in vitro testing of
superparamagnetic iron oxide nanoparticles targeted using folic
acid-conjugated dendrimers. ACS Nano. 2:773–783. 2008. View Article : Google Scholar : PubMed/NCBI
|
20.
|
Tekade RK, Kumar PV and Jain NK:
Dendrimers in oncology: an expanding horizon. Chem Rev. 109:49–87.
2009. View Article : Google Scholar : PubMed/NCBI
|
21.
|
Klajnert B and Bryszewska M: Dendrimers:
properties and applications. Acta Biochim Pol. 48:199–208.
2001.PubMed/NCBI
|
22.
|
Shakhbazau A, Isayenka I, Kartel N, et al:
Transfection efficiencies of PAMAM dendrimers correlate inversely
with their hydrophobicity. Int J Pharm. 383:228–235. 2010.
View Article : Google Scholar : PubMed/NCBI
|
23.
|
Haensler J and Szoka FC Jr: Polyamidoamine
cascade polymers mediate efficient transfection of cells in
culture. Bioconjug Chem. 4:372–379. 1993. View Article : Google Scholar : PubMed/NCBI
|
24.
|
Kukowska-Latallo JF, Bielinska AU, Johnson
J, Spindler R, Tomalia DA and Baker JR Jr: Efficient transfer of
genetic material into mammalian cells using Starburst
polyamidoamine dendrimers. Proc Natl Acad Sci USA. 93:4897–4902.
1996. View Article : Google Scholar : PubMed/NCBI
|
25.
|
Bielinska AU, Kukowska-Latallo JF and
Baker JR Jr: The interaction of plasmid DNA with polyamidoamine
dendrimers: mechanism of complex formation and analysis of
alterations induced in nuclease sensitivity and transcriptional
activity of the complexed DNA. Biochim Biophys Acta. 1353:180–190.
1997. View Article : Google Scholar
|
26.
|
Hui Z, He ZG, Zheng L, Li GY, Shen SR and
Li XL: Studies on polyamidoamine dendrimers as efficient gene
delivery vector. J Biomater Appl. 22:527–544. 2008.PubMed/NCBI
|
27.
|
Tung CH and Weissleder R: Arginine
containing peptides as delivery vectors. Adv Drug Deliv Rev.
55:281–294. 2003. View Article : Google Scholar : PubMed/NCBI
|
28.
|
Futaki S: Arginine-rich peptides:
potential for intracellular delivery of macromolecules and the
mystery of the translocation mechanisms. Int J Pharm. 245:1–7.
2002. View Article : Google Scholar : PubMed/NCBI
|
29.
|
Torchilin VP, Rammohan R, Weissig V and
Levchenko TS: TAT peptide on the surface of liposomes affords their
efficient intracellular delivery even at low temperature and in the
presence of metabolic inhibitors. Proc Natl Acad Sci USA.
98:8786–8791. 2001. View Article : Google Scholar
|
30.
|
Suzuki T, Futaki S, Niwa M, Tanaka S, Ueda
K and Sugiura Y: Possible existence of common internalization
mechanisms among arginine-rich peptides. J Biol Chem.
277:2437–2443. 2002. View Article : Google Scholar : PubMed/NCBI
|
31.
|
Choi JS, Nam K, Park JY, Kim JB, Lee JK
and Park JS: Enhanced transfection efficiency of PAMAM dendrimer by
surface modification with L-arginine. J Control Release.
99:445–456. 2004. View Article : Google Scholar : PubMed/NCBI
|
32.
|
Kim JB, Choi JS, Nam K, Lee M, Park JS and
Lee JK: Enhanced transfection of primary cortical cultures using
arginine-grafted PAMAM dendrimer, PAMAM-Arg. J Control Release.
114:110–117. 2006. View Article : Google Scholar : PubMed/NCBI
|
33.
|
Kumar A, Yellepeddi VK, Davies GE,
Strychar KB and Palakurthi S: Enhanced gene transfection efficiency
by polyamidoamine (PAMAM) dendrimers modified with ornithine
residues. Int J Pharm. 392:294–303. 2010. View Article : Google Scholar : PubMed/NCBI
|
34.
|
Arima H: [Polyfection as nonviral gene
transfer method – design of novel nonviral vector using
alpha-cyclodextrin]. Yakugaku Zasshi. 124:451–464. 2004.(In
Japanese).
|
35.
|
Kang C, Yuan X, Li F, et al: Evaluation of
folate-PAMAM for the delivery of antisense oligonucleotides to rat
C6 glioma cells in vitro and in vivo. J Biomed Mater Res A.
93:585–594. 2010.PubMed/NCBI
|
36.
|
Kono K, Akiyama H, Takahashi T, Takagishi
T and Harada A: Transfection activity of polyamidoamine dendrimers
having hydrophobic amino acid residues in the periphery. Bioconjug
Chem. 16:208–214. 2005. View Article : Google Scholar : PubMed/NCBI
|
37.
|
Shahin V, Albermann L, Schillers H, et al:
Steroids dilate nuclear pores imaged with atomic force microscopy.
J Cell Physiol. 202:591–601. 2005. View Article : Google Scholar : PubMed/NCBI
|
38.
|
Choi JS, Ko KS, Park JS, Kim YH, Kim SW
and Lee M: Dexamethasone-conjugated poly(amidoamine) dendrimer as a
gene carrier for efficient nuclear translocation. Int J Pharm.
320:171–178. 2006. View Article : Google Scholar : PubMed/NCBI
|
39.
|
Huang RQ, Qu YH, Ke WL, Zhu JH, Pei YY and
Jiang C: Efficient gene delivery targeted to the brain using a
transferrin-conjugated polyethyleneglycol-modified polyamidoamine
dendrimer. FASEB J. 21:1117–1125. 2007. View Article : Google Scholar
|
40.
|
Li S, Rizzo MA, Bhattacharya S and Huang
L: Characterization of cationic lipid-protamine-DNA (LPD) complexes
for intravenous gene delivery. Gene Ther. 5:930–937. 1998.
View Article : Google Scholar : PubMed/NCBI
|
41.
|
Tan Y, Whitmore M, Li S, Frederik P and
Huang L: LPD nanoparticles – novel nonviral vector for efficient
gene delivery. Methods Mol Med. 69:73–81. 2002.
|
42.
|
Sorgi FL, Bhattacharya S and Huang L:
Protamine sulfate enhances lipid-mediated gene transfer. Gene Ther.
4:961–968. 1997. View Article : Google Scholar : PubMed/NCBI
|
43.
|
Malik N, Wiwattanapatapee R, Klopsch R, et
al: Dendrimers: relationship between structure and biocompatibility
in vitro, and preliminary studies on the biodistribution of
125I-labelled polyamidoamine dendrimers in vivo. J Control Release.
65:133–148. 2000.PubMed/NCBI
|
44.
|
Bielinska AU, Chen C, Johnson J and Baker
JR Jr: DNA complexing with polyamidoamine dendrimers: implications
for transfection. Bioconjug Chem. 10:843–850. 1999. View Article : Google Scholar : PubMed/NCBI
|
45.
|
Wang Y, Kong W, Song Y, et al:
Polyamidoamine dendrimers with a modified Pentaerythritol core
having high efficiency and low cytotoxicity as gene carriers.
Biomacromolecules. 10:617–622. 2009. View Article : Google Scholar : PubMed/NCBI
|
46.
|
Patil ML, Zhang M, Betigeri S, Taratula O,
He H and Minko T: Surface-modified and internally cationic
polyamidoamine dendrimers for efficient siRNA delivery. Bioconjug
Chem. 19:1396–1403. 2008. View Article : Google Scholar : PubMed/NCBI
|